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Abstract

Oscillatory neural activity is dynamically controlled to coordinate perceptual, attentional and

cognitive processes. On the macroscopic scale, this control is reflected in the U-shaped

deviations of EEG spectral-power dynamics from stochastic dynamics, characterized by dis-

proportionately elevated occurrences of the lowest and highest ranges of power. To under-

stand the mechanisms that generate these low- and high-power states, we fit a simple

mathematical model of synchronization of oscillatory activity to human EEG data. The

results consistently indicated that the majority (~95%) of synchronization dynamics is con-

trolled by slowly adjusting the probability of synchronization while maintaining maximum

entropy within the timescale of a few seconds. This strategy appears to be universal as the

results generalized across oscillation frequencies, EEG current sources, and participants (N

= 52) whether they rested with their eyes closed, rested with their eyes open in a darkened

room, or viewed a silent nature video. Given that precisely coordinated behavior requires

tightly controlled oscillatory dynamics, the current results suggest that the large-scale spatial

synchronization of oscillatory activity is controlled by the relatively slow, entropy-maximizing

adjustments of synchronization probability (demonstrated here) in combination with tempo-

rally precise phase adjustments (e.g., phase resetting generated by sensorimotor interac-

tions). Interestingly, we observed a modest but consistent spatial pattern of deviations from

the maximum-entropy rule, potentially suggesting that the mid-central-posterior region

serves as an “entropy dump” to facilitate the temporally precise control of spectral-power

dynamics in the surrounding regions.

Introduction

A great deal of evidence suggests that the coordination of oscillatory activity contributes to

controlling neural communications that are necessary for effective operations of perception,

attention, memory, and cognition [e.g., 1–18]. While fine-tuned coordination likely involves

controlling the phases of oscillatory activity across frequency bands, the impact of oscillatory

activity also depends on the size of synchronized neural population. For large-scale neural

activity detected by scalp-recorded electroencephalography (EEG), the spectral power
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obtained at an EEG current source reflects the size of synchronously oscillating population

within its spatial resolution. EEG spectral power fluctuates at each current source reflecting

the dynamic changes in large-scale synchronization of oscillatory activity. The goal of the cur-

rent study was to elucidate the mechanisms that control these large-scale synchronization

dynamics.

One way to investigate dynamic control is to compare spectral-power dynamics between

EEG data and their phase-scrambled controls. Phase scrambling randomizes cross-frequency

phase relations, thus destroying temporal structures that depend on cross-frequency phase

alignment, rendering spectral-power dynamics stochastic (memory free) while preserving

time-averaged power spectra. Because stochastic dynamics reflect a Poisson process, phase-

scrambled spectral-power dynamics are characterized by an exponential temporal distribution

of power. Actual EEG spectral-power dynamics deviate from exponential profiles in a charac-

teristic U-shaped manner with disproportionately elevated occurrences of the lowest and high-

est ranges of power (see Results). This indicates that brain spectral-power dynamics exhibit

intermittent bursts of extensive oscillatory synchronization separated by periods of sparse syn-

chronization (compared with stochastic dynamics). How are these periods of extensive and

sparse synchronization generated?

On the one hand, the brain neural network may actively boost large-scale synchronization

or inhibit it in precise temporal coordination with behavioral demands. On the other hand,

the network may indirectly influence large-scale synchronization by increasing or decreasing

the probability of synchronization on a relatively slow timescale while generally maintaining

maximum entropy for energy efficiency. As described in the results section, these possibilities

can be evaluated in a relatively simple manner.

Materials and methods

Participants

Fifty-two Northwestern University students (35 women, 1 non-binary; ages 18 to 29 years,

M = 20.75, SD = 2.52) gave informed written consent to participate for monetary compensa-

tion ($10/hr). All were right-handed, had normal hearing and normal or corrected-to-normal

vision, and had no history of concussion. They were tested individually in a dimly lit or dark

room. The study protocol was approved by the Northwestern University Institutional Review

Board. Participants p1-p7 and p12-p28 (N = 24) participated in the rest-with-the-eyes-closed

condition where their EEG was recorded for ~5 min while they rested with their eyes closed

and freely engaged in spontaneous thoughts. This condition was always run first for those who

also participated in the nature-video condition. Participants p8-p28 (N = 21) also participated

in the nature-video condition where their EEG was recorded for ~5 min while they viewed a

silent nature video. To evaluate the test-retest reliability, the nature-video condition was run

twice (20–30 min apart), labeled as earlier viewing and later viewing in the analyses. A generic

nature video was presented on a 13-inch, 2017 MacBook Pro, 2880(H)-by-1800(V)-pixel-

resolution screen with normal brightness and contrast settings, placed 100 cm away from par-

ticipants, subtending 16˚(H)-by-10˚(V) of visual angle. Participants p29-p52 (N = 24) partici-

pated in the replication of the rest-with-the-eyes-closed condition and the rest-with-the-eyes-

open-in-dark condition which was the same as the former except that the room was darkened

and participants kept their eyes open while blinking naturally.

