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3 Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania

Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only
a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs
(miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing
complex either degrade or prevent target messenger RNAs from being translated
and thus, can modulate the synthesis of target proteins. In the neurological field,
miRNAs have been evaluated as potential regulators in brain development processes
and pathological events. Following ischemic hypoxic stress, the cellular and molecular
events initiated dysregulate different miRNAs, responsible for long-terming progression
and extension of neuronal damage. Because of their ability to regulate the synthesis
of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the
neuronal damage following a cerebral ischemic event. This review aims to summarize the
recent literature evidence of the miRNAs involved in signaling and modulating cerebral
ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage
and repair mechanisms. An in-depth overview of the molecular pathways involved in
ischemia reperfusion injury and the involvement of specific miRNAs, could provide future
perspectives in the development of neuroprotective agents targeting these specific
miRNAs.

Keywords: miRNAs, ischemia reperfusion, cell death, inflammation, oxidative stress

INTRODUCTION

Stroke represents the third leading cause of death and a major debilitating medical condition. It
is responsible for permanent disabilities in approximately 80% of post-stroke patients (Moskowitz
et al., 2010; Lallukka et al., 2018). Metabolic disruption of neurons activates immune responses,
resulting in a complex chain of molecular events, which further promote progressive cellular
damage and irretrievable neuronal death (Moskowitz et al., 2010; Khoshnam et al., 2017).

The ischemic/reperfusion (I/R) injury is caused by a sudden restriction of blood supply
and oxygen, followed by subsequent restoration of blood flow and reoxygenation, contributing
supplementary to the global oxidative stress (Eltzschig and Eckle, 2011). The I/R injury is the main
actor in the neuroinflammatory repertoire, triggering different cell death provoking events, which
include apoptosis, blood-brain barrier (BBB) disruption and mitochondrial dysfunction (Eltzschig
and Eckle, 2011; Khoshnam et al., 2017).

The neuroprotective agents under current research address either the ischemic core, or the
viable penumbra region, with the aim of reestablishing the collateral blow flow and ameliorating
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the microenvironment damaged tissue (Eltzschig and Eckle,
2011; He et al., 2021). The standard therapeutic strategy
for ischemic stroke remains thrombolytic reperfusion therapy
provided by intravenous tissue plasminogen activator that is,
however, limited by a short therapeutic window of 3-4,5 hours
(Del Zoppo et al., 2009; IST-3 collaborative group et al., 2012;
Fonarow et al., 2014).

Preclinical translation of neuroprotective drugs into clinical
settings is failing. Even with advancing experimental studies on
animal models, with excellent human reproducibility provided by
thromboembolic stroke models, i.e., reproducible infarct size, and
penumbra zone, there are still many promising neuroprotective
agents in preclinical studies that fail to show a significant effect
on patients (Dirnagl, 2006; Canazza et al., 2014; Luo et al.,
2019). Dirnag et al. attributed this limited clinical potential of
experimental drugs to statistical errors, lack of blinding and
randomization of the animals, and negative publication bias
(Dirnagl, 2006). Unexplored impediments steam from the limited
ability of drugs to penetrate the BBB and target the ischemic
neuronal tissue, resulting in decreased efficient concentration
of the neuroprotective agents (Saugstad, 2010; Ponnusamy and
Yip, 2019). In this context, selective drug delivery systems such
as stroke tissue-related homing peptides and nanoparticles-
mediated agents are emerging (Hong et al., 2008; He et al.,
2021).

Micro RNAs (miRNAs) are small, non-coding RNA molecules,
containing around 18–25 nucleotides, which pose a post-
transcriptional regulatory role by down-regulating messenger
RNAs (mRNAs) (Jonas and Izaurralde, 2015). Binding to the
target mRNAs by base pairing, miRNAs negatively regulate
gene expression of mRNAs via cleavage of mRNA, translation
repression or destabilization of mRNA structure (Bartel, 2009;
MacFarlane and Murphy, 2010).

The first pathological condition described, related to miRNAs
was chronic lymphocytic leukemia (Calin et al., 2004). Since
then, multiple studies outline the potential of miRNAs to mediate
several pathological mechanisms of human diseases—i.e., cancer,
neurological disorders, immune system disorders, acting as
signaling molecules and mediators of cell-cell communication in
different cellular processes such as proliferation, differentiation,
and apoptosis (Smirnova et al., 2005; Garofalo et al., 2010;
Tüfekci et al., 2014). MicroRNAs are key master regulators
of gene expression in the brain, in processes related to brain
development and its normal functioning, i.e., synaptogenesis,
myelination, cerebral vasculogenesis and angiogenesis, but also
in different brain disorders: ischemic stroke, neurodegenerative
disease, traumatic brain injury, spinal cord injury, hypoxic-
ischemic encephalopathy (Saugstad, 2010; Ponnusamy and Yip,
2019).

MicroRNAs also play a pivotal role in I/R injury, the main
contributor to reactive oxygen species (ROS) production, cellular
metabolic disfunctions associated with/underlying ischemic
stroke (Ouyang et al., 2015; Cao et al., 2021). Recent studies have
shown that I/R-related miRNAs alter the mitochondrial response
and mediate multiple pathways that further promote neuronal
survival and apoptosis (Jeyaseelan et al., 2008; Di et al., 2014; Hu
et al., 2015; Ouyang et al., 2015). Min et al. highlighted the altered

expression profile of miRNAs in brain I/R injury, which consisted
of 15 miRNAs upregulated and 44 miRNAs downregulated (Min
et al., 2015). MiRNAs modulate critical signaling pathways in
I/R injury, associated with fibrosis, neoangiogenesis, necrosis,
apoptosis and inflammation (Ghafouri-Fard et al., 2020).

However, miRNAs have also been reported in promoting
the pathogenesis of ischemic stroke—i.e., atherosclerosis,
hypertension, hyperlipidemia, plaque rupture, bidirectionally
influencing the pathological chain of ischemic events, both
pathogenesis and pathways (Rink and Khanna, 2011). In
this direction, advancing the knowledge in gene functions
using agomirs or antagomirs—double stranded miRNA
agents, chemically modified at antisense strand that act as
miRNA mimickers or inhibitors—could provide potential
neuroprotective effects in modulating pathological processes in
ischemic injuries (Kadir et al., 2020).

Neuroscience confronts limited therapeutic strategies aimed
at protecting ischemic tissue, for which there is a critical and
urgent need for advancing our knowledge. A depth overview of
the molecular pathways involved in ischemic stroke, which are
targeted by specific miRNAs, could provide future perspectives
in the development of neuroprotective miRNA agents. This
review aims to summarize the recent literature evidence of the
miRNAs involved in signaling and modulating cerebral ischemia-
reperfusion injuries, thus pointing their potential in limiting
neuronal damage and repair mechanisms.

miRNAs IN NEUROLOGICAL DISEASES

Development of the adult brain and its functions are a highly
studied subject in today’s literature. Normal brain development
proceeds via complex multistep processes, which involves
early embryonic stage- neurogenesis, consisting in proliferation
and differentiation of precursor neuronal cells, continuing to
myelination and synaptogenesis in the childhood and adulthood
period, which contributes to synaptic plasticity and memory
(Semple et al., 2013). MiRNAs play essential roles in controlling
neurodevelopment processes and normal brain functions, and
dysregulation of miRNA expression profiling has been related
to perinatal brain injury (Cho et al., 2019). Ponnusamy and
Yip (2019) deciphered the role of miRNA involved in normal
brain development’ processes under normoxic and hypoxic
conditions, consisting in myelination, axonal outgrowth, dendric
outgrowth, synaptogenesis, neuronal differentiation, neuronal
migration, angiogenesis.

Neurodegenerative diseases, which are mainly characterized
by intracellular or extracellular protein aggregate formation,
resulting to neuron dysfunction in certain brain areas, includes
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease and multiple sclerosis (MS) (Quinlan et al., 2017).

Mounting evidence suggested the role of miRNAs-based
therapeutics in modulating the prognosis of neurodegenerative
diseases, emerging new miRNAs biomarkers for a better disease
control (Quinlan et al., 2017). Thus, Juźwik et al. (2019) in a
systematic review of 12 neurodegenerative disease identified
10 miRNAs frequently dysregulated, including miR-9-5p,
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miR-21-5p, miR-29a-3p, miR-29b-3p, miR-29c-3p, miR-124-
3p, miR-132-3p, miR146a-5p, miR-155-5p, and miR-223-3p.
Notably, a different expression level of miRNAs, miR-9-5p,
miR-21-5p, the miR-29, miR-124-3p, and miR-132-3p have been
revealed, suggesting the mixed expression levels of miRNAs.

PD is characterized by dopaminergic neuron loss from the
substantia nigra, with dysregulated level of miRNAs expression
in the striatal brain areas and dopaminergic neurons (Nies et al.,
2021). Prefrontal cortex of post-mortem PD patients exhibited
125 dysregulated miRNAs, of which miR-10b-5p levels being
associated with clinical onset in both PD and Huntington’s
Disease (Hoss et al., 2016). The pathogenesis of PD related to
miRNAs have been explained by modulation of PD-associated
genes and protein expression related to α-synuclein-induced
neuroinflammation, and degeneration of dopaminergic neurons
(Nies et al., 2021). Down regulation of miR-425 in MPTP injected
mouse PD model contributes to necroptosis and apoptosis
activation, disintegration of mitochondrial membrane, ultimately
leading to neuron loss and dopamine depletion. Moreover, miR-
103a-3p, miR-30b-5p, and miR-29a-3p exhibited high levels of
expression after Levodopa treatment, suggesting the role of
miRNAs as disease modifier agents in PD (Serafin et al., 2015).
Recent studies have shown that suppressing miR-34a can improve
neuronal loss related to PD (Chua and Tang, 2019).

Sun et al. (2021) using bioinformatic analysis, reviewed the
dysregulated miRNAs expression profiling in tissues of AD
patients’ brain, blood and CSF, correlated with pathological
processes. Therefore, 27 dysregulated miRNAs identified
have been related to neuroinflammation, amyloidogenesis,
tau phosphorylation, synaptogenesis, apoptosis, and neuron
degradation (Sun et al., 2021).

Multiple in vivo and in vitro animal models revealed the
potential of miRNAs to counteracting beta-amyloid or tau
reduction, inhibiting of apoptosis, and synaptic protection. In
APP/PS1 transgenic mice, miR-137 exhibited reduced levels
in the cerebral cortex, hippocampus, and serum, suggesting
the neuroprotective potential of miR-137 to suppress p-tau
overexpression (Jiang et al., 2018b). Moreover, inhibition of miR-
98 in N2a/APP cells suppressed Aβ production by upregulating
insulin-like growth factor 1 pathway (Hu et al., 2013, 1).

Neuroinflammation plays critical roles in MS pathogenesis
consisting in dysregulation of inflammatory cell events in
the brain, resulting in BBB disruption, damage of myelin
and oligodendrocytes, neuro-axonal damage and inflammation
(Haase and Linker, 2021).

