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There is a complex interrelation between epilepsy and cardiac pathology, with both

acute and long-term effects of seizures on the regulation of the cardiac rhythm and on

the heart functioning. A specific issue is the potential relation between these cardiac

manifestations and the risk of Sudden and Unexpected Death in Epilepsy (SUDEP),

with unclear respective role of centrally-control ictal changes, long-term epilepsy-related

dysregulation of the neurovegetative control and direct effects on the heart function.

In the present review, we detailed available data about ictal cardiac changes, along

with interictal cardiac manifestations associated with long-term functional and structural

alterations of the heart. Pathophysiological mechanisms of these cardiac changes are

discussed, with a specific focus on central mechanisms and the investigation of a

possible deregulation of the central control of autonomic functions in addition to the

role of catecholamine and hypoxemia on heart.

Keywords: epilepsy, sudden unexpected death in epilepsy, heart rate variability, ictal asystole, ictal tachycardia

and bradycardia

INTRODUCTION

Since the description of the first ictal asystole more than 100 years ago (1), a large number of
studies have investigated the complex inter-relationship between the brain and the heart in patients
with epilepsy (2). Epilepsy-related cardiac manifestations can occur during seizures, but also in
the inter-ictal period and can be associated with long-term functional and structural alterations of
the heart. Over the past years, the scientific interest in these complex heart-brain interactions in
patients with epilepsy have been reinforced by two main clinical reasons:
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- The first corresponds to the issue of sudden unexpected death
in patients with epilepsy (SUDEP). Among the causes of
premature deaths in patients with epilepsy, SUDEP represents
a major cause, especially in young adults with uncontrolled
seizures with an incidence of about 0.5%/year of uncontrolled
epilepsy (3). SUDEP is a non-traumatic and non-drowning
death in patients with epilepsy, unrelated to a documented
status epilepticus, in which postmortem examination does
not reveal a toxicological or anatomic cause of death (3, 4).
Although the exact pathophysiological mechanisms that
lead to SUDEP remain unknown (5, 6), experimental and
clinical data strongly suggest that most SUDEP result from
a postictal central respiratory dysfunction progressing to
terminal apnea, later followed by cardiac arrest (3). However,
additional evidence suggests occurrence of an overall seizure-
related failure of neuro-vegetative control (7), reinforcing the
need of better understanding of the impact of seizures on
cardiovascular function.

- The second aspect is the development of seizure detection
devices, especially in order to alert the patients’ caregivers and
improve their safety. Because of the close relationship between
seizures and changes in heart rate, cardiacmonitoring has been
proposed as a variable of choice for optimizing the detection
rate of these devices (8).

Several reviews of the literature have analyzed the relationship
between heart and epilepsy. Some have focused on ictal or
interictal cardiac changes (9–12). Recently, Verrier et al. (13)
proposed the concept of the “Epileptic Heart” as “a heart and
coronary vasculature damaged by chronic epilepsy as a result
of repeated surges in catecholamines and hypoxemia leading to
electrical and mechanical dysfunction.” Others focused on new
insights into possible pathways from epilepsy, catecholaminergic
toxicity, subtle cardiac changes and sudden death (14), or on the
implication of treatment (15).

In this review, the characteristics of ictal and interictal
cardiac manifestations will be successively detailed. We will
focus more particularly on their respective physiopathology,
especially on central mechanisms with the investigation of
a possible deregulation of the central control of autonomic
functions, studied in functional imaging and using intracranial
stimulations/recordings, in addition to the role of catecholamine
and hypoxemia on heart which have already been reviewed
elsewhere (13, 14). Their potential relations with SUDEP
pathophysiology and implications in clinical practice, including
for seizure detection, will be discussed.

CHARACTERISTICS OF
SEIZURE-RELATED CARDIAC
MANIFESTATIONS

Ictal Cardiac Manifestations
Heart Rate Changes
Tachycardia is the most common ictal cardiac manifestation.
It is reported in 82% of patients on average, with some intra-
individual variability, since not all seizures in a patient with ictal
tachycardia will necessarily lead to tachycardia (9).