EEG recording and pre-processing

While participants rested with their eyes closed, rested with their eyes open in dark, or viewed

a silent nature video for approximately 5 min, EEG was recorded from 64 scalp electrodes
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(although we used a 64-electrode montage, we excluded signals from noise-prone electrodes,

Fpz, Iz, T9, and T10, from analyses) at a sampling rate of 512 Hz using a BioSemi ActiveTwo

system (see www.biosemi.com for details). Electrooculographic (EOG) activity was monitored

using four face electrodes, one placed lateral to each eye and one placed beneath each eye. Two

additional electrodes were placed on the left and right mastoid area. The EEG data were pre-

processed using EEGLAB and ERPLAB toolboxes for MATLAB [19, 20]. The data were re-ref-

erenced offline to the average of the two mastoid electrodes, bandpass-filtered at 0.01 Hz-80

Hz, and notch-filtered at 60 Hz (to remove power-line noise that affected the EEG signals

from some participants). For the EEG signals recorded while participants rested with the eyes

open in dark or while they viewed a silent nature video, an Independent Component Analysis

(ICA) was conducted using EEGLABs’ runica function [21, 22]; blink related components

were visually identified (apparent based on characteristic topography) and removed (no more

than two components were removed per participant). We surface-Laplacian transformed all

EEG data for the following reasons. The transform substantially reduces volume conduction

(to within adjacent sites for a 64-channel montage [23]), virtually eliminates the effects of ref-

erence electrode choices (as we verified), and provides a data-driven method to fairly accu-

rately map scalp-recorded EEG to current-source activities in the cortex [24–26]. We used

Perrin and colleagues’ algorithm [27–29] with the “smoothness” value, λ = 10−5 (recom-

mended for 64 channels [23]). We refer to the surface-Laplacian transformed EEG signals that

represent the current sources under the 60 scalp sites (with the 4 noise-prone sites removed

from analyses; see above) simply as EEG signals.

EEG analysis

EEG temporal derivative. An example 1 sec EEG waveform at a central site FCz from one

participant (at rest with the eyes closed) is shown in Fig 1A (black curve). The mean spectral-

amplitude profile of the full length (~5 min) version of the same data, with the fast Fourier

transform (FFT) computed on each consecutive 5 sec waveform and then averaged, is shown

in Fig 1B (black curve; the shaded area represents ±1 standard error of the mean). The general

linear decrease in the spectral amplitude for higher frequencies with a slope of approximately 1

(in log-log scale) reflects the 1/fβ (with β ~ 1) background spectral profile largely explained by

the neuronal Ornstein-Uhlenbeck process that exhibits a random-walk type behavior ([e.g.,

30, 31]; random walk [integer or Gaussian] would yield β = 1). The spectral “bumps” seen

around 10 Hz, 20 Hz, and 30 Hz indicate the characteristic bands of oscillation frequencies

that the neural population reflected at this site for this person may utilize for communication

and/or information processing. Taking the temporal derivative of EEG (DEEG
Dt , where Δt is the

temporal resolution, i.e., 1/512 sec) (see the black curve in Fig 1C) highlights the oscillatory

bumps by largely removing the 1/fβ background when β ~ 1 due to the trigonometric property

of implicitly multiplying each frequency component by f (see the black curve in Fig 1D). While

Fig 1D shows an example at one site from one participant, we confirmed that taking the tem-

poral derivative generally flattened the background spectral-amplitude profiles across sites and

participants, indicating that our EEG data generally yielded β ~ 1 for their time-averaged spec-

tral backgrounds. However, β is known to fluctuate over time (see [32] for a review of the vari-

ous factors that influence β; see [33] for contributions of the excitatory and inhibitory

dynamics to β); thus, the degree to which taking the temporal derivative continuously reduces

the 1/fβ background to highlight oscillatory activity is unclear. Nevertheless, we used the EEG

temporal derivative, EEGd (as in our prior study [34]), because (1) EEGd is a "deeper" neural

measure than EEG in the sense that scalp-recorded EEG potentials are caused by the underly-

ing neural currents and taking the EEG temporal derivative macroscopically estimates those
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currents, (2) EEGd is virtually drift free (e.g., Fig 1C), and (3) it highlights the dynamics of

oscillatory activity at least for temporal average (Fig 1D).

Computing spectral power as a function of time. The spectral-amplitude profiles shown

in Fig 1B and 1D are time-averaged (standard fast Fourier transforms). To investigate how

spectral power (amplitude squared of sinusoidal components) fluctuated, we used a Morlet

wavelet-convolution method suitable for time-frequency decomposition of signals containing

multiple oscillatory sources of different frequencies (see [23] for a review of different methods

Fig 1. The use of the temporal derivative of EEG (EEGd) and DCT-phase-scrambled controls for investigating the dynamic control of synchronization of

oscillatory activity. A. An example of 1 sec EEG waveform (black) and its DCT-phase-scrambled control (blue) at FCz from one participant. B. The mean spectral-

amplitude profiles of the full length (~5 min) versions of the same EEG data (black) and its DCT-phase-scrambled control (blue), with the fast Fourier transform (FFT)

computed on each consecutive 5 sec waveform and then averaged, plotted in a log-log format. C. The temporal derivatives, which we call EEGd, of the example EEG

waveform (black) and its DCT-phase-scrambled control (blue) shown in A. D. The mean spectral-amplitude profiles of the full length (~5 min) versions of the same

EEGd data (black) and its DCT-phase-scrambled control (blue), with the fast Fourier transform (FFT) computed on each consecutive 5 sec waveform and then

averaged, plotted in a semi-log format. For B and D, the shaded areas represent ±1 standard error of the mean based on the FFTs computed on multiple 5 sec

waveforms. The units are arbitrary (a.u.).

https://doi.org/10.1371/journal.pone.0249317.g001
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for time-frequency decomposition). Each Morlet wavelet is a Gaussian-windowed sinusoidal

templet characterized by its center frequency as well as its temporal and spectral widths that

limit its temporal and spectral resolution. We decomposed each EEGd waveform into a time

series of spectral power using Morlet wavelets with twenty center frequencies fc’s between 6 Hz

and 50 Hz, encompassing the θ, α, β, and γ bands. The fc’s were logarithmically spaced as neu-

ral temporal-frequency tunings tend to be approximately logarithmically scaled [e.g., 35, 36].