MiR-155 which exhibited upregulated levels in MS, poses
important role in BBB disruption under inflammatory
conditions, which drives to demyelination processes, i.e.,
microglial activation, polarization of astrocyte. In 58 MS patients
with adult onset, miR-320a, miR-125a-5p, miR-652-3p, miR-
185-5p, miR-942-5p, miR-25-3p were significantly upregulated
in peripheral blood samples, controlling transcription factors of
SP1, NF-κB, TP53, HDAC1, and STAT3 (Nuzziello et al., 2018).

Unbalance of inflammatory reactions including dysfunction
of memory T-cells and Treg cells contributed to continuous and
progression inflammatory demyelinating of CNS. For instance,
in MS patients, miR-19a, miR-19b, miR-25, and miR-106 elicited

significantly upregulated levels in Treg cells compared with
healthy controls (Gao et al., 2021). Targeting dysregulated
miRNAs represents a therapeutic strategy. Thus, inhibiting let-7e
decrease the differentiation of Th1 and Th17 cells, reducing the
severity of MS in experimental autoimmune encephalomyelitis
(Angelou et al., 2019). Increasing evidence ascertained the
involvement of miRNAs in the initiation and progression of
multifold types of cancer. Petrescu et al. (2019) reviewed the main
dysregulated miRNAs related to brain tumors pathogenesis in
glioma, meningioma, pituitary adenoma, and astrocytoma.

Multiple pathological processes associated with gliomagenesis
were controlled by miRNAs. From disrupting BBB by targeting
junctional proteins, zonula occludens-1 (ZO-1), occludin and
β-catenin, to angiogenic, infiltration and migration of glioma
cells by downregulating MMP2, MMP9, VEGF, all these
tumor promoting processes are modulated by several miRNAs
(Petrescu et al., 2019).

MiRNAs could be also used as clinical prognosis biomarkers.
In 90 serum astrocytoma patients, miR-15b-5p, -16-5p, -19a-3p,
-19b-3, 20a-5p, 106a-5p, 130a-3p, 181b-5p and 208a-3p exhibited
upregulation levels, with miR-19a-3p, -106a-5p, and -181b-5p
being associated with lower survival rate (Zhi et al., 2015).

CEREBRAL ISCHEMIA/REPERFUSION
INJURIES

Histopathological Findings in
Hypoxic/Ischemic Brain Injury
Hypoxic or ischemic brain injury give rise to a heterogeneity
of histological findings, in which the neurons, the glial cells,
the neuropile and the brain microvasculature are affected. These
alterations in brain histological structures occur in chronological
order and depends on the magnitude and duration of ischemia,
and the extension of tissue damage. Two areas are examined:
the ‘’ischemic core” or the irreversibly damaged area, and
the ‘’ischemic penumbra,” the hypoperfused area, which still
contains viable cells.

Neurons and Glial Cells Modifications
The earliest change which occurs in the ischemic core is
represented by neuronal swelling, because of the cytotoxic edema
caused by ion alteration. The damaged neurons are large, with
pale staining cytoplasm and pyknotic nucleus in hematoxylin
and eosin (H&E) staining. After hours, in the ischemic core
appear the red, eosinophilic, or ischemic neurons, characterized
on routine histological sections by cell shrinkage, a pyknotic
nucleus without nucleolus, and a highly eosinophilic cytoplasm,
devoided of Nissle bodies. These neurons may be found also in
the penumbra area for 1 or 2 days. Another aspect of advanced
neuronal degeneration is represented by ‘ghost neurons’, found
in the ischemic core and in the ischemic penumbra zone, which
exhibits an irregular and very ill-defined cell border, pale staining
cytoplasm in H&E staining and pyknotic, dark nucleus. The
disintegration of dead neurons leads to parenchymal necrosis
and release of cellular debris, which later will be engulfed by
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macrophages (Mărgăritescu et al., 2009; Rahaman and Del Bigio,
2018).

Activation and proliferation of microglia, the resident
macrophages in the central nervous system, occurs in the
ischemic core in the first hours after ischemic injury, being
involved in removing the necrotic tissue. During activation,
microglia undergo morphological changes, with increase in cell
body size and retraction of cytoplasmatic processes, acquiring
an amoeboid phenotype in the ischemic core. In the ischemic
penumbra and in the marginal zone we can find numerous highly
ramified microglia (reactive microglia), which can migrate to
the ischemic core, suggesting the fact that microglia may exhibit
different morphological patterns, according to degree of ischemia
and the time interval after ischemia (Zhang, 2019). After about
3 days, a lot of bone marrow-derived macrophages infiltrated
the ischemic core and the ischemic penumbra (mostly), where
they phagocytose the cellular and myelin debris, having a foamy
appearance on histological sections. Activated microglia express
high levels of immunomarker Iba1 +, while bone marrow-
derived macrophages are highly positive for CD45 (Mărgăritescu
et al., 2009; Li et al., 2014b; Magaki et al., 2018; Washida et al.,
2019; Zhang, 2019).

In the ischemic core, swelling or edematous astrocytes may
be found in the early phase, with a pale staining cytoplasm and
disrupted cytoplasmatic processes; eventually, these cells will die.
In the ischemic penumbra, the surviving astrocyte proliferate
and undergo hypertrophy (reactive astrogliosis), expressing high
amounts of glial fibrillary acidic protein. In routine histological
sections, reactive astrocytes are large, star-shaped cells, having
a coarse nuclear chromatin, glassy eosinophilic cytoplasm and
long, branching cytoplasmatic processes; they are also called
gemistocytic astrocytes. Astrogliosis represents a hallmark of
nervous tissue injury after ischemia, and always follows the
microglial activation and blood-derived macrophages invasion.
After several days, the astrocytes and microglial cells from the
ischemic penumbra surround the ischemic core and the cells will
fill the necrotic areas, forming the glial scar tissue, an eosinophilic
zone in H&E staining, with neuron loss and numerous glial cells,
mainly reactive astrocytes (Mărgăritescu et al., 2009; Li et al.,
2014b; Magaki et al., 2018).

In the first hours after ischemic injury, oligodendrocytes
damage may cause axonal degeneration and demyelination,
leading to rarefaction of the white matter (Mărgăritescu et al.,
2009; Washida et al., 2019).

Microvascular Changes
In the ischemic core, structural changes of the small blood vessels
are observed, such as: endothelial cell (ECs) swelling, pericyte and
ECs detachment from the basement membrane, narrowing of the
lumen, hyalinization and vascular wall thickening and sclerosis,
with increase amount of collagen fibers and disintegration of
vascular smooth muscle cells. These vascular modifications, in
addition to morphological changes of astrocyte foot processes,
lead to alteration of the BBB, which cause the vasogenic
edema in the neuropil. Disruption of BBB or disintegration
of capillaries in the necrotic areas, induce the appearance of
microhemorrhages, extravasated and lysed erythrocytes releasing

hemosiderin pigment, which is phagocytized by macrophages
(siderophages) (Mărgăritescu et al., 2009; Rahaman and Del
Bigio, 2018; Liu et al., 2019a).

The ischemic penumbra contains congested blood
vessels, surrounded by perivascular edema. After 3 days,
neovascularization occurs within the ischemic penumbra, but the
newly formed blood vessels are abnormal, thin, highly permeable,
thus increasing the pre-existing brain edema (Rahaman and Del
Bigio, 2018; Liu et al., 2019a).

Inflammatory Reaction
Polymorphonuclear leukocytes (PMNs) and macrophages play
a key role in early inflammatory reaction after brain ischemia,
while lymphocytes (mostly T lymphocytes), are involved in the
delayed phases of ischemia. An acute inflammatory reaction
appears within the first 4-6 hours after ischemic injury, with
PMNs infiltration in the necrotic tissue. Within the first 3 days,
activated microglia and blood-derived macrophages invade the
necrotic area, engulfing the cellular and myelin debris (lipid-
laden macrophages) (Kawabori and Yenari, 2015; Anrather and
Iadecola, 2016).

General Mechanisms of Cerebral
Ischemia/reperfusion Injury
Neuronal damage after recanalization has long been known to
occur following ischemic stroke through a unique type of injury
that is not expressed during the hypoxic period (S.M. Humphrey
et al., 1973; Baird et al., 1994). As ischemic events are responsible
for stroke in almost 80% of cases, even with the achievement
of reperfusion via thrombolysis, stent retrievers or spontaneous
reperfusion, I/R injuries have been shown to have deleterious
and noteworthy effects of brain function and ischemic area after
artery occlusion (Zhang et al., 1994). Animal studies have shown
that the area damaged by the initial ischemic event can increase
in size after repermeabilization of the affected artery, compared to
continuous occlusion (Zhang et al., 1994). As pathophysiological
mechanism may be possible targets for therapy and prevention
of reperfusion injury, altering the BBB has been thought as
the main mechanism involved. New evidence suggests multiple
damage mechanism that can alter neuronal function in I/R injury
such as the activation of the complement system (inhibition of
which may yield less ischemia-reperfusion cardiac injury), the
increase in leukocyte taxis to the affected area (the depletion of
which can be a target in limiting reperfusion damage), cellular
component damage, the stress caused by ROS and the activation
of platelets can cause reperfusion damage and cerebral edema
(Lin et al., 2016; Wu et al., 2018). Another molecular mechanism
for brain damage after I/R concerns matrix metalloproteinases
(MMPs) and their ability to interrupt endothelial junctions after
restoration of blood flow (Candelario-Jalil et al., 2009). The
vasogenic edema is caused by a biphasic “opening” of the BBB,
with the early phase occurring several hours after reperfusion
and being related to the activation of gelatinase A (MMP-2) and
the second, 1 to 2 days after restoration of blood flow, associated
with the expression and activation of gelatinase B (MMP-9) and
stromelysin-1 (MMP3) (Rosenberg and Yang, 2007).
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ROS are responsible for the damage to cellular components,
such as mitochondria, nucleic acids and proteins (Brieger
et al., 2012). Their role in reperfusion injury has long been
presumed and recent data confirm that superoxide molecules
can be produced after reperfusion following brain ischemia and
molecules such as NADPH oxidase (NOX) can be involved in I/R
injury in the brain and altering the BBB through their ability to
transfer electrons to molecular oxygen (Kim et al., 2017b; Yang,
2019). The latter can be considered a way through which the
mechanisms involved in I/R injury link to each other, especially
when referring to the first phase of I/R brain injury related to the
BBB in case of ischemic brain injury.