In the literature, changes in heart rate during seizures
correspond on average to an increase of 30 bpm or more
than 50% compared to the interictal heart rate. They mainly
occur in the pre-ictal period or within 30 s after the beginning
of the seizure, the maximal heart rate being achieved for a
majority of seizures within the first 60 s (9, 16). However,
most studies suggesting modifications of the heart rate in the
pre-ictal period have been performed in patients investigated
with scalp EEG, raising the possibility that concomitant ictal
EEG discharge might have not been visible. In a study using
intracranial electrodes, ictal tachycardia was always concomitant
to an increase in unilateral ictal high frequency epileptic activity
restricted to anterior hippocampus and amygdala (17). In
addition, tachycardia is also frequently observed in the post-ictal
period, particularly after tonic-clonic seizures (9, 18).

The percentage of seizures associated with a change in
heart rate appears to be similar for generalized tonic-clonic
seizures (64%) and for focal seizures (71%), although it is likely
that the magnitude of the change is increased as the focal
seizure progresses to bilateral tonic-clonic seizure (9, 19). In
patients with focal epilepsies, tachycardia is more commonly
seen during temporal lobe seizures than extra-temporal seizures
(9, 20, 21). However, as most of studies have been performed
in patients with temporal lobe epilepsy, a selection bias cannot
be excluded. Although preferential right lateralization of seizures
with tachycardia has been suggested, most studies do not find an
association with the laterality of epileptic discharges (9, 20, 22).

Seizures with bradycardia or ictal asystole are much rarer.
Ictal asystole, defined as a sinusal pause of at least 3 s
occurring during a seizure, usually has a duration of <60 s,
and is spontaneously reversible (23–27). They are only reported
in focal seizures, and in 90% of cases they correspond to
drug-resistant seizures with altered consciousness of temporal
origin, without clear preferential lateralization. Incidence of ictal
asystole in drug-resistant focal epilepsy is estimated at 12 per
100 patient-years (23–27). Distinguishing syncope related to
ictal asystole from cardiac asystole might be difficult (28), and
use of implantable loop recorder can sometimes be required
in the diagnostic process. Older age at onset, occurrence
during wakefulness, and brief duration of the events have been
suggested to be in favor of cardiac asystole (29). Only rare
patients with ictal asystole have undergone cardiopulmonary
resuscitation (30), suggesting that the vast majority of seizures
with asystole resolve spontaneously, without the need for
resuscitation (18). However, the risk of recurrence is high
(28). Unlike ictal tachycardia, ictal bradycardia, or asystole
can be symptomatic with syncope and sometimes traumatic
falls. Importantly, ictal bradycardia or asystole should be
distinguished from post-ictal conduction or rhythm cardiac
disorders. These complications, in particular severe bradycardia,
asystole, or ventricular fibrillation, are closely related to post-
ictal hypoxemia following central peri-ictal respiratory disorders
(7, 31). After a generalized seizure, the risk of asystole is
therefore greater in patients with severe post-ictal apnea (32).
In the MORTEMUS study, which investigated respiratory
and electrocardiogram (EKG) data from patients who died
from SUDEP during long-term video-EEG, abnormal heart
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rhythms were observed after the onset of apnea in all deceased
patients (33).

Other cardiac arrhythmias and conduction abnormalities,
during or after seizures, have been reported in patients
with drug-resistant focal epilepsy. Atrioventricular block, atrial
fibrillation, supraventricular tachycardia, atrial, or ventricular
premature depolarisations, ventricular fibrillation, and QT
interval shortening or prolongation can thus be observed (9, 18).

Direct Cardiac Effects
Myocardial ischemia can be caused by seizures, especially in
patients with cardiovascular risk factors. Up to 40% of seizures
could be associated with ST segment depression (34). However,
troponin remains normal in most patients (35, 36), suggesting
that this transient myocardial ischemia does not generally result
in severe acute ischemic myocardial injury. Seizures, especially
generalized tonic-clonic seizures and status epilepticus, are also
a well-known cause of Takotsubo syndrome, the clinical, EKG,
and laboratory presentation of which may mimic that of acute
ischemic heart disease (2). These complications have been linked
to the release of catecholamines induced by seizures (36).