The accompanying n factors (roughly the number of cycles per wavelet, n = 2πf�SD, where SD
is the wavelet standard deviation) were also logarithmically spaced between 4.4 and 14.5, yield-

ing the temporal resolutions ranging from SD = 117 ms (at 6 Hz) to SD = 46 ms (at 50 Hz) and

spectral resolutions ranging from FWHM (full width at half maximum) = 3.2 Hz (at 6 Hz) to

FWHM = 8.2 Hz (at 50 Hz). These values strike a good balance for the temporal/spectral-reso-

lution trade-off, and are typically used in the literature [e.g., 23].

Generating phase-scrambled controls. We generated phase-scrambled control data

whose spectral power fluctuated stochastically (i.e., unpredictably in a memory free manner)

while maintaining the time-averaged spectral-amplitude profiles of the actual EEG data. While

phase-scrambling can be performed using several different methods, we chose discrete cosine

transform, DCT [e.g., 37]. In short, we transformed each ~5 min EEG waveform with type-2

DCT, randomly shuffled the signs of the coefficients, and then inverse-transformed it with

type-3 DCT (the “inverse DCT”), which yielded a phase-scrambled version. DCT phase-

scrambling is similar to DFT (discrete Fourier transform) phase-scrambling except that it is

less susceptible to edge effects. We verified that DCT phase-scrambling yielded a desired out-

come, generating waveforms whose spectral-power fluctuations conformed to exponential dis-

tributions (see Results) indicative of a Poisson point process (a stochastic process), with

virtually no distortions to the time-averaged spectral-amplitude profiles of EEG or EEGd (e.g.,

the blue curves overlap the black curves in Fig 1B and 1D).

Computing entropy per interval, d. We computed entropy for non-overlapping intervals

of duration d (sec). For each interval, we divided spectral power values into Nbins bins using

the Freedman-Diaconis method [38],

Nbins ¼ ceil
max

2 � iqr � ½d � 512�
� 1=3

 !

;

where max is the maximum spectral-power value corresponding to the highest bin, iqr is the

interquartile range, d•512 is the number of spectral-power values available within each d (sec)

interval (sampled at 512 Hz), and ceil takes the nearest larger integer. The value of max was

chosen such that the highest bin reached the 99.9th percentile or higher spectral-power value

for each frequency and behavioral condition (because spectral-power values varied primarily

as a function of frequency and condition). The iqr values were computed per frequency per

condition, averaged across frequencies, then averaged within the same behavioral condition,

yielding three values, one for the rest-with-the-eyes-closed condition (averaged across the orig-

inal and replication conditions), one for the rest-with-the-eyes-open-in-dark condition, and

one for the nature-video condition (averaged for the earlier and later viewing conditions).

Thus, Nbins was optimized for the condition-specific iqr and the number of data points within

d (sec) interval while the same range [0, Max] was used in all cases. Using these spectral-power

bins, we generated the probability distribution of spectral power values for each d (sec) interval

(per frequency per site per participant per condition), and computed the corresponding

entropy using the standard equation,

S ¼ �
Xi¼Nbins

i¼1
pi � lnðpiÞ;
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where S is entropy, pi is the proportion of spectral-power values within the ith bin, and Nbins is

the number of bins.

Results and discussion

We started with a simple stochastic model of neural synchronization. As most neural connec-

tions are short-range [e.g., 39], we postulated that, at each moment, synchronization would

sequentially spread from neural-unit to neural-unit with the probability pterm that the rapid

spreading would terminate at any given unit. It is reasonable to assume that the number of

neural units is large and pterm is small. Thus, the probability that the size of synchronized neu-

ral population, N units, is larger than n units at a given timepoint, is provided by the Poisson

equation,

P N > nð Þ ¼
ðpterm � nÞ

0

0!
e� pterm�n ¼ e� pterm�n: Eq1

Then, the probability density function f(n) for the occurrence of a synchronized population

of size n can be obtained by solving,

Z 1

n
f ðnÞdn ¼ e� pterm �n; Eq2

yielding,

f ðnÞ ¼ pterme� pterm�n: Eq3

It can be shown (e.g., using Lagrange multipliers) that, for any random variable (n here),

entropy (defined by the standard equation) is maximized for a given distribution average

(<n> here) when the probability density function is exponential. Therefore, the exponential

form of f(n) in Eq 3 indicates that the model yields maximum entropy for fluctuations in n for

a given temporal average<n>. Thus, our model (Eq 1) describes a simple macroscopic mecha-

nism that generates synchronization dynamics that maximize entropy for a given temporal

average (Eq 3). We note that any reasonable model that leads to an exponential probability

density function for n in conjunction with a parameter related to the probability of synchroni-

zation would be just as appropriate for our discussion.

It is reasonable to assume that EEG spectral power at a given site is proportional to the size

of the synchronously oscillating neural population n within the accessible current sources.

Then, Eq 3 predicts an exponential distribution for the fluctuations of spectral power for

phase-scrambled EEG (which are rendered stochastic). Our data confirmed this prediction

(the thinner horizontal lines in Fig 2). Our goal was to elucidate the mechanisms that make the

actual EEG spectral-power dynamics deviate from stochastic (exponential) dynamics in the

characteristic U-shaped manner (the thicker curves in Fig 2). To this end, we considered the

relationship between average spectral power and entropy.