An important pathway that can lead to aggravating I/R injury
is related to cellular component damage. ROS are causing damage
to nucleic acids and macromolecules, as stated above, but also to
mitochondria leading to ATP depletion, anaerobic metabolism
and malfunctioning of ion pumps (Sanderson et al., 2013). The
ischemia-reperfusion model in mitochondrial injury consists of
calcium overload due to the altered function of the endoplasmic
reticulum, which can generate ROS that may hyperpolarize the
mitochondria membrane and surpass the antioxidants present
in the cell (Wu et al., 2018). Excess reactive oxygen may escape
from the electron transport chain and activate mechanisms
that interfere with apoptosis and necrosis, while mitochondrial
disfunction regarding fission and fusion becomes impaired
during IR injury (Turrens, 2003; Andreyev et al., 2005). Besides
an excess in ROS, reperfusion-induced inflammation also causes
the release of cytokines, causing cytokine storm that ultimately
injures the surrounding tissue (Eltzschig and Eckle, 2011).

Oxidative stress during I/R injury is thought to be caused
by three different systems: xanthine oxidase system, NADPH
oxidase (NOX) system and nitric oxide synthase (NOS) system
(Cantu-Medellin and Kelley, 2013; Ma et al., 2017b). NOX-
derived free oxygen radicals are known to cause the increase
in local inflammatory cell presence and may lead to impaired
perfusion of multiple organs (Sedeek et al., 2009; Meza et al.,
2019). Even though the NOS system has a well-established role in
providing nitric oxide as an antioxidant protective agent against
I/R injury, it is also known that this type of injury can transform
NOS into a superoxide generating system, with a resulting
decrease in cellular NO and increase in ROS (Forstermann
and Munzel, 2006). The free oxygen radicals can promote
inflammation in the affected cells and can lead to cellular death
(Lisa and Bernardi, 2006).

Inflammation represents a mechanism that has important
implications in determining the amount of damage during
reperfusion injury. This mechanism can yield effects through
the cytokines, and molecules produced by the endothelium and
parenchymal cells during I/R injury, but also by the number
of leukocytes attracted to the damaged area. Oxidative stress,
as mentioned above, can also be a means of aggravating ROS
induced inflammation by increasing the expression of pro-
inflammatory factors such as TNF-α and interleukin (IL)-1β

(Turovsky et al., 2021). The adhesion of white blood cells to
the endothelium, slow-rolling and trans-endothelial migration
are augmented by flow restoration after ischemia, together with
increased oxygen content. As more free oxygen radicals are

produced, and leukocyte activation is ongoing due to danger
signals, NADPH oxidase produces more ROS, neutrophils are
able to release different cell damaging hydrolytic enzymes and
generate hypochlorous acid via the activity of myeloperoxidase,
pore-forming molecules being produced in the detriment of
the vascular and parenchymal cells (Granger et al., 1993;
Frangogiannis, 2015). Oxidative stress and NO depletion are
also responsible for triggering humoral response to I/R injury as
molecules such as TNF-α, IL-1, ANG II, LTB4 and PAF (linking
the activation of platelets to neutrophil I/R damage) (García-
Culebras et al., 2019). In addition to inflammation, complement
system activation (C’) has been associated to I/R injury, both by
increasing chemotaxis and activation in damage area leukocytes
and activating the membrane attack complex to induce cellular
damage (Gorsuch et al., 2012). Inhibiting the C5a fragment
has also been shown to decrease neutrophile tissue infiltration
(Wood et al., 2020). As inflammation is strongly linked to
multiple types of cell death, nuclear factors that stimulate the
expression of genes related to inflammation have been seen as
a mechanism and also as a potential target during I/R injury.
Different studies have supported this view, as strategies such as
ulinastatin administration to mice undergoing temporary middle
cerebral artery occlusion, which downregulates TLR4 and NF-
kB expression, sodium butyrate administered during I/R injury
of the lung and inhibiting NF-κB and JAK2/STAT3 signaling
pathways or combination of octreotide and melatonin to alleviate
the inflammasome-induced pyroptosis through the inhibition of
TLR4-NF-κB-NLRP3 pathway in liver I/R injury, have clearly
showed that NF-kB plays an important role in reperfusion injury
(Li et al., 2017b; El-Sisi et al., 2021; Ying et al., 2021).

Neutrophils can adhere to the endothelial wall where necrosis
factors expressed by injured cells are exhibited on the luminal
surface and contact the leukocytes (such as P-selectin). After
flow reestablishment, the cells are able to cytoskeletal shape-shift
and adapt to linear flow, moving through an inter-endothelial
pattern and eventually localizing points of entry by mechanism
of actin polymerization and matrix metalloproteinase activity
and gaps between pericytes (Nourshargh and Alon, 2014). Other
immune cells such as lymphocytes, thrombocytes, mast cells or
macrophages are also believed to play a role in I/R injury by
increasing the presence of tissue neutrophils (Rodrigues and
Granger, 2010). Platelets are also involved in attracting leukocytes
and inducing I/R damage by their activation in the presence of
inflammatory cytokines including PAF, due to the damage of
endothelial cells, lack of NO, prostacyclin, and abundance of ROS
(Esch et al., 2010; Franks et al., 2010).

In response to brain hypoxia/ischemia, miRNAs modulate
a complex network of gene expression, for which they were
proposed as potential and reproducible biomarkers in ischemic
stroke due to a consistent correlation with neuropathological
changes and prognosis of stroke (Vijayan and Reddy, 2016;
Condrat et al., 2020). Several types of hypoxia/ischemia-sensitive
miRNAs, whose blood levels are correlated with their brain
circulating levels, were identified as potential clinical biomarkers
in stroke: miR-210, miR-125a-5p, miR-125b-5p, and miR-143-
3p (Zeng et al., 2011; Tiedt et al., 2017). MiRNAs influence
gene expression in response to hypoxic/ischemic injury, and in
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FIGURE 1 | General mechanisms in ischemia/reperfusion injury. Abbreviations: Akt, Protein kinase B; BBB, blood-brain barrier; C5, complement fraction 5; CXCL,
C-X-C Motif Chemokine Ligand; DAMP, damage-associated molecular pattern; GPX4, glutathione peroxidase 4; IL, interleukin; LOOH, lipid alcohol; LOX, lipid
peroxide; MAC, membrane attack complex; MMP, matrix metalloproteinase; NAD, nicotinamide adenine dinucleotide; NF-kB, nuclear factor
kappa-light-chain-enhancer of activated B cells; NOS, nitric oxide synthase; NOX, NADPH oxidase; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen
species; TLR, Toll-like receptor; TNF-α, tumoral necrosis factor α.

turn the inflammatory responses triggered by ischemia-hypoxia
dysregulate miRNA expression (Chen et al., 2020b). In the
complex array of neuroinflammatory events, microRNAs are at
the center of target gene regulation and modulation, microglia
activation, cytokine production, cell apoptosis, mitochondrial
disfunction and immune cell development, maintaining the
vicious processes that lead to the progression and extension of
neuronal damage (Chen et al., 2020b).

The most important of these processes are displayed in
Figure 1.

microRNAs IN ISCHEMIA/REPERFUSION
INJURY

Inflammation
The inflammatory response is one of the major consequences
of cerebral ischemia and miRNAs play an important role in
its regulation. The involvement of several miRNAs in these
pathways is presented in Tables 1, 2. Changes in the expression
of inflammatory cytokines may occur after cerebral I/R injury
(Wu et al., 2020). In lesions caused by I/R, inflammation
is initiated by stagnant blood flow (vessel occlusion) and is
then maintained by leukocytes activation and release of pro-
inflammatory cytokines. Reducing or stopping the blood flow
causes changes in the coagulation cascade, activates NF-kB and
increases the expression of adhesion molecules on endothelial
cells (Jurcau and Simion, 2021). Decreasing the amount of
oxygen in the tissue causes varying degrees of damage. The first
innate immune mechanism that is involved in this mechanism
is the activation of toll-like receptors (TLRs). Activation of these
receptors determines the activation of NF-kB, recognized as a
pathway with a major role in the inflammatory response and

with the ability to modulate several cytokines (TNF-α, IL-1β,
and IL-6) and other mediators (iNOS, PGE2) (Shi et al., 2018;
Yang et al., 2020). Microglia is the main factor involved in
neuroinflammation. Its function and morphology are altered
after ischemia. Activation of the microglia leads to its migration
in and around the affected area (Hao et al., 2020). Together with
the microglia, macrophages accumulate in the lesion (Islam et al.,
2018). Following this activation process, the microglia release
large amounts of pro-inflammatory cytokines (TNF-α, IL-6, IL-
1β) that are considered to be the main factors involved in acute
inflammation in ischemic stroke (Hao et al., 2020; Wang et al.,
2020c).

I/R damage can be ameliorated by transforming growth factor
β1 (TGF-β1), a cytokine with anti-inflammatory effects (Yang
et al., 2020). TGF-β1 is a factor produced in large amounts in
the lesion, starting on day 5 after reperfusion or later. A source
of TGF-β1 may be the microglia and macrophages. The anti-
inflammatory effect of TGF-β1 is thought to be a consequence of
phosphorylation of the Smad protein by binding of this ligand
to TGF-β receptors (Islam et al., 2018). Another member of
the TGF family, TGF-β2, has a neuroprotective effect, being
considered a neuroprotective factor. The expression of this
protein is increased in animals with transient cerebral ischemia.
Activation of the TGF-β2/Smad3 signaling pathway is essential
for neuroprotection in ischemic brain injury (Peng et al., 2019).

The inflammatory response can be initiated by
inflammasomes, complex molecular protein structures that
are sensitive to cellular changes when homeostasis is lost (Franke
et al., 2021). The main components of an inflammasome are
a NLR sensor molecule, a pro-inflammatory caspase, and an
adaptor protein (apoptosis-associated speck-like protein (ASC))
with a role in transmitting cellular signals (Hong et al., 2019;
Caseley et al., 2020). Currently, the most studied inflammasome
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TABLE 1 | Up-regulated miRNAs in cerebral I/R injuries.

miRNA miRNA or agmonir effect Study type References

miR-106b-5p ↑ ROS production,
↓antioxidant ability (SOD) and
↑ apoptosis activation

Experimental (Rat model and PC12 cell line) Li et al., 2017a

miR-124 Biomarker of AIS Clinical Weng et al., 2011;
Rainer et al., 2016

miR-124 ↓ p-STAT3,
↓ pyroptosis

Experimental (Rat model) Sun et al., 2020a

miR-125b ↓ CK2α;
↑ NOX2 and NOX4 activation,
↑ ROS

Experimental (Rat model and PC12 cell line) Liang et al., 2018

miR-125b ↓ Protein kinase CK2 Experimental (PC-12 cell line) Liang et al., 2018

miR-128 ↓ proliferation ability
↓ GFAP and MAP2
↑ TNF-α, IL-6, and IL-1β ↓ GSH and SOD
↑ MDA
↓ ARPP21 and CREB1 ↓ BDNF

Clinical and Experimental (Mouse model and
hippocampal neurons and astrocytes)

Chai et al., 2021

miR-128-3p ↓ Nrf2,
↓ antioxidant ability

Experimental (Rat model and neural stem cells
line)