Interictal Cardiac Manifestations
Changes in Myocardial Structure
It has been suggested both in experimental models and in
patients, that recurrence of seizures can progressively lead to
cardiac fibrosis, potentially through catecholaminergic toxicity
(14). Compared to healthy matched controls, patients with
temporal lobe epilepsy have higher left ventricular rigidity,
linked to cardiac fibrosis by deposits in the extracellular matrix,
which in turn promotes systolic and diastolic dysfunction and
arrhythmogenesis (37). Although the relationship between these
long-term structural changes and the risk of ictal arrhythmias
remains to be determined, several studies have reported an
association between cardiac fibrosis and the risk of SUDEP
(38, 39).

Channelopathies
More recently, it has also been shown that repetition of seizures
can alter the expression of cardiac ion channels. Epilepsy-related
alterations in the cardiac expression of sodium (Nav1.1/1.5),
potassium (Kv4.2/4.3), calcium (NCX1), and cationic (HCN2/4)
channels have thus been reported in animal models (40). It
remains to be determined whether or not this mechanism is
associated with impaired vegetative regulation in patients with
epilepsy and especially, with the risk of SUDEP.

Heart Rate Variability (HRV)
HRV is the change in the time interval between two heart
beats. HRV reflects the balance between sympathetic and
parasympathetic activity of the autonomic nervous system. HRV
is thus an index of activity of the neurovegetative system,
whose decrease is a strong predictor of sudden death in
patients with heart disease (41). Overall, increased heart rate
variability indicates a shift toward parasympathetic dominance,
while lower heart rate variability is seen in times of high
sympathetic output (42). In patients with epilepsy, HRV is usually

decreased, suggesting a shift toward sympathetic dominance (42).
This has been shown in various types of epilepsy, including
temporal lobe epilepsy (43, 44), frontal lobe epilepsy (45),
idiopathic generalized epilepsy (44), epileptic spasms (46), or
in Dravet Syndrome, where patients have extremely depressed
parasympathetic function (10, 47), even in comparison with
other types of epilepsy. In addition, it has been suggested that
alteration of HRV might be precipitated and/or aggravated by
insular resection in patients undergoing epilepsy surgery (48).
However, the exact relationship between these chronic alterations
of HRV and the risk of SUDEP remains unclear (7). Some
studies reported association between risk of SUDEP and severe
alteration of HRV (10, 49–51) whereas others did not confirm this
observation (52). Furthermore, the alterations of HRVmight also
be associated with other risk SUDEP factors, including post-ictal
generalized EEG suppression (53).

In addition, many studies have examined peri-ictal changes
in HRV (10, 54). The results are sometimes heterogeneous, but
overall seem to show an increase in sympathetic activity during
the seizure, regardless of the type of seizure, but more markedly
for temporal seizures and generalized seizures (7). Recovery
occurs gradually, as post-ictal changes that can be prolonged, up
to several hours. Changes in HRV can precede clinical onset of
seizure by several seconds and have therefore been studied for
the development of seizure detection tools.

PATHOPHYSIOLOGICAL MECHANISMS

The mechanisms underlying the emergence of these cardiac
alterations remain poorly understood and several hypotheses
need to be considered. These hypotheses may coexist in the same
patients, interacting with each other.