Stochastic dynamics such as the spectral-power dynamics of the phase-scrambled controls

(the thinner horizontal lines in Fig 2) are well fit by Eq 3 with a constant pterm. Nevertheless,

the effective value of pterm within an interval of duration d, which we call pterm.d, stochastically

fluctuates with the variance given by,

Varðpterm:dÞ / pterm � ð1 � ptermÞ=d: Eq4

Note that this is analogous to the familiar coin-tossing example. While the probability of

getting heads is stationary with pheads = ½ for each (fair) coin toss, the effective probability of
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getting heads, that is, the actual proportion of heads obtained for a given set of N tosses, pheads.

N, is variable, with its set-to-set variance given by, Var(pheads,N) = pheads�(1−pheads)/N.

For stochastic dynamics of synchronization, Eq 3 holds within an interval of any duration

(given that it includes sufficient data points to reliability evaluate the probability distribution

of n), so that the average size of a synchronized population <n> and entropy S within any

interval of duration d are given by,

hni ¼
Z 1

0

f ðnÞ � n dn ¼
1

pterm:d
; Eq5

and

S ¼ �
Z 1

0

f ðnÞ � lnff ðnÞg dn ¼ 1 � lnðpterm:dÞ; Eq6

where f(n) is given by Eq 3 with pterm.d substituted for pterm. Note that even if pterm.d varied

beyond the level of stochastic fluctuations (Eq 4), Eqs 5 and 6 would still hold if pterm.d

remained constant on the timescale of d.

Taking the natural log of Eq 5, we get, ln(hni) = −ln(pterm.d). Substituting this into Eq 6

yields a linear relationship between entropy, S, and the log average size of the synchronized

population, ln(<n>),

S ¼ lnðhniÞ þ 1: Eq7

As we assume that the observed spectral power, SP, at each site is proportional to the size of

the synchronized neural population n, we have

SP ¼ k � n; Eq8

where k is the constant of proportionality. Taking the temporal average yields,

hSPi ¼ k � hni: Eq9

Taking the natural log of Eq 9, ln(hSPi) = ln(hni)+ln(k), and solving for ln(<n>), we get,

lnðhniÞ ¼ lnðhSPiÞ � lnðkÞ: Eq10

Substituting Eq 10 into Eq 7 yields,

S ¼ lnðhSPiÞ þ 1 � lnðkÞ: Eq11

Fig 2. Probability distributions of EEG spectral power as deviations (in ratio) from exponential fits to phase-

scrambled controls. Spectral-power probability distributions (using 500 bins) are shown for the actual EEG data and

their phase-scrambled controls for representative frequency bands, θ (6.0 Hz), α (10.5 Hz), β (14.6 Hz and 20.6 Hz)

and γ (31.9 Hz, 40.0 Hz, and 50.1 Hz), color-coded from cooler to warmer. On the x-axis, spectral power is normalized

to the median power per frequency per site per condition per participant. The probability distributions are averaged

across sites and participants. The y-axis indicates spectral-power probability relative to the exponential fits to the

corresponding phase-scrambled controls. For example, the value 1 indicates that the probability of a specific spectral-

power value was as predicted by the exponential fit, 2 indicates that the probability was twice predicted by the

exponential fit, etc. Note that all probability distributions for the phase-scrambled controls (thinner lines) were

exponential, tightly conforming to the line of y = 1. The five panels show the probability distributions for the five

conditions: ~5-min rest with the eyes closed (Rest EC), its replication (Rest EC rep), ~5-min rest with the eyes open in

dark (Rest EO DK), and the earlier and later ~5-min viewing of a silent nature video (Nature video). The distributions

for the actual EEG data (thicker lines) deviate from the exponential form in a characteristic U-shaped manner with

elevated occurrences of the lowest and highest ranges of power. The shaded areas represent ±1 standard error of the

mean with participants as the random effect.

https://doi.org/10.1371/journal.pone.0249317.g002
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Note that any attenuation of SP due to the use of scalp-recorded EEG to compute spectral

power is absorbed in k (Eq 8). The computation of entropy, S, requires binning of spectral-

power values (see Materials and methods) to generate their probability distribution per d (sec)

interval, which tends to underestimate entropy. We accommodated this underestimation of

the true entropy, S, by the observed entropy, Sobs, by introducing a scaling factor a and an addi-

tive term b,

Sobs ¼ aSþ b; Eq12

where 0�a�1; a approaches 1 and b approaches 0 with a larger number of data points and

finer spectral-power bins per interval. Substituting Eq 11 into Eq 12 yields,

Sobs ¼ a � ½lnðhSPiÞ þ 1 � lnðkÞ�: Eq13

The parameter b has been absorbed in k because linear fitting cannot distinguish between b
and k. As such, the observed value of k would be difficult to interpret.

Phase-scrambled spectral-power dynamics (which we have confirmed to obey Eq 3; Fig 2)

should obey Eq 13 for intervals of any duration d (given that it includes sufficient data points

to reliability evaluate the probability distribution of SP). To confirm this prediction, we divided

each ~5 min EEG recording period into non-overlapping d (sec) intervals and computed aver-

age spectral power<SP> and entropy Sobs for each interval. The use of a longer interval, pro-

viding a larger number of SP values per interval, would make the relationship between ln
(<SP>) and Sobs tighter by increasing the accuracy of estimating <SP> and Sobs. However, it

would reduce the variability in<SP> and Sobs across intervals (Eq 4) and also reduce the num-

ber of ln(<SP>)-Sobs pairs to evaluate their relationship over time. We present our primary

analyses with d = 3 sec; the choice of this particular duration will be justified below.

Each upper-left panel in Fig 3 shows, for the phase-scrambled controls, the 2D-density plot

of ln(<SP>)-Sobs pairs for all d = 3 sec intervals for all frequencies (i.e., wavelet center frequen-

cies), sites, and participants for a specific condition. Density is color-coded as percentile so

that confidence intervals can be inferred. As predicted by Eq 13, the relationship between ln
(<SP>) and Sobs for the phase-scrambled controls was linear for all conditions, rest with the

eyes closed, its replication, rest with the eyes open in dark, and the earlier and later viewing of

a silent nature video.