Li et al., 2019a

miR-142-5p ↓ Nrf2/ARE,
↑ ROS

Experimental (Rat model and primary
hippocampal neurons)

Wang et al., 2017

miR-143-3p ↓ FSTL1, Bcl-2,
↑ Bax, caspase 3 and cleaved caspase 3,
↑ apoptosis

Experimental (Mice model and human
neuroblastoma cell line SH-SY5Y)

Wang and Liu,
2021

miR-145 ↑ ERK, p38 and MAPK
↑ Cyclin D1, Nestin, NSE, and GFAP
↓ Cleaved-caspase 3
↑ NSCs proliferation
↑differentiation of NSCs
↓ apoptosis

Experimental (Rat model and Rat neural stem
cells)

Xue et al., 2019

miR-150 ↓ BBB permeability
↑ Tie-2
↓ claudin-5

Experimental (Rat model and BMECs cell line) Fang et al., 2016, 2

miR-153 ↓ Nrf2 and HO-1,
↓ antioxidant levels,
↑ ROS

Experimental (Primary hippocampal neurons) Ji et al., 2017

miR-16 Biomarker of AIS Clinical Rainer et al., 2016

miR-181a ↓ XIAP, Bcl-2,
↑ Bax, cleaved caspase 3,
↑ apoptosis

Experimental (Rat model and primary cortical
neurons)

Zhang et al., 2019a

miR-182 ↓ mTOR/
↓ FOXO1
↓ ZO-1, Occludin, and Claudin-5
↓ Bcl-2/Bax

Experimental (Mouse model and primary
cultures of astrocytes, mouse brain vascular
pericytes, N2a mouse neuroblastoma cell line
and BV2 microglial cells)

Zhang et al., 2020b

miR-187-3p ↓ Seipin,
↑ apoptosis,
↓ autophagy

Experimental (PC12 cells) Ren et al., 2020

miR-191-5p ↓ BDNF Experimental (Mouse model) Wu et al., 2021

miR-195-5p and
miR-451a

↓ BDNF
↓ VEGF-A

Clinical Giordano et al.,
2020

miR-19a-3p ↑ TNF-α, IL-1β, IL-6 ↓ Bcl-2,
↑ Bax
↓ IGFBP3 ↓ cell viability

Experimental (rat model and SH-SY5Y cell line) Chai et al., 2020

miR-200a ↑ STAT and MAPK,
↑Bax/Bcl-2, p53, cytochrome c,
↑ apoptosis

Experimental (Neural stem cells) Ma et al., 2017a

miR-200a-3p ↑ neuronal cell death,
↑ ROS levels

Experimental (HT-22 cells) Wei et al., 2015

miR-200b-3p ↑ neuronal cell death,
↑ ROS levels

Experimental (HT-22 cells) Wei et al., 2015

(Continued)
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TABLE 1 | (Continued)

miRNA miRNA or agmonir effect Study type References

miR-20a ↑ Cadherin 1 Experimental (Rat model) Yang et al., 2021

miR-210 ↑HIF-1α, VEGF, caspase-3,
↑ apoptosis

Experimental (Rat model and rat neuronal cells) Sun et al., 2019

miR-23a-3p ↓ NO, 3-NT
↑ MnSOD,
↑ antioxidant ability, ↓ caspase 3, ↓ ROS, ↓
apoptosis

In vivo and in vitro (Mice model and neuro-2a
cells)

Zhao et al., 2014

miR-29b ↑ caspase 3,
↓ Bcl-2, MCL-1,
↑ apoptosis

Experimental (neuro-2a cells) Huang et al., 2018

miR-302b-3p ↓ Nrf2/ARE, FGF15,
↑ caspase 3,
↑ ROS,
↑ apoptosis

Experimental (Murine HT22 cell line) Zhang et al., 2019b

miR-30a ↑ BBB permeability
↑ zinc accumulation
↓ ZnT4
↓ occludin and claudin-5

Experimental (Rat model and Brain
microvascular EC bEnd3 cell line, pericyte cell
line MBVP, astrocytic cell C8-D1A)

Wang et al., 2021c

miR-339 ↓ FGF9 and CACNG2
↓ Cell Proliferation ↑ Induces Apoptosis ↑
p-P38 and p-JNK

Experimental (PC12 cells) Gao et al., 2020, 2

miR-421 ↓ SOD,
↑ ROS,
↑ apoptosis

Experimental (Rat model and PC12 rat
pheochromocytoma cell line)

Yue et al., 2020

miR-424 ↑ Nrf2,
↑ antioxidant responses,
↓ROS

Experimental (Mouse model) Liu et al., 2015

miR-429 ↑ neuronal cell death,
↑ ROS levels

Experimental (HT-22 cells) Wei et al., 2015

miR-670 ↓ Hippo-Yap,
↑ apoptosis

Experimental (Mouse model and neuro-2a cells) Yu et al., 2021c

miR-670 ↓ phosphorylation of downstream Yap
↓ Yap degradation.

Experimental (Mouse model and neuro-2a cells) Yu et al., 2020

miR-7-5p ↓ Sirtuin 1,
↑ apoptosis

Experimental (Rat model and SH-SY5Y cells) Zhao and Wang,
2020

miR-9 Biomarker of AIS Clinical Ji et al., 2016

miR-93 ↓ Nrf2 and HO-1,
↓ antioxidant levels,
↑ ROS

Experimental (mice model and primary cortical
neurons)

Wang et al., 2016

ACSL4, acyl-CoA synthetase long chain family member 4; AIM, absent in melanoma; AIS, acute ischemic stroke; Akt, Protein kinase B; ARE, antioxidant response
element; AQP, Aquaporin; BBB, blood-brain barrier; BBC3, Bcl-2-binding component 3; BDNF, Brain-derived neurotrophic factor; CCL, C-C Motif Chemokine Ligand;
CXCL, C-X-C motif ligand; CXCR, C-X-C motif chemokine receptor; FIP, FAK family-interacting protein; FOXO1, Forkhead box class O1; FSTL1, follistatin-like protein 1;
GPX4, glutathione peroxidase 4; GSK, glycogen synthase kinase; HDAC, histone deacetylase; HIF, hypoxia inducible factor; HO-1, heme oxygenase 1; IGFBP3, Insulin Like
Growth Factor Binding Protein 3; IL, interleukin; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; MCL, myeloid leukemia sequence; MDA, malondialdehyde;
miR, microRNA; MnSOD, manganese superoxide dismutase; mTOR, mammalian target of rapamycin; NEAT, nuclear paraspeckle assembly transcript; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; 3-NT, 3-nitrotyrosine; NOX, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase;
Nrf2, nuclear factor-erythroid factor 2-related factor 2; PI3K, Phosphoinositide 3-kinase; PUMA, p53-up-regulated modulator of apoptosis; SOD, super oxide dismutase;
p-STAT, phosphorylated (activated) signal transducer and activator of transcription; RBFox-1, RNA-binding protein fox-1 homolog 1; SNAI2, Snail Family Transcriptional
Repressor 2; SOX7, SRY-Box Transcription Factor 7; TFR1, transferrin receptor 1; TLR4, Toll-like receptor 4; TNF, tumoral necrosis factor; TP53INP1, Tumor Protein P53
Inducible Nuclear Protein 1; VEGF, vascular-epithelial growth factor; XIAP, X chromosome-linked inhibitor of apoptosis protein; ZO, zonula occludens.

is nod-like receptor protein 3 (NLRP3). It plays an important role
in various diseases with inflammatory components. Activation of
NLRP3 leads to cerebral ischemia by releasing proinflammatory
cytokines, such as IL-1β and IL-18. In the first stage after cerebral
I/R injury, microglia become the main reservoir for activated
NLRP3 inflammasome. In the following stages, NLRP3 are
activated in both neurons and endothelial cells (Gao et al., 2017;
Gong et al., 2018). The interaction between inflammasomes and
TXNIP (thioredoxin interacting protein) leads to the activation

of inflammation. In a normal, stress-free state, TXNIP is linked
to Trx1 (thioredoxin1). Thus, NLRP3 is in inactive form. In
stroke, a state with high oxidative stress, TXNIP and Trx1
dissociate and thus NLRP3 is activated. Nuclear factor erythroid
2-related factor 2 (Nrf2) is involved in the oxidative process and
can interfere with processes that are consequences of oxidative
stress. Trx1 has a neuroprotective effect against I/R and Nrf2
lesions by regulating the Trx1/TXNIP interaction negatively
regulates NLRP3 inflammasome (Hou et al., 2018).
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TABLE 2 | Down-regulated miRNAs in cerebral I/R injuries.

miRNA miRNA or agomiRNA effects Study type References

Let-7g* and
miR-98

↓ CCL2, CCL5 (both miRNAs)
↓ CCL3, CXCL1 (Let-7g*)
↓ IP-10 (miR-98)

Experimental (Mouse model) Bernstein and Rom, 2020

miR-124 ↑ SOD,
↓ MDA and NOX2,
↓ NF-κB, TNF-α and IL-6,
↓ apoptosis

Experimental (Rat model and PC12 cell line) Wu et al., 2020c

miR-125b ↓ p53, Bax, cytochrome C and caspase-3,
↓ apoptosis

Experimental (Rat model) Xie et al., 2018

miR-126a-5p ↓ NOX2 Experimental (Rat model) Liu et al., 2017
miR-130a ↑ PI3K/AKT Experimental (Rat model, PC12 cells) Zheng et al., 2019
miR-132-3p ↓ NOX4 Experimental (Rat model) Liu et al., 2017
miR-132/212 ↓ Claudin-1, TJAP-1, RBFox-1 Experimental (Mouse model and neuronal cultures) Yan et al., 2021
miR-135b-5p ↓ GSK-3β activation,

↑ Nrf2/ARE,
↓ apoptosis

Experimental (Mouse hippocampal HT22 cell line) Duan et al., 2018

miR-142-3p ↓ mitochondrial enzymes,
↑ mitochondrial function
↑ NOX2/Rac1,
↑ ROS,
↓ apoptosis

Experimental (Rat cerebrum primary cortical neurons) Xia et al., 2020

miR-146a ↓ NOX4 Experimental (Rat model and SH-SY5Y cells) Hong et al., 2018
miR-149-5 ↓ S1PR2