Deregulation of Central Control of
Vegetative Functions
Some of the most important integrative control centers
for autonomic nervous system functions are located in the
brainstem (55, 56). However, many animal and human studies
support that cortical regions are involved in autonomic function
andmodulation in response to environment changes (55, 57–60).
In 1993, Benarroch proposed the term of “Central Autonomic
Network” (CAN) to describe a group of forebrain, brainstem,
and limbic regions involved in the generation of an appropriate
autonomic functional state (55). In 2000, Thayer and Lane (61)
proposed a model of neurovisceral integration, permitting to
link cardiac regulation to emotional or cognitive tasks through
activation of the CAN. In addition to the autonomic nuclei of
the brainstem and limbic structures such as the amygdala and
the insula, their model also includes the cingulate and medial
prefrontal cortex. Cortical regions, particularly medial prefrontal
cortex, would exert a top-down control on cingulate, anterior
insula and amygdala, which form an interconnected network,
and modulate activity of subcortical and brainstem regions.
These later regions would in turn finalize the autonomic output
to the body by modulating the parasympathetic/sympathetic
balance. In accordance with this model, recent meta-analysis of
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FIGURE 1 | The Central Autonomic Network: most implicated brain regions according to functional neuro-imaging studies (57, 60, 62). Cortical structures are shown

on a white background while subcortical structures are on a gray background. White lines symbolize the functional connectivity between cortical regions.

human neuroimaging experiments evaluating central autonomic
cardiovascular processing identified several consistently
implicated brain regions, consisting of cortical areas, including
the anterior and mid-cingulate cortices, insula, amygdala,
hippocampus, medial prefrontal cortex; and subcortical
structures such as thalamus, hypothalamus, periaqueductal gray
matter (57, 60, 62) (see Figure 1). Orbitofrontal cortex is also
mentioned by some authors (60, 62). Analysis of functional
connectivity has revealed functional connectivity between the
medial prefrontal cortex and other structures of the CAN,
particularly the amygdala and the hippocampus (63, 64).
Parcellation of orbitofrontal cortex and hypothalamus has
shown specificity for functional connectivity between the medial
orbito-frontal cortex and the medial hypothalamus (65, 66).
In their meta-analysis, Thayer et al. (66), established a link
between mainly amygdala and ventromedial prefrontal cortex
activation, during several cognitive and affective tasks, and heart
rate variation. De la Cruz et al. (67) recently investigated the
relationship between heart rate and functional connectivity
of brain regions involved in autonomic control. Subjects with
slow heart rate exhibited significantly increased functional
connectivity between amygdala, insula, prefrontal cortex,
anterior cingulate, hippocampus, and hypothalamus compared
to subjects with medium or fast heart rate.

Some studies suggested the possibility of a lateralization of
insular cortex in terms of cardiac function, the right insula being
more involved in sympathetic regulation, and the left one in
parasympathetic cardiac regulation [see (60, 68) for a review]. On
the contrary, others did not conclude to any lateralization (57).

Very few studies have investigated the effects of cortical
stimulation on heart rate in humans. Electrical stimulation of
limbic structures, especially the amygdala and peri-amygdaloid
pyriform cortex, have been reported to produce autonomic

changes, including cardiovascular responses, mediated by either
sympathetic or parasympathetic pathways (69). Autonomic
responses (including heart rate changes) are also mentioned after
stimulation of the cingulate cortex (70, 71) and orbito-frontal
cortex (72). Several data support the pivotal role of the insula in
this central autonomic network, sometimes with contradictory
experimental results. In animals, stimulation of rat posterior
insula (58, 73) and primate antero-ventral insula (74, 75) have
induced heart rate changes. In humans, Oppenheimer et al. (59)
were the first to report heart rate changes after 70 intraoperative
stimulations of the insula in five patients. Bradycardia was
observed more frequently after stimulations of the left insula,
whereas tachycardia was more often elicited after stimulation
of the right insular cortex. More recently, Chouchou et al.
(76) confirmed the role of insula in regulation of cardiac
activity, based on responses to direct electrical stimulation
performed during stereo-electro-encephalography. Out of 100
insular stimulations, almost 50% induced a modification of heart
rate. Insular representation of tachycardia was more posterior
than that of bradycardia and both types of cardiac responses
were equally represented in right and left insula. Tachycardiac
responses were underpinned by sympathetic reactivity, and
bradycardia by parasympathetic control.