We note that minor deviations from linearity occurred in the extreme ranges of spectral

power for technical reasons. First, the binning of spectral-power values necessary to compute

entropy per time interval (see Materials and methods) caused an underestimation of entropy,

generating the slight upward curvature in the lowest spectral-power range especially for ln
[<SP>] < 0 (see the lower-left portions of the left panels in Fig 3) due to the floor effect

(entropy > 0). Second, the use of a fixed maximum spectral-power bin (necessary to compute

entropy over the same range of spectral-power bins in all cases) prevented extremely high-

power values (though up to at least 99.9th percentile of the values were retained; see Materials

and methods) from contributing to the computation of entropy, causing an underestimation

of entropy in the highest spectral-power range especially for ln[<SP>] > 5.5 (see the upper-

right portions of the left panels in Fig 3). These extreme ranges of ln[<SP>] were excluded

from the subsequent analyses (also from the computation of the linear fits shown in Fig 3).

Notwithstanding these minor deviations for the extreme values of ln(<SP>), the crucial

observation is that the relationship between ln(<SP>) and Sobs were consistently linear for all

conditions for the phase-scrambled controls, obeying Eq 13. Because Eq 13 derives from Eq 3

(describing a maximum-entropy distribution), the linear relationships defined by the phase-

scrambled controls indicate the line of maximum entropy.
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Remarkably, the relationship between ln(<SP>) and Sobs for the actual EEG data tightly

clustered along the line of maximum entropy (the lower-left panels in Fig 3). Because average

spectral power considerably varied depending on frequency, sites, and participants, the range

of temporal variations in ln(<SP>) and Sobs are obscured when ln(<SP>)-Sobs pairs from all

frequencies, sites, and participants are plotted together. To focus on the temporal variation in

ln(<SP>) and Sobs, we aligned the 2D-density plot for the phase-scrambled control for each

frequency, site, and participant at its center at (0,0) and equivalently translated the density

plots for the corresponding actual EEG data.

The centered relationships between ln(<SP>) and Sobs are shown in the main panels in Fig

3. The 2D-density plots for the phase-scrambled controls are shifted upward to avoid overlaps

with those for the actual EEG data, with the parallel gray dashed oblique lines indicating the

line of maximum entropy. It is clear that the ranges of average spectral power<SP> (for d = 3

sec intervals) were substantially extended in the actual EEG data relative to their phase-scram-

bled controls while consistently following the line of maximum entropy. This pattern appears

to be universal, observed in all conditions (the main panels in Fig 3), all representative fre-

quencies per condition (Fig 4), and all participants (S1 and S2 Figs). These results suggest that

spectral-power dynamics maintain maximum entropy on the timescale of a few seconds (Eqs.

5–6) while generating large power variations (relative to phase-scrambled controls) by chang-

ing the probability of synchronization on slower timescales.

To examine how closely the spectral-power dynamics followed the line of maximum

entropy we computed the probability distributions of entropy around the line of maximum

entropy for the actual EEG data and their phase-scrambled controls. While the line of maxi-

mum entropy was virtually identical for all participants (e.g., S1 and S2 Figs), here we com-

puted it separately for each participant to increase the accuracy in estimating entropy

distributions around it. The bins to compute the entropy distributions were determined by the

maximum (max), minimum (min), and inter-quartile range (iqr) of the entropy distributions

for the relevant EEG data and their phase-scrambled controls (per participant), with the num-

ber of bins given by, Nbins ¼ ceil max� min
2�iqr�Nintervals

� 1=3

� �
(Freedman & Diaconis, 1981), where Nintervals

is the number of d (sec) intervals for which ln(<SP>)-Sobs pairs were computed.

These probability distributions are plotted in Fig 5A for the five conditions for representa-

tive interval durations, d = 1, 3, 10, 20, 40, and 90 sec. The negative and positive values on the

x-axis indicate the negative and positive deviations from the line of maximum entropy normal-

ized to the standard deviation of the distribution for the corresponding phase-scrambled con-

trols, and the y-axis indicates probability density. The shaded areas represent the distributions

for the phase-scrambled controls (symmetric about the line of maximum entropy regardless of

Fig 3. Relationship between log average spectral power ln(<SP>) and entropy Sobs for d = 3 sec intervals. Each set of three panels shows the data for a specific

condition: ~5-min rest with the eyes closed (Rest EC), its replication (Rest EC rep), ~5-min rest with the eyes open in dark (Rest EO DK), and the earlier and later

~5-min viewing of a silent nature video (Nature video). For each condition, the ln(<SP>)-Sobs pair was computed for each non-overlapping d = 3 sec interval per

frequency per site per participant. Upper-left panels. 2D-density plots of all ln(<SP>)-Sobs pairs for the phase-scrambled controls. The linear fits (gray dashed

oblique lines) indicate the line of maximum entropy indicative of spectral power fluctuations that maximize entropy for a given value of average spectral power (see

text). Lower-left panels. 2D-density plots of all ln(<SP>)-Sobs pairs for the actual EEG data. Note that the distributions follow the line of maximum entropy (the

gray dashed oblique lines) defined by the phase-scrambled controls. Main panels. Re-plotting of the 2D-density plots for both the phase-scrambled controls and the

actual EEG data after aligning the phase-scrambled 2D-density plot for each frequency, site, and participant at its center at (0,0) and equivalently translating the

corresponding actual-data density plots. The 2D-density plots for the phase-scrambled controls are shifted upward to avoid overlaps with those for the actual EEG

data. The centering shows that the dynamic ranges of average spectral power (per d = 3 sec interval) were substantially extended along the line of maximum entropy

