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To the Editor
Amniotic fluid (AF) has been considered sterile for nearly 
a century because no microorganisms were identified by 
traditional culture methods [1]. However, this opinion 
paradigm has been challenged by recent studies based 
on culture-independent sequencing techniques [2–4] 
and AF proteomics [5]. Recently, a conclusion that no 
microorganisms were present in the mid-trimester AF 
of healthy pregnancies was reached using culture-inde-
pendent sequencing techniques [6] and seemed to settle 
the argument [7]. However, it could not explain why non-
human proteins were identified in normal human AF 
supernatants [8] and why microbial exposure primes fetal 
immune cells in fetal tissues during fetal development [9].

Intra-amniotic infection caused by microbial inva-
sion of the amniotic cavity (MIAC) was associated with 
adverse pregnancy outcomes, when the bacteria were at 
high concentrations [10]. This may be a reason why peo-
ple think that AF is sterile and that bacteria in AF are 
abnormal because of their negative effects.

Meanwhile, we could identify bacterial proteins in the 
AF proteomics database that were consistent with the 
results of 16S ribosomal RNA (rRNA) gene sequenc-
ing. Nine amniotic fluid samples were collected from 
9 pregnant women and the pregnancy outcomes of the 

participants were followed. No bacteria were found by 
cultivation, but a sparse microbial presence was found 
by proteomics analysis and 16S rRNA gene sequenc-
ing approach. The 148 microbes found in the human AF 
proteomics database were consistent with the microbes 
found in the 16S rRNA gene sequencing database. The 
species composition and the structure of communities 
in the normal age (<  35 years old) and advanced mater-
nal age (AMA) (>  35 years old) pregnancies differed sig-
nificantly. However, all of the newborns were healthy and 
had no allergic reactions.

Proteomics analysis has identified nearly 2000 proteins 
in AF during the past 20 years [11], including many non-
human proteins [8]. In a recent study, 7 normal AF sam-
ples were used to generate human AF proteomes, which 
were divided into 4 groups: original proteins, bound pro-
teins, flow-through proteins, and iTRAQ-labeled indi-
vidual/mixed digested peptides [11]. We reanalyzed the 
human AF protein database and found that a part of the 
non-human proteins were derived from microorganisms. 
A total of 148 microbial-associated proteins in the nor-
mal human AF proteome, which could potentially play 
important roles in cellular/metabolic processes and bind-
ing/catalytic activity (Additional file 1). Notably, all of the 
microbial-associated proteins were present at a low level 
in human AF. These data suggest that there may be low 
concentrations of microorganisms in normal human AF 
samples.

To test our hypothesis, we conducted a study to investi-
gate the presence of microorganisms in the mid-trimester 
AF of 9 women [4 normal age [normal] and 5 advanced 
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maternal age [AMA]; advanced maternal age is generally 
defined as age above 35 years at the time of delivery [12, 
13]) by cultivation and 16S rRNA gene sequencing, and 
to follow their pregnancy outcomes. If the AMA group 
differed from the normal group in the microbial-asso-
ciated 16S rRNA genes, it could reflect an endogenous 
microbial difference between the two groups and support 
the hypothesis that the AF is not sterile; otherwise, the 
microorganisms could be generated by exogenous con-
tamination, which could not rule out the possibility that 
AF is sterile.

The main findings were: (1) B-ultrasonography and 
karyotype findings of the fetuses were normal and no 
bacteria were found by cultivation; (2) all 148 microbial-
associated proteins in the normal human AF proteome 
were found in the 16S rRNA gene sequencing database, 
in which Bacillus, Mycobacterium, and Pseudomonas 
accounted for  ~ 20%; (3) the bacterial richness of the AF 
samples showed no significant difference between the 
AMA and normal groups (Chao1 index, Welch’s t test, 
P  =  0.540; Additional file 2); (4) a significant difference 
in the species composition and structure of communi-
ties in the AF samples was found between the normal 
and AMA groups (Fig.  1A, B, Weighted_unifrac, OUT, 
Welch’s t test, P  =  0.017); (5) the newborns were healthy 
and had no allergic reactions up to 90 days (Table 1). Col-
lectively, these data suggest that the normal AF is not 
sterile and that the species composition and structure 
of communities change in the AMA group, although the 
bacterial richness may be similar and have no effect on 
the babies’ health.