↓ pericyte migration
↑ N-cadherin
↑ BBB integrity

Experimental (Rat model and BMECs cell line and pericytes) Wan et al., 2018

miR-150 ↓ MYB
↓ VEGF

Experimental (BMVECs and 293T cells) Zhang et al., 2021b

miR-182-5p ↓ TLR4 Experimental (Rat model) Wang et al., 2018
miR-186 ↓ HIF-1α

↓ N2a cell, cleaved caspase-3, Bax,
↑ Bcl-2
↓ ROS production

Experimental (Rat model and Neuro2a cell line) Li et al., 2021b

miR-18b ↓ Annexin A3,
↑ PI3K/Akt pathway,
↓TNF-α, IL-1β, ↓apoptosis

Experimental (Mouse model, SH-SY 5Y cells) Min et al., 2020

miR-18b ↓ ANXA3
↑ PI3K/Akt
↑ Bcl-2
↓ Bax
↓ TNF-α, IL-1β

↑ p-PI3K, p-Akt, and p-mTOR

Experimental (Mouse model and SH-SY 5Y cell line) Min et al., 2020

miR-194 ↓ NOX1, ACSL4, Bach1, iron,
↑ GPX4, Nrf2, HO-1,
↓ ferroptosis

Experimental (PC12 cells) Li et al., 2021d

miR–19a ↓ Syndecan 1,
↑ JAK1/STAT3 signalling pathway

Experimental (Mouse model) Fang et al., 2021

miR-21 ↓ MAPK Experimental (Rat model) Yao et al., 2018
miR-211 ↓ PUMA,

↓ apoptosis
Experimental (Rat model and PC12 cells) Liu et al., 2020

miR-214 ↓ TFR1 and p53,
↑ GSH/GSSG, GPX4
↓ ROS
↓ ferroptosis

Clinical and experimental study (Mouse model) Lu et al., 2020a

miR-216a ↓ JAK2
↓ p-STAT3
↓ LDH
↓ cleaved caspase-3
↓ iNOS, MMP-9, TNF-α, and IL-1b

Experimental (Mouse model and Primary Cortical Neuronal Cells) Tian et al., 2018, 3

miR-219a-5p ↓ Phosphodiesterase 4D,
↓apoptosis,

Experimental (Mouse neuroblastoma N2a cells) Lu et al., 2020b

miR-22 ↓ NF-kB Experimental (Rat model) Yu et al., 2015

(Continued)
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TABLE 2 | (Continued)

miRNA miRNA or agomiRNA effects Study type References

miR-22 ↓ TNF-α, IL-1β, IL-6, IL-18, MIP-2 and PGE2
↓ NF-κB
↓ p38 MAPK
↓ p-p38, NF-κB, COX-2 and iNOS

Experimental (Rat model and PC12 cells) Dong et al., 2019

miR-22 ↑ VEGF and Ang-1 ↑ p-PI3K/PI3K and
p-Akt/Akt

Experimental (Rat model and Wang et al., 2020b

miR-22-3p ↓ IL-1β, IL-18,
↓ cleaved caspase 1
↓ NLRP3, NEAT1, ↓pyroptosis,
↓ apoptosis

Experimental (Rat model and rat primary cortical neurons) Zhang et al., 2021a

miR-224-3p ↓ FIP200,
↓ cleaved caspase-3,
↓ ROS,
↓ apoptosis

Experimental (Neuro-2a cells) Deng et al., 2019

miR-25 ↓ Fas/FasL,
↓ inhibits apoptosis

Experimental (Human SH-SY5Y and IMR-32 cells) Zhang et al., 2016

miR-25 ↓ NOX4 Experimental (Rat model and SH-SY5Y cells) Hong et al., 2018
miR-27a-3p ↓ FOXO1,

↓ caspase 3, caspase 9, ↑ Bcl-2,
↑ SOD, GSH, ↓ MDA,
↓ apoptosis,
↓ ROS

Experimental (Rat model and murine HT22 cells) Li et al., 2021c

miR-27a-3p ↓ BBB permeability
↑ claudin-5 and
↑ occludin,
↓ GSK3ß
↑ Wnt/ß-catenin.

Experimental (hCMEC/D3 cell line) Harati et al., 2022

miR-29a ↓ BBC3/PUMA,
↓ apoptosis

Experimental (Mouse primary astrocyte cells) Ouyang et al., 2013

miR-29a-5p ↓ NOX4 Experimental (Rat model) Liu et al., 2017
miR-29c-3p ↓ NOX4 Experimental (Rat model) Liu et al., 2017
miR-29b ↓ AQP-4

↓ Extravasated IgG
↑ CD31/occludin and CD31/ZO-1

Clinical and experimental (Mouse model) Wang et al., 2015b, 4

miR-320a ↓ AQP-1 and AQP-4 Experimental (Rat model and Human astrocytoma cells) Sepramaniam et al., 2010
miR-326-5p ↓ STAT3,

↑ Mitofusin 2
Experimental (Rat model) Huang et al., 2021b

miR-34b ↓ Keap1,
↑Nrf2/ARE, HO-1,
↓ NO, 3-NT, ↑ SOD, MnSOD, ↓ ROS

Experimental (Rat model and cell line) Huang et al., 2019

miR-34c-5p ↑ Bcl-2,
↓ p65, Bax/β-actin, caspase-3,
↓ IL-6, TNF-α,
↑ IL-10,
↓ apoptosis

Experimental (Rat model and cortical neurons) Tu and Hu, 2021

miR-34c-5p ↓ p65, NF-kB,
↓ Nuclear Receptor Coactivator 1

Experimental (Rat model) Tu and Hu, 2021

miR-374 ↑ Wnt5a, Bcl-2, Bcl-Xl,
↓ Bax,
↓ apoptosis

Experimental (Rat model) Xing et al., 2021

miR-374 ↓ Wnt5a
↓ BAX
↑ BCL-XL and BCL-2

Experimental (rat model) Xing et al., 2021

miR-376b-5p ↑ Wnt3a and β-catenin
↓ SOX7
↓ BBB permeability

Experimental (Mouse model) Zhao et al., 2021

miR-410 ↓ TIMP2
↓ ERK,
↓ p38 MAPK,
↓ JNK,
↓ p-ERK, and p-JNK
↓ MDA
↑ SOD, GSH-Px

Experimental (Mouse model and culture of hippocampal neurons) Liu et al., 2018

(Continued)
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TABLE 2 | (Continued)

miRNA miRNA or agomiRNA effects Study type References

miR-424 ↑ SOD, MnSOD, Nrf2
↓ MDA,
↓ ROS
↓ apoptosis Increased antioxidant ability (SOD
and Nrf2) and decreased ROS and MDA

Experimental (Mice model and primary cortical neurons) Liu et al., 2015

miR-484 ↓ BCL2L13,
↓ apoptosis

Experimental (Mouse model and murine cortical neurons) Liu et al., 2021

miR-485 ↓ AIM2, caspase 1,
↓ IL-1β, IL-18
↓ apoptosis and pyroptosis

Experimental (Rat model and human neuroblastoma cells) Liang et al., 2020

miR-489-3p ↓ HDAC2,
↓ apoptosis

Experimental (Rat model and PC12 cells) Jia et al., 2022

miR-496 ↓ BCL-2-like protein 14,
↓ apoptosis

Experimental (Rat model and SH-SY5Y cells) Yao et al., 2019

miR-532-3p ↓ NOX2, caspase 3
↓ ROS,
↓ apoptosis

Experimental (Rat model and SH-SY5Y cells) Mao et al., 2020

miR-532-5p ↓CXCL1/CXCR2/Nf-kB,
↓ apoptosis

Experimental (Rat model and SH-SY5Y cells) Shi et al., 2021

miR-539 ↓ Matrix metallopeptidase 9
↓ SNAI2

Clinical and Experimental (rat model + RBMVEC cell line) Li et al., 2021a, 9

miR-652 ↓ NOX2,
↓ ROS

Experimental (Rat model and SH-SY5Y cells) Zuo et al., 2020

miR-7-5p ↓p65, TNF-α, IL-6, IL-1,
↓ROS,
↓ apoptosis

Experimental (Rat model and PC12 cells) Xu et al., 2019

miR-7a-5p ↓ α-synuclein,
↓ apoptosis

Experimental (Rat model) Kim et al., 2018

miR-874-3p ↓ Bcl2 Modifying Factor and BCL2 Like 13 Experimental (Rat model, SH-SY5Y cells) Jiang et al., 2019
miR-92a ↓ NOX4 Experimental (Rat model and SH-SY5Y cells) Hong et al., 2018
miR-92b ↓ BBB permeability

↑ claudin-5
↑ occluding, ZO- 1 and VE- cadherin ↑ SOD
↓ ROS
↓ NOX4

Experimental (rat model and BMECs cel line) Shen et al., 2021, 4

miR-98 ↓ leukocyte infiltration and
↓ microglia activation

Experimental (Mouse model and primary BMVEC) Bernstein et al., 2020

miR-98-5p ↓ Nrf2/ARE,
↑ Bach1,
↓ ROS,
↓ apoptosis

Experimental (murine hippocampal neuronal cells) Sun et al., 2018b

miR-98-5p ↑ SOD, Bcl-2, HO-1
↓ Bax2, cleaved caspase 3
↓ROS,
↓ apoptosis

Experimental (Mouse model) Yu et al., 2021b

miR-99a blocks aberrant S phase re-entry, ↓
caspase-3/β-actin
↓apoptosis

Clinical and experimental (Patients, mouse model, neuro-2a cells) Tao et al., 2015

ACSL4, acyl-CoA synthetase long chain family member 4; AIM, absent in melanoma; AIS, acute ischemic stroke; Akt, Protein kinase B; ARE, antioxidant response
element; AQP, Aquaporin; BBB, blood-brain barrier; BBC3, Bcl-2-binding component 3; BDNF, Brain-derived neurotrophic factor; CCL, C-C Motif Chemokine Ligand;
CXCL, C-X-C motif ligand; CXCR, C-X-C motif chemokine receptor; FIP, FAK family-interacting protein; FOXO1, Forkhead box class O1; FSTL1, follistatin-like protein 1;
GPX4, glutathione peroxidase 4; GSK, glycogen synthase kinase; HDAC, histone deacetylase; HIF, hypoxia inducible factor; HO-1, heme oxygenase 1; IGFBP3, Insulin Like
Growth Factor Binding Protein 3; IL, interleukin; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; MCL, myeloid leukemia sequence; MDA, malondialdehyde;
miR, microRNA; MnSOD, manganese superoxide dismutase; mTOR, mammalian target of rapamycin; NEAT, nuclear paraspeckle assembly transcript; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; 3-NT, 3-nitrotyrosine; NOX, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase;
Nrf2, nuclear factor-erythroid factor 2-related factor 2; PI3K, Phosphoinositide 3-kinase; PUMA, p53-up-regulated modulator of apoptosis; SOD, super oxide dismutase;
p-STAT, phosphorylated (activated) signal transducer and activator of transcription; RBFox-1, RNA-binding protein fox-1 homolog 1; SNAI2, Snail Family Transcriptional
Repressor 2; SOX7, SRY-Box Transcription Factor 7; TFR1, transferrin receptor 1; TLR4, Toll-like receptor 4; TNF, tumoral necrosis factor; TP53INP1, Tumor Protein P53
Inducible Nuclear Protein 1; VEGF, vascular-epithelial growth factor; XIAP, X chromosome-linked inhibitor of apoptosis protein; ZO, zonula occludens.
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Cell Death
In I/R injuries, the first pathological event is represented by
hypoxia due to ischemia. This causes cell death by mitochondrial
damage and ROS formation. In the following phases, several
inflammatory pathways are activated, besides the initial ROS
events, all of which contribute to neuronal damage and loss of
function (Jurcau and Simion, 2021).