(the gray dashed oblique lines) for the actual EEG data relative to their phase-scrambled controls in all conditions. This pattern was observed for all representative

frequencies (Fig 4) and all participants (S1 and S2 Figs). Thus, on the timescale of up to about 3 sec, spectral power appears to be controlled in such a way that the

dynamic ranges are substantially extended (relative to stochastic dynamics) while tightly conforming to the line of maximum entropy. All panels. Density is color-

coded as percentile so that confidence intervals can be inferred. The extreme ranges of spectral power, ln(<SP>)< 0 and ln(<SP>)> 5.5 were excluded from the

computations of the line of maximum entropy and the centered 2D-density plots (the main panels) to avoid the binning-related distortions (see text).

https://doi.org/10.1371/journal.pone.0249317.g003
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d as expected), the solid curves represent the distributions for the actual EEG data, and the

solid areas represent the regions where the probability density was higher for the actual data

than for their phase-scrambled controls.

The actual and phase-scrambled distributions were virtually indistinguishable for d = 1 sec

and d = 3 sec for all five conditions (the two left columns in Fig 5A), indicating that the actual

data tightly followed the line of maximum entropy up to d = 3 sec. For longer interval dura-

tions, the actual distributions progressively extended in the lower-entropy direction, seen as

the solid-colored negative tails increasing in the third through the last column in Fig 5A. We

quantified these lower-entropy tails for the actual EEG data by computing the proportions of
lower-entropy intervals (PrLEI) for the actual data relative to their phase-scrambled controls.

Specifically, for each distribution we computed the actual minus phase-scrambled probability

density wherever the density was higher for the actual data than for the phase-scrambled con-

trols, and summed those differences (multiplied by the bin width to convert to proportions)

separately on the negative and positive sides, then subtracted the sum on the positive side from

the sum on the negative side. This algorithm essentially yielded the proportion of the actual-

data distribution extending in the lower-entropy direction relative to the corresponding

phase-scrambled distribution while compensating for any changes in distribution widths

(approximately the area proportion of the solid-colored negative tails of the actual data in Fig

5A). For example, PrLEI = 0.2 would indicate that for a given interval duration d, the occur-

rences of lower-entropy intervals for the actual data were 20% more frequent than for their

phase-scrambled control.

We computed PrLEI values per participant per condition and plotted them as a function of

interval duration d in Fig 5B. The circular symbols connected with thick lines indicate the

median PrLEI values with the thin dotted lines showing the values for the individual partici-

pants. While PrLEI became large for longer interval durations (note the y-axis is reversed), the

median PrLEI values remained small (< 5%) and condition independent up to about d = 3 sec.

This indicates that up to the timescale of a few seconds, only up to about 5% of intervals of the

actual EEG data (on average) more negatively deviated from the line of maximum entropy

than their phase-scrambled controls. That is, on average, greater than 95% of spectral-power

dynamics followed the line of maximum entropy on the timescale of a few seconds. Even at the

level of individual participants, only a few (out of 52), yielded PrLEI values greater than 10%

for d = 3 sec (the dotted lines in Fig 5B).

The PrLEI values (for d = 3 sec) were consistently low for all frequencies for all conditions

(Fig 6A) and globally low at all sites for all conditions (Fig 6B). Nevertheless, the data poten-

tially suggest an interesting spatial pattern. We z-transformed the PrLEI values across sites per

participant to quantify the consistency of regional deviations in PrLEI from the spatial average

as t-values (with |t|>3.95 for Bonferroni-corrected 2-tailed significance at α = 0.05) (Fig 6C).

Cooler colors indicate regions with lower-than-average PrLEI values while warmer colors indi-

cate regions with higher-than-average PrLEI values. In the eyes-open conditions, entropy was

near maximal (very low PrLEI values) in the mid-central-posterior region (the dark blue

regions highlighted with dotted circles in the lower three rows of Fig 6B and 6C). At the same

time, consistent elevations in the PrlEI values (though still low with the means of less than

8.7% for all sites for all conditions) were observed in areas surrounding the mid-central-

Fig 4. The same as the main panels in Fig 3, but the centered relationships are shown separately for the representative

frequencies (rows) and conditions (columns). The phase-scrambled distributions are shifted upward to avoid overlaps with

the actual-data distributions, and the gray dashed oblique lines indicate the line of maximum entropy. Note that the dynamic

ranges of average spectral power were substantially extended along the line of maximum entropy for the actual EEG data

relative to their phase-scrambled controls for all representative frequencies in all conditions.

https://doi.org/10.1371/journal.pone.0249317.g004
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posterior region (Fig 6C). In particular, in the eyes-closed conditions the PrLEI values were

focally elevated in the right-lateral region (the upper two rows in Fig 6C).

General discussion

The dynamics of EEG spectral power deviate from stochastic dynamics in a U-shaped manner,

such that the occurrences of the lowest and highest ranges of power are elevated (Fig 2). We

used a simple mathematical model of synchronization dynamics to investigate the mechanisms

that generate these characteristic deviations.