Likewise, Catenoix et al. (77) reported an insular seizure with
ictal asystole. The electrode implanted in the left posterior long
gyrus showed a high frequency discharge starting 2 s before
asystole, underlying the possibility of a proper role of insula
in some dysautonomic seizures. However, a recent SEEG study
exploring 37 temporal lobe seizures in 9 patients, showed that
tachycardia was concomitant to an increase in epileptic activity
in anterior hippocampus and amygdala, but was independent of
ictal insular activity (17), suggesting that insula implication is not
necessary to evoke cardiac changes.
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Sympathetic or parasympathetic ictal changes could so result
from direct activation by epileptic discharge of the central
autonomic network (78), whose activation by the discharge
would modify the activity of the autonomic nervous system
during the seizure. In addition, like the data which show a
progressive alteration of the brainstem structures involved in
respiratory control (79), it could be possible that the repetition
of the seizures could modify the subcortical nuclei in charge of
vegetative regulation. Thus, the repetitive stimulation of central
autonomic network by epileptic discharges may lead to chronic
dysfunction of the autonomic nervous system leading at least in
part to interictal disorders.

Genetic Background
Several ion channel genes whose mutations are involved in
cardiac arrhythmias are also expressed in the brain. For example,
the SCN5A gene, whose mutation is associated with long QT
syndrome, is also expressed in the brain and is associated with
epilepsy (80). Some cardiac events, including sudden deaths, may
therefore be linked to genetic risk factors common to epilepsy
and cardiac arrhythmias.

A growing body of evidence points to a genetic susceptibility
to cardiorespiratory and autonomic dysfunction in epilepsy. In
an analysis of the entire exome sequencing of 61 SUDEP cases,
mutations known to cause long QT syndrome were found in
7% of cases and an additional 15% had candidate variants in
potentially predisposing genes to malignant cardiac arrhythmias
(81). Similarly, the effect of the SCN1A mutation on heart
function may partly explain the increased risk of mortality in
Dravet syndrome (82–84).

Roles of Epilepsy Treatments
Several anti-seizure drugs have been associated with conduction
abnormalities or arrhythmias. This has been particularly
reported with sodium channel blockers (2), including risk of
atrioventricular block with carbamazepine (85), sinus pause
and hypotension with rapid administration of phenytoin (86)
or atrioventricular block or atrial fibrillation with lacosamide
(87–89). However, no formal relationship has been established
between these drug-related adverse events and ictal arrhythmias
(2). Importantly, a pooled analysis did not find a significant
association between the treatments and an increased risk of
SUDEP when adjusting the frequency of generalized tonic-clonic
seizures (90).

The effect of vagus nerve stimulation (VNS) on autonomic
function remains uncertain. Heart changes associated with VNS
are rare. Few cases of VNS-induced bradycardia have been
reported. In addition, data on the alterations in parasympathetic
tone of the cardiovascular system induced by VNS are
contradictory (91).

Finally, while the data concerning the relationship between
some antiepileptic treatments, in particular enzyme inducers, and
the destabilization of lipid metabolism are numerous (92), the
real impact of these modulations on the risk of atherosclerosis
and a fortiori on the risk of the occurrence of cardiovascular
events remain debated (93–95). In a study based on an insurance
registry from several states in the United States, the risk of

having a stroke with enzyme inducer antiepileptics compared
to other treatments was 1.22 (0.90–1.65) (94). A large British
study used the GPRD database and studied 252,407 patients
over the age of 18 who received antiepileptic therapy between
1990 and 2013 (95). Among them, 5,069 strokes (ischemic
or hemorrhagic) and 3,636 myocardial infarctions have been
reported. The use of enzyme-inducing therapy was not associated
with a significant increase in the risk of stroke, including ischemic
stroke. In contrast, the use of an inducer for more than 24months
was associated with a significantly increased risk of myocardial
infarction [1.46 (1.15–1.85)] (95). Nevertheless, translated into
annual risk, this difference remained very low, with a difference
in risk of occurrence of 1.39 / 1,000 patients per year (0.33–2.45).