Necrosis and Necroptosis
Necrosis is the main form of cell death present in the hypoxic
regions closest to the ischemic core. It is characterized by plasma
membrane permeation and cell and organelle swelling (D’Arcy,
2019). It is caused by the intense stress caused by the lack
of oxygen and nutrients in the ischemic areas. Necroptosis
shares similar death-pattern characteristics to necrosis, but it is
controlled by death signals and therefore, it is considered a form
of programmed cell death (Wu et al., 2018). Necroptosis requires
the presence of death signals, such as tumoral necrosis factor
(TNF) receptor and the activity of receptor-interacting protein 1
(RIP1 or RIPK1) (Festjens et al., 2007; Vandenabeele et al., 2010).
In cerebral I/R injuries, inhibiting RIP1 reduces the neuronal
damage (Degterev et al., 2008; Kim et al., 2017a). Several other
therapeutic approaches have been tested in murine models for
reducing necroptosis, however, the data regarding miRNAs is
scarce (Liao et al., 2020). Among the studies miRNAs, miR-497
and miR-369 seem to have a role in necroptosis by influencing
the cellular response to TNF-α (Hsu et al., 2020; Yin et al., 2022).

Apoptosis
Compared to necrosis, apoptosis is a coordinated formed of
programmed cell death. It involves the activation of a complex
cascade of processes and the activation of caspases, cysteine
proteases with a pivotal role in this process (Elmore, 2007).
In I/R injuries, it is present both in the initial hypoxic phase,
as well as in the reperfusion state, but activated via different
pathways (Wu et al., 2018). In the hypoxic phase, the intrinsic
pathway plays a more important role, caused by the hypoxia-
induces mitochondrial damage, which leads to the formation
of apoptosomes and the activation of caspase 9, which leads
to the activation of caspase 3 and the execution pathway. In
the reperfusion state, the inflammatory mediators present in
large amounts are responsible for the activation of the extrinsic
pathway, where caspase 8 activation leads to caspase 3 activation
and the execution pathway that includes DNA degradation,
cytoskeletal reorganization and in the end, the formation of
apoptotic bodies and cell death (Radak et al., 2017).

Apoptosis inhibition strategies were found to be effective in
cerebral ischemia-reperfusion injury models, by reducing the
extent of the infarct volume and improving the neurological
score (Gong et al., 2017; Tang et al., 2020; Wang et al., 2021a).
Biochanin A, an O-methylated isoflavone, reduced the expression
of pro-apoptotic proteins Bax, Bcl-2, caspase-3 and caspase-12
in a model of middle cerebral artery occlusion and reperfusion
(MCAO) (Guo et al., 2021b). Also, astragalin, another flavonoid
reduced the expression of Bax and caspase-3, while upregulating
the expression of Bcl-Xl (Chen et al., 2020a). Among these
strategies, miRNA-based therapeutic approaches are presenting

promising experimental results (Sun et al., 2018a; Liu et al.,
2019b).

One of the most studied miRNAs in I/R pathologies is miR-124
(Liu et al., 2019b). In a rat model of MCAO, miR-124 presented as
a promising biomarker for cerebral stroke injuries (Weng et al.,
2011). Also, in patients with ischemic stroke, miR-124 as well as
miR-9 were significantly elevated, supporting the idea of using
miRNAs as biomarkers in I/R injuries (Ji et al., 2016). Another
study in stroke patients showed the utility of miR-124-3p and
miR-16 as biomarkers (Rainer et al., 2016).

In an experimental study, miR-211 downregulation increased
the neurological damage and infarct volume of the mouse brain
via a loss of Bcl-2-binding component 3 (BBC3) inhibition
(Liu et al., 2020). BBC3 is also known as p53-up-regulated
modulator of apoptosis and is part of the Bcl-2 protein family.
Its main mechanism of action is interacting with other Bcl-2
family members proteins and promoting apoptosis (Nakano and
Vousden, 2001). By upregulating miR-211, BBC3 was inhibited
and the infarct size, neurological score and apoptosis were
decreased. Another miRNA that acts by inhibiting BBC3 is
miR-29a. In transient forebrain ischemia, miR-29a levels were
decreased in the ischemic areas and its upregulation provided a
protective effect in I/R injury (Ouyang et al., 2013). MiR-7-5p was
upregulated in I/R injury models, degrading Sirtuin 1, a protein
which alleviates I/R injuries, and therefore increasing neuronal
apoptosis (Zhao and Wang, 2020; Diwan et al., 2021). In another
study, miR-7-5p expression was reduced in MCAO rat models
and its increase reduced the formation of ROS and inflammatory
molecules and reduced the associated neuronal apoptosis (Xu
et al., 2019). Similar results were found by Kim et al. in a rat
model of I/R, where miR-7-5p levels were downregulated and
pre-ischemic administration of miR-7 reduced I/R associated
apoptosis and neuronal injury (Kim et al., 2018). The regulation
of several other miRNAs has been studied in correlation with
pro-apoptotic proteins or apoptosis, which are presented in
Tables 1, 2.

Pyroptosis
Pyroptosis is considered a gasdermin (GSDM)-mediated
programmed cell death (Shi et al., 2015). Compared to apoptosis,
pyroptosis includes in its characteristics inflammation, as well
as pore formation and cell swelling, with loss of cell membrane
integrity. It includes the activation of caspases, however, these
are different than in apoptosis, pyroptosis being activated
by caspases 1, 4, 5, and 11 (Yu et al., 2021a). The canonical
pathway in pyroptosis is characterized by cleaved-caspase 1
inflammasome formation, GSDM cleavage and release of IL-1β

and IL-18 (Nunes and de Souza, 2013). The process by which
pyroptosis is activated has been reviewed in detail by Yu et al.
(2021a).

In cerebral I/R injuries, pyroptosis inhibition through the
NF-kB pathway reduced the infarct volume and improved
the neurological recovery. Also, inhibition of inflammasome
formation via NLRP3 and NLRP1 regulation proved successful
in improving neuronal survival and diminishing the impact
of I/R injuries (Chen et al., 2020a; Sun et al., 2020b; Huang
et al., 2021a). In this process, several miRNAs have been
profiled to be activated and possible therapeutical targets for
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pyroptosis inhibition (Wang et al., 2020a). Gastrodin regulated
the miR-22/NEAT1 axis and reduced the pro-inflammatory
cytokines, reducing pyroptosis and attenuating the I/R injuries
both in vivo and in vitro (Zhang et al., 2021a). MiR-124, which
was previously discussed for apoptosis and was described as a
marker of I/R injury, inhibits STAT3 expression and thereby
reduces pyroptosis and improves the neurological outcome (Sun
et al., 2020a). Overall, more studies are needed in order to fully
elucidate how miRNAs regulation is related to pyroptosis and
how these could potentially be used as therapeutic targets.

Ferroptosis
Ferroptosis is a recently described form of iron dependent cell
death (Zhang et al., 2021c). Intracellular iron accumulation leads
through the Fenton reaction to the formation of hydroxyl radicals
that are ROS. ROS formation leads to lipid peroxidation (mainly
phosphatidylethanolamine polyunsaturated fatty acids) that are
destroying the lipid membranes, causing cell death. Ferroptosis
is involved in several pathologies, including inflammatory
pathologies, neurodegenerative diseases, cancers and I/R injuries
(Liang et al., 2019; Capelletti et al., 2020; Li et al., 2020;
Reichert et al., 2020; Sun et al., 2020c; Mitre et al., 2022). In
mice experimental models of I/R injury, ferroptosis inhibition
reduces the intestinal ischemic area and also protects the lungs
and liver against ischemia-induced remote injuries (Li et al.,
2019b, 2020; Qiang et al., 2020; Deng et al., 2021). In acute
myocardial infarction, ferroptosis inhibition by liproxstatin-1
presented promising results by reducing the infarct size in
experimental studies (Lillo-Moya et al., 2021). More studies
are needed to determine the clinical efficiency of ferroptosis-
inhibiting strategies in I/R injuries.

In cerebral I/R injury, tau-mediated iron accumulation can
trigger ferroptosis (Tuo et al., 2017). Ferroptosis activation
increases the neuronal damage and the ischemic area (Zhao
et al., 2022). Inhibiting this process by enhancing the expression
of GPX4, the main regulatory enzyme of ferroptosis, leads to
reduced neuronal deficit after ischemia and reduced neuronal
death (Guan et al., 2019, 2021). These results are similar
with other experimental studies, where ferroptosis inhibition
by inhibiting its various pathways improved the neurological
outcome and reduced the affected area in I/R injuries (Chen et al.,
2021; Guo et al., 2021a; Wang et al., 2021b; Tuo et al., 2022; Xu
et al., 2022).

In patients with acute ischemic stroke, miR-214 levels
were downregulated. In mice, upregulating the levels of miR-
214 reduced the infarct size and improved the neurological
scores (Lu et al., 2020a). In oxygen-glucose deprivation, miR-
194 upregulation improved cell survival and viability, as
well as reduced the expression of ACSL4, while upregulating
GPX4. These results indicate that miR-194 could potentially
reduce ferroptosis and thus improve neuronal survival in vivo
(Li et al., 2021d).

Oxidative Stress Damage
The Role of Oxidative Stress in Cerebral
Ischemia-Reperfusion Injury (CIRI)
In I/R injuries, the reperfusion process provides a large amount
of oxygen carried by the red blood cells to the ischemic site. At

the same time, the rapid alterations in oxygen flow allows the
generation of ROS. Ischemia also modifies the concentration of
antioxidative agents, which leads to greater damage caused by
the generated ROS. In the ischemia stage, ATP production is
reduced. Consecutively, the function of ion-exchange channels
and enzymes is altered, leading to mitochondrial dysfunction
and electrolytes imbalance. In these circumstances, the oxidative
stress pathways are further activated: the NADPH oxidase (NOX)
complex, the inducible nitric oxide (iNOS) complex and the
xanthine oxidase complex (Wu et al., 2018).

Mitochondria is the main source for ROS synthesis due to
the electron chains from the mitochondrial inner membrane,
NOXs and mitochondrial redox carriers complexes I and III.
In physiological states, the generation of ROS, like superoxide
anion, hydrogen peroxide and hydroxide radical, is at a low level
and antioxidants, like superoxide dismutase (SOD), catalases,
glutathione peroxidase (GSHPx) and glutathione, control any
excess of ROS (Hu et al., 2015). The excessive production
or delayed elimination of ROS is often a starting point for
CIRI. An excessive amount of ROS in the brain interacts with
structural molecules, such as proteins, lipids, carbohydrates and
nucleic acids, affecting the neuronal biochemical processes and
promoting neuronal death. The main mechanisms involved in
ROS toxicity are: mitochondrial membrane lipid peroxidation,
cross-linking of molecules, like nucleic acids, proteins and
carbohydrates that alter their function in biochemical processes,
endothelial damage of the BBB and consecutively increased
permeability, activation of inflammatory key factors, like
cytokines and adhesion molecules, and increased synthesis of
excitatory amino acids (EAA), involved in delayed neuron death
(Wu et al., 2020).