We modeled synchronization dynamics as simple chain reactions, where synchronization

sequentially spreads from neural-unit to neural-unit at each moment with the probability pterm

for the rapid spreading to terminate (Eq 1). Although one may question the physiological rele-

vance of postulating synchronization to independently spread at each time moment, the

model (Eq 1) is useful in the sense that it provides a simple computational mechanism that

generates synchronization dynamics that maximize entropy for a given temporal average (Eq
3). Note that the inferences that we have drawn are valid irrespective of the physiological plau-

sibility of the specific model because they are based on how EEG spectral-power dynamics

obeyed the rule of maximum entropy (i.e., Eq 13 derived from Eq 3). If the simple chain-reac-

tion model of synchronization dynamics (Eq 1) were physiologically relevant, the parameter

pterm could be interpreted as the probability of termination of the sequential spreading of syn-

chronization. If not, pterm would be related to the probability of synchronization in some other

way with the quantity 1/pterm directly related to the temporal average of the size of synchro-

nized neural population (Eq 5).

We assumed that EEG spectral power was proportional to the size of the synchronously

oscillating neural population accessible at each site. For a constant pterm, the model predicted

stochastic dynamics (Eq 3) with the temporal variation of spectral power exponentially distrib-

uted. The model further predicted that if pterm remained constant the fluctuations of log aver-

age spectral power and entropy should be associated along the line of maximum entropy (Eq
13 derived from Eq 3) on any timescale. These predictions were confirmed for the phase-

scrambled controls (Fig 5A). Eq 13 further predicted that even if pterm substantially varied as a

function of time, if it remained relatively constant up to some timescale d (sec) the fluctuations

of log average spectral power and entropy should still be associated along the line of maximum

entropy up to that timescale (Eqs 5 and 6).

Fig 5. Probability distributions of entropy Sobs relative to the line of maximum entropy for the actual EEG data

and their phase-scrambled controls as a function of interval duration d. A. Probability distributions for the phase-

scrambled controls (shaded areas) and actual EEG data (solid outlines), with the line of maximum entropy labeled as 0

on the x-axis and the negative tails of the actual-data distributions toward lower entropy shown as solid areas. The

rows correspond to the five conditions and the columns correspond to the representative interval durations d (sec).

The x-axis of each probability distribution has been normalized to the standard deviation of the corresponding phase-

scrambled-control distribution. Note that up to about d = 3 sec (highlighted with a rectangle), the distributions for the

actual EEG data and their phase-scrambled controls virtually overlap. B. Proportions of lower-entropy intervals

(PrLEI) for the actual EEG data relative to their phase-scrambled controls (approximately the area proportion for the

solid-colored negative tails shown in A) as a function of interval duration d (sec). This measure indicates the

proportions of d (sec) intervals for which the actual EEG data yielded lower entropy than predicted by the line of

maximum entropy. The circular symbols connected with thick lines indicate the median PrLEI values with the five

conditions color-coded as in A (the black dotted lines indicating the replication of the rest-with-the-eyes-closed

condition and the blue dotted lines indicating the later viewing of the nature-video condition) with the thin dotted

lines showing the PrLEI values for the individual participants. Note that for the interval durations up to about d = 3 sec

the actual EEG data closely followed the line of maximum entropy with less than ~5% deviations (in median PrLEI

values) across all conditions, suggesting that neural dynamics on the spatial-scale of EEG current sources generally

maintain maximum entropy up to the timescale of a few seconds (see text).

https://doi.org/10.1371/journal.pone.0249317.g005
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The results clearly showed that up to a few seconds (d = 3 sec), the dynamics of EEG spec-

tral power closely followed the line of maximum entropy (Fig 3) for all representative frequen-

cies (Fig 4) and all participants (S1 and S2 Figs) whether they rested with their eyes closed,

rested with their eyes open in a darkened room, or viewed a silent nature video. The EEG spec-

tral-power dynamics were nearly as tightly distributed around the line of maximum entropy as

were their phase-scrambled controls (see the d = 3 sec column highlighted with the rectangle

in Fig 5A). Any systematic deviations from the line of maximum entropy were small up to

d = 3 sec with the median PrLEI values remaining low for all frequencies and conditions, espe-

cially for the eyes-open conditions where the median values were consistently below ~5% (Fig

6A). These results suggest that the majority (~95%) of the low- and high-spectral-power states

that deviated from stochastic dynamics (Fig 2) were generated by relatively slow mechanisms

that generally maintain maximum entropy within the timescale of a few seconds while chang-

ing the probability of synchronization on slower timescales to substantially extend the

dynamic range of spectral power along the line of maximum entropy (Figs 3 [the main panels],

4, and S1 and S2 Figs).

This conclusion may seem counterintuitive because precisely coordinated actions and men-

tal operations require tight controls of oscillatory neural dynamics. One possibility is that the

large-scale spatial synchronization of oscillatory activity may be controlled by a combination

of the relatively slow, entropy-maximizing adjustments of synchronization probability and the

temporally precise adjustments of phase such as phase-resetting generated by sensorimotor

interactions. For example, the inter-regional and cross-frequency coordination of large-scale

oscillatory activity may be generally controlled by slowly co-varying the probabilities of syn-

chronization across the relevant regions and frequency bands while maintaining maximum

entropy on the timescale of a few seconds for energy efficiency. At the same time, the precisely

timed coordination of inter-regional and cross-frequency synchronization of oscillatory activ-

ity may utilize phase-resetting initiated by punctate sensorimotor signals such as those gener-

ated by multisensory environmental stimuli as well as goal-directed and routine sensorimotor

events such as blinks, saccades, and active touch (e.g., [40–45]; see [46, 47] for reviews). Fur-

ther, non-oscillatory neural activities obscured in frequency-decomposition approaches may

also play a substantial role in precisely timed neural coordination.

While the deviations from the line of maximum entropy were globally low on the timescale

of a few seconds at all sites for all conditions (Fig 6B), we observed some notable spatial pat-

terns. In particular, in the eyes-open conditions entropy was near maximal in the mid-central-

posterior region (highlighted with dotted circles in the lower three rows in Fig 6B and 6C).