POTENTIAL RELATIONS WITH
PATHOPHYSIOLOGY OF SUDEP

Epilepsy-related cardiac dysfunction may be associated with
increased risk of premature mortality, because of a relation either
with the risk of SUDEP or with the risk of heart diseases. As
discussed in details by Verrier et al. the issue of long-term risk
of heart diseases might be predominant in terms of incidence
and should deserve a specific attention (13). This risk might be
primarily related to the direct effects of seizures on the heart,
the genetic background and/or the long-term adverse events of
antiseizure drugs (13). In contrast, the exact relation between
these cardiac symptoms and the risk of SUDEP remains to
be clarified.

The data suggesting that the ictal cardiac dysfunction plays
a key leading role in the initiation of the cascade of events that
lead to SUDEP are limited. As discussed above, the possibility
that the main event is a serious heart rhythm disorder seems
unlikely or may represent a minority of SUDEP (5, 27). Although
severe bradycardia, transient asystole or an episode of ventricular
tachycardia was observed in all monitored SUDEP in the
MORTEMUS study, these events followed chronologically the
apnea (33). Even in Dravet syndrome, in which it is possible
that the channelopathy also has a cardiac effect, available data
are conflicting. In some rodent model of Dravet Syndrome,
altered cardiac electrical function contributed to susceptibility
to arrhythmogenesis and SUDEP (82). However, in others,
asystole was shown to be also triggered by postictal respiratory
dysfunction, possibly by a direct effect of hypoxemia on heart
muscle (96).

Accordingly, an important aspect might be the interrelations
between the central regulation of respiratory function and the
one of neurovegetative functions, including the central regulation
of cardiac rhythm. Brain areas involved in these regulations
are highly connected to each other, both at the cortical level
and in the brainstem, and each of them is partly regulated
by the other. Brain regions involved in the regulation of the
arterial pressure as well as in breathing control thus overlap with
the Central Autonomic Network involved in the regulation of
heart rhythm, both at the cortical level and in the brainstem.
Direct electrical cortical stimulation of the subcallosal neocortex
resulted in consistent decreases in systolic blood pressure (97).
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The latter was interpreted as a reduction in sympathetic drive,
resulting in a reduction in cardiac output (97). Similarly, direct
electrical cortical stimulation of several areas of the Central
Autonomic Network reliably induces apnea. This has mostly
been reported in the amygdala or the hippocampus (98–100)
but also in the cingulate and orbitofrontal cortex (101). In
addition direct electrical stimulation of the perisylvian cortex
can result in significant decrease of SpO2 (102). In this context,
it might be speculated that acute disorganization of these
cortical regions by an epileptic discharge might precipitate
simultaneous alterations of the cortical drive of respiration,
cardiac rhythm, and arterial pressure. Some clues obtained
during seizures might be in favor of this hypothesis. It has thus
been shown that ictal autonomic dysfunction is correlated with
seizure-related respiratory dysfunction in temporal lobe seizures,
with prolonged impairment of parasympathetic tone associated
with postictal hypoxemia (54). In generalized convulsive
seizures, there is a close relationship between post-ictal severe
respiratory dysfunction and post-ictal conduction or rhythm
cardiac disorders (32, 33). In this seizure type, which is the
main risk factor of SUDEP (103), the cortical dysfunction
of neurovegetative regulation and breathing control, might be
reinforced by the dysfunction of brainstem control, resulting
from the spreading depolarization in the brainstem. In a
rodent model of SUDEP, pharmacological-induction in the
brainstem of electroencephalographic suppression resulted in
apnea, bradycardia, and asystole, similar to the events seen in
monitored SUDEP (104). Furthermore, respiratory regulation
following a seizure is modulated by norepinephrine pathway
(105). In patients, the occurrence and/or severity of post-
ictal EEG suppression is associated with post-ictal respiratory
dysfunction (106) as well as with both sympathetic activation and
parasympathetic suppression (53).