Oxidative Stress
Oxidative stress is involved in DNA damage, local inflammation
and endothelial dysfunction. Nuclear factor (erythroid-derived
2) -related factor 2 (Nrf2) is an antioxidant regulator activated
in oxidative stress conditions that upregulate the expression
of antioxidant genes, like superoxide dismutase (SOD), heme-
oxygenase-1 (HO-1), NADPH- quinone oxidoreductase 1
(NQO1) and glutathione S transferase (GST) (Chen et al., 2015).

Li et al. (2019a) showed that theaflavin has an antioxidant
and neuroprotective effect in a rat model of I/R injury and in
neural stem cells subjected to oxygen-glucose deprivation and
reoxygenation (OGD/R), increasing the expression of Nrf2 by
downregulating miRNA-128-3p. The study confirmed that the
miRNA-128-3p level of expression is increased in CIRI, and it is
responsible for ROS generation.

Zhao et al. (2014) demonstrated that miR-23a-3p is increased
in a CIRI mice model, a protective trial mechanism activated
to increase the antioxidant ability of the neurons and to
suppress oxidative stress. MiR-23a-3p agomir decreased the
synthesis of nitric oxide (NO), 3-nitrotyrosine and hydrogen
peroxide-induced lactate dehydrogenase release and increased
the expression of manganese superoxide dismutase, an enzyme
that protects the mitochondrial energy network from oxidative
stress damage. Another similar study found out that miR-
424 levels increased at 1 and 4 h and decreased at 24 h
after reperfusion in an I/R mice model. MiR-424 agomir
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decreased the level of excessive ROS and lipid peroxidation
product malondialdehyde (MDA) generated after reperfusion
and increased the expression of SOD and Nrf2. The study
concluded that miR-424 activates an antioxidant mechanism in
CIRI to limit further damage (Liu et al., 2015).

Huang R and the collaborators suggested that the reduced
level of miR-34b expression in focal cerebral I/R is associated
with oxidative stress parameters and decreased antioxidant
ability. They showed that overexpression of miR-34b ameliorates
CIRI through suppression of Keap1 and increase of Nrf2 and
heme oxygenase (HO-1). Kelch-like ECH-associated protein 1
(Keap1)/Nrf2/ARE signaling pathway has been proved to be an
important antioxidant mechanism and a potential target for miR-
34b (Huang et al., 2019). Nrf2/ARE inhibition and excessive ROS
production are common mechanisms that involve other miRNAs
downregulation, such as miR-98-5p or miR-135b-5p (Duan et al.,
2018; Sun et al., 2018b).

Wei et al. (2015) concluded that the miR-200 family increases
ROS production, reduces mitochondrial membrane potential and
modulates apoptosis network during CIRI, especially miR-200a-
3p, miR-200b-3p and miR-429. The imbalance between ROS
excessive production (MDA) and reduced antioxidant (SOD)
ability causing oxidative stress damage is also determined by miR-
106b-5p upregulation. MiR-106b-5p accentuates neurons death
by involving the Bcl-2 family proteins, with the pro-apoptotic
protein Bax and antiapoptotic protein B cell lymphoma-2 balance
dysregulation (Bcl-2). Li et al. (2017a) reported that miR-106b-
5p antagomir ameliorates the oxidative stress imbalance and
activates antiapoptotic proteins, like Bcl-2 and myeloid cell
leukemia-1 (Mcl-1). MiR-421 is also upregulated in CIRI and
seems to activate the same pathological mechanisms (Yue et al.,
2020). Nrf2/ARE mediated antioxidant pathways inhibition and
ROS excessive production were described in a large number of
studies referring to miRNAs upregulation: miR-153 (Ji et al.,
2017), miR-93 (Wang et al., 2016), miR-142-5p (Wang et al.,
2017) and miR-302b-3p that also targets fibroblast growth factor
15 (FGF15) (Zhang et al., 2019b).

Mitochondria Damage
Mitochondrial pathways involved in the survival of the cell
are ATP production and synthesis of different molecules used
in signaling networks. Mitochondria environment is also a
place for miRNAs mediated posttranscriptional regulation,
affecting energy metabolism, biochemical homeostasis and the
activity of enzymes related to oxidative stress pathways. In
CIRI, mitochondrial damage is involved in pathophysiological
processes, such as ROS excessive production, reduced antioxidant
activity, energy metabolism dysregulation and neuronal
apoptosis (Hu et al., 2015).

To establish a possible interaction between miRNAs and
mitochondrial damage, Xia et al. (2020) designed a model of
OGD/R in primary cortical neuron culture. They proved that the
decreased expression of miR-142-3p is involved in mitochondrial
dysfunction and suggested that miR-142-3p regulates enzymes
involved in mitochondrial biogenesis and function, such as
electron transfer chain complexes I-III, peroxisome proliferator-
activated receptor- γ coactivator-1α (PGC1α), mitochondrial

transcription factor A (TFAM), and nuclear respiratory factor
1 (NRF1). Moreover, miR-142-3p overexpression improves
mitochondrial function by decreasing the ROS toxic effects due
to inhibition of NOX2/Rac Family Small GTPase 1 (Rac1)/ROS
signaling pathway (Xia et al., 2020).

NADPH, iNOS
NADPH oxidase (NOX) is a family of 7 enzymes, NOX1 to NOX5
and dual oxidase (Duox-1 and Duox-2). NOX2 and NOX4 have
been described as important enzymes that coordinate neuronal
apoptosis and ROS generation in CIRI (Liang et al., 2018; Zuo
et al., 2020).

Protein kinase CK2 (casein kinase 2) is a kinase that
phosphorylates a large number of different substrates; therefore,
it is involved in different cellular processes. It has been outlined
that CK2 has a neuroprotective effect in CIRI by downregulating
NADPH oxidases NOX2 and NOX4. Both in vivo and in vitro
studies concluded that miR-125b is upregulated in I/R injury,
while CK2α is decreased and proved that mi-R-125b binds with
3′UTR of CK2α and directly suppresses CK2 levels, resulting
in NOX2 and NOX4 activation and ROS overproduction and
neuronal apoptosis (Liang et al., 2018). Zuo et al. (2020) showed
that miR-652 is significantly decreased, while the expression
of NOX2 is increased in a CIRI rat model and in a cell
hypoxia/reoxygenation (H/R) model. Overexpression of miR-652
in H/R cells reduced NOX2 expression and ROS production and
ameliorated brain tissue CIRI (Zuo et al., 2020). A similar study
that used both in vitro and in vivo CIRI models found out that
miR-532-3p level of expression is reduced and NOX2 level is
increased and suggested that miR-532-3p downregulation may be
a part of CIRI through the NOX2 pathway (Mao et al., 2020).

The downregulation of several miRNAs in the ischemic brain
tissue in hyperglycemic rats has been associated with NOX2
and NOX4 genes: miRNA-29a-5p, miRNA-29c-3p, miRNA-126a-
5p, miRNA-132-3p, miRNA-136-3p, miRNA-138-5p, miRNA-
139-5p, miRNA-153-5p, miRNA-337-3p, and miRNA-376a-5p.
NOX2 was identified as the target gene of miR-126a-5p whereas
NOX4 was the target gene of miR-29a-5p, miR-29c-3p and miR-
132-3p (Liu et al., 2017). NOX4 was also studied as a target for
miR-25, miR-92a and miR-146a. In an experimental study of
CIRI, the expression levels of miR-25, miR-92a and miR-146a
were decreased, but the NOX4 protein expression was increased
in the interventional group. Treatment with isoflavones resulted
in decreased ROS generation and neuronal cell death related
to the inhibition of NOX4 via the induction of NOX4-related
miRNAs (Hong et al., 2018).

Other Pathways
Blood Brain Barrier Disruption
Alongside with oxidative stress, apoptosis and inflammation,
disruption of BBB and subsequent increased permeability of BBB,
results in myelin sheath damage and brain edema, leading to
neuronal dysfunction (Haley and Lawrence, 2017; Jiang et al.,
2018a; Ma et al., 2020). BBB dysfunction has been ascertained in
multiple brain disorders, including stroke, traumatic brain injury
(TBI), MS, epilepsy, AD, amyotrophic lateral sclerosis and PD
(Daneman, 2012; Kamphuis et al., 2015). The main pathways
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activated upon BBB disruption consists of tight junction protein
degradation, microvascular endothelial cells (ECs) damage,
immune cell infiltration and activation of cytokine expression
(Shen and Ma, 2020). MiRNAs have been shown to modulate BBB
function under various pathological conditions, from: ischemic
brain injury, TBI, spinal cord injury to neurodegenerative
diseases (AD, Vascular dementia), brain tumors and cerebral
infections (Ma et al., 2020).

In MCAO-induced CRTC1 knockout mice model, reduced
levels of miRNA-132/212 have been correlated with aggravated
BBB permeability and increased infarct volume. Moreover,
miRNA-132 promotes BBB integrity expression, by binding to
3-UTR regions of the target genes of tight junction-associated
protein-1 (TJAP-1), claudin-1, thus repressing junction protein’s
expression (Yan et al., 2021). Peripheral blood samples of 48
cerebrovascular patients revealed decreased levels of miR-539,
which was related to impaired BBB. By binding to SNAI2, miR-
539 has been shown to restore endothelial cell permeability by
repressing MMP9 signaling pathway (Li et al., 2021a).

The expression of intercellular junctions could also be
regulated by miR-27a-3p mimics via upregulating the protein
expression of claudin-5 and occludin, thus impairing BBB
permeability in CMEC/D3cells model (Harati et al., 2022). In
MCAO-induced miR-182 KD (knockout) mice, the integrity of
BBB was restored, with increased expression of tight junction
proteins (Zhang et al., 2020b).

The cellular components of BBB have also been regulated by
miRNAs upon ischemic insult. In ischemic rat brain and cultured
pericytes, miR-149-5 expression was decreased. Downregulation
of miR-149-5p expression enhances S1PR2 in pericytes, which
was associated with decreased N-cadherin expression and
increased pericyte migration, thus aggravating BBB integrity.
Intracerebroventricular injection of agomir-149-5p has been
shown to increase the level of N-cadherin and decrease pericyte
migration, ameliorating BBB dysfunction (Wan et al., 2018).