The differences between the AF samples from the nor-
mal and AMA groups with regard to bacterial species 
composition and structure of communities were as fol-
lows. Five bacterial operational taxonomic units (OTUs) 
were increased in the AMA AF samples: Lactobacillus 
helveticus, Pediococcus acidilacticii, Pasteurella mul-
tocida, Bacillus indicus, and Bacteroides vulgatus. We 
used the LEfSe (Linear discriminant analysis Effect Size) 
method to identify bacterial OTUs that were likely to 
explain most of the differences between the normal and 
AMA AF samples. The bacterial orders of OTUs dif-
fered between the two groups. Sphingomonadales were 
more abundant in the normal group, while Lactobacil-
lales were more abundant in the AMA group (Fig.  1C, 
LDA scores  >  4, Additional file  3). The differences in 
OTUs mainly spanned two Orders, with the Families 
Lactobacillaceae (primarily Lactobacillus helveticus) and 
Sphingomonadaceae accounting for the majority of the 
differences. Collectively, there may be a low concentra-
tion of microorganisms in the normal human AF samples 
and significant differences between the normal and AMA 
AF samples.

In the present study, we found that microbial-asso-
ciated proteins and 16S rRNA genes could be identi-
fied in human AF at a low concentration. Furthermore, 
the species composition and structure of communities 
differed significantly between the normal and AMA 
AF samples. Thus, we conclude that the microbial-
associated 16S rRNA gene in human AF is real, rather 
than occurring through microbial contamination, and 
that the bacteria in AF differ between normal age and 
AMA pregnancies. We already know that AF neutro-
phils can phagocytize bacteria during intra-amniotic 
infection [14], but we do not know the function of 
bacteria in normal AF. Two possible hypotheses were 
proposed based on our results. First, we suggest that 
the AF is not sterile, but the level of microbiota may 
be very low and under the mother’s immune system 
control. Therefore, the microbial communities may 
be related to the establishment of fetal immune func-
tion. Immunoglobulins from the mother may help to 
control the number or activity of the bacteria, to pre-
cisely control and activate the fetal immune system, 
given that recent studies demonstrated the presence 
of microbes or microbial DNA in the placenta, amni-
otic fluid [15], and meconium. Furthermore, Florent 
et al. [9] found live microbes in human fetuses such as 
Lactobacillus, and suggested that the selective pres-
ence of live microbes in fetal organs may have broader 
implications toward the establishment of immune 
competency and priming before birth, with the micro-
bial exposure priming fetal immune cells during early 
human development. Second, we suggest that the 
bacterial 16S rRNA gene may come from the mother, 
because Rodriguez and colleagues proved that bacteria 
are transferred to the fetus from the mother by testing 
the meconium of healthy babies [16]. In addition, cir-
culating cell-free DNA fragments are able to transfer 
between the fetus and the mother [17], and the bac-
terial 16S rRNA gene can be successfully detected in 
cell-free plasma DNA [18]. In this way, the bacterial 
16S rRNA gene could possibly enter the AF through 
the umbilical cord, and this would explain why we 
were able to identify the 16S rRNA gene and peptides, 
but could not cultivate the bacteria.

Materials and methods
AF sample collection and preparation
Human amniotic fluid samples (~ 10  ml) were obtained 
by amniocentesis from women at 18–22  weeks of ges-
tation who were undergoing prenatal diagnosis due to 
AMA or noninvasive prenatal testing for high-risk preg-
nancy after receiving written informed consent. The sam-
ples were collected in an operating room with the help of 
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ultrasonic guidance; the operating room was sterile and 
the surgical instruments underwent aseptic processing 
and packaging. Nine samples from chromosomally nor-
mal pregnancies were chosen randomly.