This potentially suggests that, especially in the presence of substantial sensory input (the eyes-

open conditions here), the mid-central-posterior region plays the role of an “entropy dump”

to facilitate the temporally precise control of spectral-power dynamics in the surrounding

Fig 6. Proportions of lower-entropy intervals (PrLEI) for d = 3 sec for the actual EEG data relative to their phase-scrambled controls as a

function of frequency and site. PrLEI indicates the proportion of d (sec) intervals for which the actual EEG data had lower entropy than

predicted by the line of maximum entropy. A. PrLEI as a function of frequency. The thick lines indicate the median PrLEI values with the thin

lines showing the values for the individual participants. The rows correspond to the five conditions. Note that the median PrLEI values were low

regardless of frequency or condition. B. PrLEI as a function of site. The rows correspond to the five conditions as in A. The mean PrLEI values

were globally low across all sites and conditions. The mid-central-posterior region (highlighted with dotted circles) yielded particularly low PrLEI

values in the eyes-open conditions (the rest-with-the-eyes-open-in-dark and nature-video conditions) (the lower three rows). C. Same as B, but

the data from each participant were z-transformed across sites to quantify the consistency of regional deviations of PrLEI values from the spatial

average as t values (with |t|>3.95 for Bonferroni-corrected 2-tailed significance at α = 0.05). Cooler colors indicate regions with lower-than-

average PrLEI values while warmer colors indicate regions with higher-than-average PrLEI values. The t-values confirm that the PrLEI values were

consistently low in the mid-central-posterior region in the eyes-open conditions (see B). Further, consistent elevations in the PrLEI values (though

still low with the means of less than 8.7% for all sites and conditions) occurred in areas surrounding the mid-central-posterior region, particularly

in the right-lateral region in the eyes-closed conditions (the upper two rows).

https://doi.org/10.1371/journal.pone.0249317.g006
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regions. In the eyes-closed conditions, we observed focal PrLEI elevations in the right-lateral

region (the upper two rows in Fig 6C), potentially suggesting that this cortical region plays a

role in controlling synchronization dynamics for constructing spontaneous imagery and

thoughts (which were encouraged in the rest-with-the-eyes-closed condition). While these

interpretations are highly speculative, tracking deviations of spectral-power dynamics from

the line of maximum entropy may provide a useful method for tracking the spatiotemporal

occurrences of temporally precise controls of large-scale spectral dynamics.

While the current analyses used a time-frequency decomposition approach that extracted

sinusoidal components from EEG, neuronal oscillations are not necessarily sinusoidal (though

oscillatory activities of large neural populations, as reflected in EEG, tend to approximate sinu-

soidal waveforms due to spatial averaging [48]). Non-sinusoidal waveforms are detected by

time-frequency decomposition methods as the sinusoidal components with the approximately

matching frequencies as well as additional sinusoidal components at various harmonic fre-

quencies that may spuriously mimic phase-to-amplitude coupling [e.g., 49, 50]. We observed

entropy-maximizing behaviors on the timescale of a few seconds for sinusoidal components of

a broad range of frequencies. Thus, even if some of the observed sinusoidal components

reflected the fundamental and harmonic components of non-sinusoidal oscillations, we could

still infer that the underlying non-sinusoidal oscillations exhibit entropy-maximizing behav-

iors on the timescale of a few seconds in the sense that their sinusoidal components do.

In summary, we used a simple mathematical model of synchronization to investigate the

mechanisms that make EEG spectral-power dynamics deviate from stochastic dynamics in a

characteristic U-shaped manner (Fig 2). The results have clearly shown that the majority

(~95%) of this control is universally (across frequencies, sites, and behavioral conditions)

accomplished by slowly changing the probability of synchronization while maintaining maxi-

mum entropy on the timescale of a few seconds. The results may further suggest that the mid-

central-posterior region potentially serves as an entropy dump to facilitate the generation of

precisely controlled spectral-power dynamics in the surrounding regions.

Supporting information

S1 Fig. Individual participants’ data for the main panels in Fig 3 for participants p1-p28

who participated in the rest-with-the-eyes-closed condition (Rest EC), the nature-video

condition (Nature video), or both. All participants who participated in the nature-video con-

dition provided data for both earlier and later viewings. The dynamic ranges of average spec-

tral power (for d = 3 sec intervals) were moderately to substantially extended along the line of

maximum entropy (the gray dashed oblique lines) for the actual EEG data relative to their

phase-scrambled controls for all participants for all conditions. Note that the degree of exten-

sion of spectral-power dynamic range does not appear to be a trait-like property as it substan-

tially varied across conditions (even between the two instances of the nature-video condition)

for some participants.

(TIF)

S2 Fig. Individual participants’ data for the main panels in Fig 3 for participants p29-p52

who participated in the replication of the rest-with-the-eyes-closed condition (Rest EC

rep) and the rest-with-the-eyes-open-in-dark condition (Rest EO DK). The dynamic ranges

of average spectral power (for d = 3 sec intervals) were moderately to substantially extended

along the line of maximum entropy (the gray dashed oblique lines) for the actual EEG data rel-

ative to their phase-scrambled controls for all participants for all conditions. Note that the

degree of extension of spectral-power dynamic range does not appear to be a trait-like

PLOS ONE Probabilistic, entropy-maximizing control of large-scale neural synchronization

PLOS ONE | https://doi.org/10.1371/journal.pone.0249317 April 30, 2021 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249317.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249317.s002
https://doi.org/10.1371/journal.pone.0249317


property as it substantially differed between the two similar conditions for some participants.

(TIF)
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