Vascular endothelium poses important roles in BBB
homeostasis and integrity (Hawkins and Davis, 2005). The
integrity of BBB depends on the ’injury’ status of brain
microvascular endothelial cells (BMECs), suggesting that
protecting BMECs represents a therapeutic strategy against
ischemic stroke. CI/R injury induces autophagy in BMECs,
and in turn autophagy further protects BMECs upon CI/R
injury, suggesting the protective mechanism of autophagy on
BMECs exposed to OGD/R injury (Li et al., 2014a). Ln RNA
Malat1 promotes down-regulation of miR-26b to promote
neuroprotective effects in CI/R injury by stimulating autophagy
of BMECs (Li et al., 2017c).

JAK2, STAT3, MAPK Associated Pathways
Multiple studies evidenced that JAK2/STAT3 signaling
pathways have been activated after ischemic stroke, posing
neuropathogenic roles in I/R injury (Liang et al., 2016).
Interestingly, silencing JAK2/STAT3 pathway has been associated
with up-regulation expression levels of miRNAs in various
pathological settings, including hepatopulmonary syndrome rat
model, pancreatic cancer cells (Wang et al., 2015a; Yin et al.,
2022).

In MCAO mice model and OGD-induced neuronal cells
dysfunction, miR-216a was down-regulated. Overexpression
of miR-216a exhibited neuroprotective effects against I/R
injury by negatively regulating JAK2/STAT3 signaling pathway
(Tian et al., 2018).

Mitogen-activated protein kinases pathway (MAPKs)
participate in signal transduction, exerting regulatory roles on
cell death and survival, being involved in different biological
processes, including differentiation, cell proliferation and
apoptosis (Nozaki et al., 2001; Imajo et al., 2006). Under
ischemic conditions, MAPK activated inflammatory processes
and promoted neuronal cell death, the expression level of MAPK
being highly expressed in the cerebral macrophages from the
ischemic core after stroke (Madhyastha et al., 2012; Wang et al.,
2019; Xie et al., 2019; Zeng et al., 2019).

MiR-22 ameliorates the neuroinflammatory responses in vivo
and in vitro animal models of I/R injury, by suppressing p38
MAPK/NF-κB pathways (Dong et al., 2019). In ischemic rat
model, miR-145 exhibited low expression levels, which was
associated with suppressing the MAPK pathways. Interestingly,
in rat neuronal stem cells (NSCs), miR-145, p38 and ERK
increased in a cultured time-dependent manner, suggesting the
neuroprotective mechanisms promoted with growth of the NSCs.
miR-145 promoted NSCs proliferation and inhibited apoptosis,
whereas MAPK’s inhibitor (SB203580) enhanced apoptosis and
inhibited NSCs proliferation. After cerebral injection of NSCs
in the ischemic rat cortex, the walking ability and neurological
impairment of ischemic stroke rats improved over time, miR-
145 playing critical roles in NSCs-promoted recovery of ischemic
rat cortex, by targeting MAPK pathway (Xue et al., 2019).
Moreover, miR-339 accelerated the progression of I/R injury
in MCAO-rat model and PC12 cells exposed to OGD/R
treatment, by stimulating proliferation and apoptosis of neuronal
cells. The deleterious effects of miR-339 on neuronal injury
proceed via inhibiting FGF9/CACNG2 axis, thus activating
MAPK signaling pathway in ischemic stroke (Gao et al., 2020,
2). MiR-410 exhibited low levels in I/R mouse model and
miR-410 mimic transfection reversed neuron apoptosis and
enhanced hippocampal neuron survival via suppressing TIMP2-
dependent MAPK pathway (Liu et al., 2018). Moreover, miR-410
overexpression decreased expression levels of TIMP2, p38, JNK
and ERK proteins (Liu et al., 2018).

HIF
Hypoxia-inducible factor-1 (HIF-1), transcription factor,
activated in response to oxygen levels fluctuations, modulates
gene expression aimed at facilitating cell adaptation in hypoxic
conditions (Sharp and Bernaudin, 2004; Shi, 2009). Noteworthy,
hypoxic/pharmacological induction of HIF-1 in vivo and in vitro
ischemic stroke models elicited neuroprotection against ischemic
insult by promoting antiapoptotic mechanisms and contributing
to the neuronal cell’s survival (Siddiq et al., 2005; Baranova et al.,
2007). However, depending on the intensity of the injurious
stimulus and duration of ischemia, HIF-1 might promote both
cell survival in mild hypoxic conditions or neuron apoptosis in
long-term hypoxia (Helton et al., 2005; Baranova et al., 2007).
Serum samples of 52 ischemic stroke patients showed a lower
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miR-210 expression level, with a variable mean of miR-210
between different time points (time of admission and 3 months
after stroke) and a higher HIF-1α levels, which does not change
in a time-dependent manner. Increased expression levels of
miR-210 and decreased HIF-1α levels exhibited a better survival
rate in these patients (Rahmati et al., 2021). In OGD/R induced
neuroblastoma cells microRNA-186 elicited antiapoptotic effects,
by downregulating HIF-1α (Li et al., 2021b). PC12 cells exposed
to OGD/R injury exhibited elevated miR-134 and HIF-1α

expression levels. HIF-1α overexpression may alleviate OGD/R-
induced injury, by suppressing miR-134 expression (Zhang et al.,
2020a). Moreover, by inhibiting miR-134 expression, HIF-1α

induces the activation of ERK1/2 and JAK1/STAT3 pathways
(Zhang et al., 2020a).

Vascular Endothelial Growth Factor
Vascular endothelial growth factor (VEGF), a pro-angiogenic
factor which modulates vasculogenesis and neoangiogenesis,
presents essential properties in both physiological and
pathological conditions, such as wound healing and repair,
pregnancy, diabetic retinopathy, tumor growth and metastasis,
and ischemic processes, myocardial infarction, and ischemic
stroke (Melincovici et al., 2018; Shim and Madsen, 2018). VEGF
regulates cerebral angiogenesis after stroke, promoting either
restoration of blood supply after ischemic injury, or promoting
BBB disruption by increasing vascular permeability (Zhang et al.,
2017; Geiseler and Morland, 2018). The beneficial or deleterious
effects promoted by VEGF depends on the level of expression
of VEGF. For instance, an elevated VEGF expression leads to
neurological deterioration, whereas an appropriate level of VEGF
sustains the recovery process of brain in response to hypoxia
(Zhang et al., 2021b).

Brain Microvascular Endothelial Cells (BMVEC) exposed to
OGD elicited increased level of VEGF and reduced miR-150
expression. In OGD-induced BMVEC cells, downregulation of
miR-150 and upregulated its predicted target, MYB induced
VEGF expression, thus regulating cerebral angiogenesis after
ischemic stroke (Zhang et al., 2021b). Serum samples from 78
diabetic and non-diabetic patients with ischemic stroke (acute
ischemic stroke or transient ischemic attack) revealed a high level
of miRNA-195-5p and miRNA-451a at 0, 24, and 72 hours after
the stroke event, with low levels of BDNF and VEGF-A at the
same time-points (Giordano et al., 2020).

Brain Derived Neurotrophic Factor
The brain derived neurotrophic factor (BDNF), crucial
neurotrophic factor involved in the regulation process of
synaptic transmission and brain plasticity activity, promotes
neuroprotective effects in hypoxic and excitotoxic-induced
neuron cell death (Degos et al., 2013; Miranda et al., 2019).

Besides transcriptional and translational regulation, BDNF
expression might be regulated upon post-transcriptional level, by
epigenetic mechanisms, including neuronal activity, hormones
environmental factors such as exercise and stress (Metsis et al.,
1993; Lubin et al., 2008; Miranda et al., 2019). The expression
levels of BDNF have a high reach in hippocampus, being also
detected in the cerebellum, cerebral cortex and amygdala (Hofer

et al., 1990). In MCAO mice model, upregulated level of miR-
191-5p was associated with disturbed angiogenesis, by inhibiting
BDNF, suggesting the neuroprotective mechanisms promoted
by miR-191-5p inhibition (Wu et al., 2021). In OGD-induced
mouse neurons and astrocytes, inhibiting miR-128 by treatment
with ARPP21 antagonistic intron exhibited up-regulation of
BDNF and CREB1, therefore inhibiting apoptosis and promoting
neurological recovery against ischemic stroke (Chai et al., 2021).

PI3K, AKT
Mounting evidence revealed the involvement of PI3K/Akt
signaling pathway in cerebral ischemic/hypoxic injury, emerging
new promising strategy for ischemic stroke (Zhang et al., 2018).
By phosphorylating the inositol group in the plasma membrane
phospholipids, PI3K/Akt pathway acts as a critical regulator
of multifold cell processes, including cell growth, proliferation,
coagulation, inflammation under different physiological and
pathological settings (Fruman et al., 1998; Li et al., 2008).

Activation of the PI3K/Akt pathway by increasing
miR-18b exhibited decreased apoptosis rate and reduced
neuroinflammation in OGDR induced SH-SY 5Y cell dysfunction
and MCAO mice model (Min et al., 2020). MiR-22 exhibited
low expression level in cerebral I/R injury. Treatment with
miR-22 mimic in MCAO rat model revealed increased levels
of serum VEGF and Ang-1 and the levels of p-PI3K/PI3K
and p-Akt/Akt proteins. Thus, miR-22 promoted angiogenic
and neuroprotective effects in ischemia/reperfusion injury by
activating PI3K/Akt signaling pathway (Wang et al., 2020b).

Aquaporin
Aquaporin (AQP)-4, the active regulator of water flux, poses
critical role in edema formation, emerging new therapeutic
targets for counteracting vascular edema in ischemic stroke
(Zador et al., 2009). In this context, miR-29b, 130a and -
32 were shown to repress AQP-4 (Sepramaniam et al., 2010,
2012; Wang et al., 2015b). MiR-29b overexpression promoted
neuroprotection in ischemic stroke, by ameliorating BBB
disruption upon ischemic stroke. Moreover, AQP-4 expression
significantly decreased after miR-29b overexpression (Wang
et al., 2015b, 4). Treatment of OGD-induced human astrocytoma
cells injury and MCAO rat model with anti-miR-320a exhibited
decreased infarct volume of cerebral ischemia, via upregulation
of AQP1 and 4 (Sepramaniam et al., 2010).

CONCLUSION

All these mechanisms are simultaneously present during I/R
injury and it is hard to separate these events from each
other. MiRNAs are interlinked with oxidative stress damage,
inflammatory mediators production, inflammation and cell
death. As a general rule, “reversing” the expression of the
miRNAs involved in cerebral I/R injuries (inhibiting an over-
expressed miRNA or mimicking the effect of a down-regulated
miRNA) improved the outcome and studied parameters. This
holds true for the majority of studies and could mean that
a miRNA-centered therapeutic approach could be beneficial.
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Although experimental in vivo and in vitro models showed
outcome improvements when analyzing one pathway and
miRNA, it is very likely that in a clinical setting these strategies to
be insufficient. It could be that by inhibiting one pathway, another
one to over-express or that the benefit of such therapies to be
clinically insignificant. Further research is needed to determine
the exact roles of miRNAs and of miRNAs stimulation or
inhibition in I/R injuries and to determine the most favorable
candidates as treatment options.
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