Despite these preliminary data, the hypothesis of a leading
role of post-ictal central neurovegetative breakdown in the
SUDEP requires additional evidence. In addition, the exact
relationship between these potential peri-ictal alterations of
the Central Autonomic Network, long-term alterations of
respiration and long-term alteration of cardiac regulation,
especially HRV, remains an open question. Whether or not
the risk of severe of post-ictal neurovegetative breakdown, and
eventually SUDEP, might be higher in patients with combined
alterations of respiratory and cardiac controls is unknown.
Better understanding how these issues interact with each other
and if they share pathophysiological mechanisms might be of
key importance for unraveling SUDEP biomarker with greater
predictive value than those currently available (7), a critical aspect
in the perspective of SUDEP prevention (107).

IMPLICATIONS IN CLINICAL PRACTICE

Diagnostic and Management of
Epilepsy-Related Cardiac Disorders
Identification of interictal cardiac changes should allow the
prevention, early detection, and possible treatment of cardiac
co-morbidities. It could also guide the choice of anti-seizures

drugs according to the patient profile, in order to avoid the
appearance or worsening of arrhythmia or cardiac conduction
disorders. An EKG should therefore be performed in all patient
with newly-diagnosed epilepsy, especially to exclude long-QT
syndrome, but it should then be reprocessed regularly in the
follow up. Some studies have suggested the interest of prolonged
routine EKG recordings (108).

Similarly, identification of patients with severe ictal heart rate
changes is important. Although ictal asystole are typically self-
limiting events, they can expose to severe injuries. Considering
the risk of seizure-related traumatisms and the risk of recurrence,
aggressive treatment, including pacemaker implantation, should
be discussed if seizure freedom cannot be achieved (28). Because
active management of antiseizure drugs might reduce the risk of
SUDEP (109), whether or not identification of post-ictal cardiac
arrythmias after generalized convulsive seizure (32) should be
taken into account in therapeutic decision is an open question.

Seizure Detection Devices
Over the past 10 years, there has been a growing interest in the
potential applications of mobile health technologies for seizure
detection, with the objective of faster caregivers’ intervention
and decreased risk of seizure-related injuries. Basically, three
physiological variables can be used for non-EEG based seizure
detection: detection of body movements, eye movements, and
seizure-related modification of vegetative functions, including
the cardiac rhythm (110). While detection of generalized tonic-
clonic seizures has shown promising results with utilization
either alone or in combination of accelerometers, automatic
video detection, surface EMG, and bed alarms (8, 111), these
approaches are much less sensitive for focal seizures. In contrast,
the main approach consists in detection of seizure-induced
autonomic changes, especially cardiac rhythm changes. While
first studies showed disappointing results with high rate of false-
alarm, recent data were more encouraging. In a recent study
using a wearable EKG device, the overall sensitivity was low at
54% but raised to 90.5% for non-convulsive seizures in the 53.5%
of patients in whom more than 66% of seizures were detected
(112). An ictal change in HR of more than 50 bpm (increase or
decrease) predicted responders with a predictive positive value of
87% (95% CI 69.9–95.4%) and a negative predictive value of 90%
(95% CI 70.4–97.2%) (112).

Beyond detecting ictal tachycardia to alert caregivers about
the occurrence of a seizure, an additional question will be how
these devices can be used to detect post-ictal arrythmia and/or
asystole. Such approach might be used to alert patients family
or the rescue services of a severe post-ictal arrythmia with high
risk of immediate SUDEP, especially in patients with frequent
nocturnal convulsive seizures and who sleep alone (113).

CONCLUSION

Much progress has been made in recent years in the
characterization of ictal and interictal cardiac manifestations
in epilepsy. Although their pathophysiology remains debated,
improving knowledge could lead us to improve the care of
our patients. Their identification should allow the prevention
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and possible treatment of cardiac co-morbidities, and also
guide the choice of anti-epileptic treatments, in order to
prevent the appearance or worsening of conduction or rhythm
cardiac disorders. In addition, monitoring EKG and HRV,
which are biomarkers easy to record and measure, could
allow the development of increasingly precise non-invasive
seizure detection tools for monitoring and possibly for the
early treatment of seizures. However, a key remains to
better understand the exact relation between these cardiac

manifestations and the risk of SUDEP. Further studies are
required to decipher the respective role of centrally-control
ictal changes, long-term dysregulation and direct effects on the
heart function.
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