16S rRNA gene sequencing
Microbial DNA was extracted from AF samples using 
an E.Z.N.A. Stool DNA Kit (Omega Biotek, Norcross, 
GA, USA) according to the manufacturer’s protocol. The 
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Fig. 1  Differences between the normal and AMA AF samples in species composition and structure of communities. A Detected compositions 
and relative abundances of bacterial communities according to 16S rRNA gene sequencing. The normal age (left) and AMA (right) bacterial relative 
abundances of the top 10 bacterial communities were labeled with different colors. Unclassified: unclassified bacterial communities; others: other 
bacterial communities. B Comparison of distance indexes indicating species composition and structure of communities between the normal 
and AMA groups. (Weighted_unifrac, Welch’s t test, P  =  0.017). C Circular cladogram indicating the polygenetic distribution of the bacterial 
lineages in the AF samples from the normal and AMA groups as determined by the linear discriminant analysis (LDA) effect size (LEfSe) (right) and 
comparison of the LDA effect size of the significantly different bacterial taxa (left). The cladogram illustrates the phylogenetic relationships among 
the significantly different bacterial taxa. The dots in the center represent the OTUs at the phylum level, while the dots in the outer circle represent 
the OTUs at the species level. Coloring principles: species with no significant difference were uniformly colored yellow; species for biomarkers were 
colored according to the different groups, with red nodes indicating bacteria with important roles in the AMA group, and green nodes indicating 
bacteria with important roles in the normal group. The names of the species represented by a, b, c, d, and e in the figure are shown in the LDA score 
illustration on the right. Indicators were defined as those with LDA  >  4. The histogram shows the LDA scores computed for significantly abundant 
taxa between the normal and AMA groups. The histogram represents the most significantly abundant taxa between the two groups. AMA: bacterial 
groups in the AMA group; normal: bacterial groups in the normal group
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16S rDNA V3–V4 region of the eukaryotic rRNA gene 
was amplified by PCR using the following thermal pro-
file: 95  °C for 2  min, followed by 27 cycles of 98  °C for 
10 s, 62 °C for 30 s, and 68 °C for 30 s, and a final exten-
sion at 68  °C for 10 min. The primers used were 341-F: 
5′-CCT​ACG​GGNGGC​WGC​AG-3′and 806-R: 5′-GGA​
CTA​CHVGGG​TAT​CTAAT-3′, where the barcode was 
an 8 bp sequence unique to each sample. The PCR ampli-
fications were performed in triplicate using 50-μl mix-
tures containing 5 μl of 10 × KOD buffer, 5 μl of 2.5 mM 
dNTPs, 1.5 μl of each primer (5 μM), 1 μl of KOD poly-
merase, and 100 ng of template DNA.

Amplicons were extracted from 2% agarose gels and 
purified using an AxyPrep DNA Gel Extraction Kit (Axy-
gen Biosciences, Union City, CA, USA) according to 
the manufacturer’s instructions, and quantified using a 
QuantiFluor-ST System (Promega, Madison, WI, USA). 
Purified amplicons were pooled in equimolar quantities 
and subjected to paired-end sequencing (2  ×  250) on an 
Illumina HiSeq 2500 Platform (Illumina Inc., San Diego, 
CA, USA) according to standard protocols.

Reanalysis of human AF raw data
The wiff. MS data files from Liu et  al. [11] were 
searched against the Swiss-Prot database (Homo sapi-
ens, Acidobacteria, Actinobacteria, Bacteroidetes, 
Chloroflexi, Cyanobacteria, Firmicutes, Gammapro-
teobacteria, Patescibacteria, Planctomycetes, and Ver-
rucomicrobia protein sequences, release 2020_06) [19] 
using MaxQuant software (version 1.3.0.5) [20]. False 
discovery rates (FDRs) were estimated using the target-
decoy strategy, and the FDR cut-offs were set to 0.01 
for sites, peptides, and proteins. Enzyme specificity 
was considered to be full cleavage by trypsin, and two 
maximum missed cleavage sites were permitted. The 
minimum required peptide length was set to 7 residues. 

Carbamidomethyl (C) and iTRAQ 8plex labels were set 
as fixed modifications. Variable modifications included 
oxidation (M) and acetylation (protein N-term).

Statistical analysis
Bioinformatic analysis was performed using Omicsmart 
(http://​www.​omics​mart.​com).

Abbreviation
AF: Amniotic fluid.
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samples.
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Table 1  Clinical information of the newborns

Advanced maternal age was defined as age  >  35 years

W weight; L length; PB partial breastfeeding; B breastfeeding

No. Age Apgar Delivery modes Gestational 
weeks

W/L (birth) (kg/
cm)

W/L (90 days) 
(kg/cm)

Feeding Allergy

YS01 29 10/10 Eutocia 38+6 3.0/50 7.0/61 PB No

YS02 33 10/10 Cesarean 37+5 3.4/49 6.3/64 B No

YS03 30 10/10 Eutocia 38+3 2.9/50 6.8/62 PB No

YS04 28 10/10 Cesarean 38+5 3.4/50 6/61.5 B No

YS06 41 10/10 Cesarean 39+2 3.4/50 10/63 B No

YS07 40 10/10 Eutocia 39+0 3.5/50 6.5/61 PB No

YS08 40 10/10 Eutocia 37+5 3.3/48 7.0/62 B No

YS09 39 10/10 Eutocia 39+5 4.1/52 5.0/65 B No

YS10 40 10/10 Eutocia 40+3 4.0/51 9.0/65 B No
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