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Nearly diffraction-limited X-ray 
focusing with variable-numerical-
aperture focusing optical system 
based on four deformable mirrors
Satoshi Matsuyama1,*, Hiroki Nakamori1,2,*, Takumi Goto1, Takashi Kimura3, 
Krishna P. Khakurel3, Yoshiki Kohmura4, Yasuhisa Sano1, Makina Yabashi4, Tetsuya Ishikawa4, 
Yoshinori Nishino3 & Kazuto Yamauchi1,5

Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing 
optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of 
adaptability has significantly limited application targets. In the research described herein, we developed 
a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-
type focusing mirrors, in order to control the focusing size while keeping the position of the focus 
unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online 
adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size 
varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling 
the NA while maintaining diffraction-limited conditions.

Developments of X-ray sources and optical devices have enabled a number of achievements in X-ray sci-
ence. X-ray sources have steadily advanced from X-ray tubes to undulators in synchrotron radiation facilities. 
Furthermore, the development of X-ray free-electron lasers (XFELs)1,2 and storage ring light sources with ulti-
mate performance3 have had significant impacts in various scientific fields. The quality of the focusing devices 
used in X-ray optical systems has been drastically improved over the past few decades. By using state-of-the-art 
Fresnel zone plates4, multilayer mirrors in the Kirkpatrick–Baez (KB) geometry5, and multilayer Laue lenses6,7, 
it is possible to achieve small focuses of 10 nm or less. Such focusing devices have enabled high-resolution and 
high-sensitivity X-ray analyses for cutting-edge research in materials science, the biological and medical sciences, 
and chemistry.

Most X-ray focusing devices have fixed numerical apertures (NAs), unlike the electrostatic and electromag-
netic lenses used in electron microscopes. Several benefits could be expected if NAs could be changed during 
experiments. One of the most distinct benefits is the ability to perform multi-functional microscopy, which 
combines various X-ray analysis and microscopy techniques. For example, the combination of scanning X-ray 
microscopy (SXM)8–10 and coherent X-ray diffractive imaging (CDI)11–13 provides the opportunities to observe 
fine structures by using CDI and to visualize elemental and chemical distributions by using SXM. However, most 
X-ray focusing devices cannot apply both of these methods together due to their different beam size require-
ments: SXM requires a beam as small as possible, while CDI needs a moderately sized focused beam that can 
illuminate an area larger than the sample size. Variable-NA focusing optics that can produce different beam sizes 
and divergences will thus expand the capabilities of X-ray analyses and microscopy.

Practically, the NA can be controlled by utilizing a variable aperture, such as a slit or a diaphragm, placed near 
the focusing optics, although this configuration results in significant photon flux loss. However, if the variable 
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aperture is substituted with two deformable mirrors14–18 arranged in the KB configuration, it is possible to trans-
mit the full incident flux to the final focus. NA control can be achieved simply by changing the focal lengths of the 
mirrors by deforming their shapes. However, to realize a substantial NA change, a large space is required. 
Furthermore, it is technically challenging to fabricate high-quality deformable mirrors to achieve 
diffraction-limited focusing: the error between the figure and the ideal shape should be smaller than λ

θ8sin
, where 

λ  and θ  are the wavelength and grazing incidence angle, respectively. When λ  =  0.124 nm and θ  =  4 mrad, the 
maximum error to be accepted is ~4 nm. This severe requirement has caused substantial difficulty in achieving 
X-ray nanofocusing with deformable mirrors.

To overcome these problems, we developed a high-quality deformable mirror based on piezoelectric ele-
ments18–20. The test results showed that the mirror could be successfully deformed into an arbitrary elliptical shape 
with a shape error of less than 2.5 nm18. Based on the results, we proposed a variable-NA focusing system based 
on four deformable mirrors21–23, which is quite different from optical systems that can shape X-rays at the level of 
a few tens of microns or a few microns24. In this paper, we discuss the performance of the variable-NA focusing 
optical system. First, we describe a method of tuning the four deformable mirrors into a target elliptical shape 
using an optical interferometer and X-ray metrology. We then report on X-ray focusing experiments performed 
at a SPring-8 beamline with a photon energy of 10 keV. The focused beams, characterized by the knife-edge 
scanning method, were successfully changed by adjusting only the NA while satisfying the diffraction-limited 
condition.

Results
Variable-NA focusing system. Figure 1 depicts a one-dimensional schematic of the principle of our pro-
posed variable-NA focusing system. In this case, the two deformable mirrors are assumed to be elliptical: the 
upstream mirror is designed to have foci at ‘A’ (light source) and ‘B’ (mid focus), and the downstream ellipse 
is designed to have foci at ‘B’ and ‘C’ (sample position). By controlling the shapes of the two mirrors, the mid 
focus can be shifted along the optical axis while leaving the beam axis and final focus position unchanged. These 
changes enable the NA of the focusing system to be varied. The design parameters of the optical system are shown 
in Table 1. Notably, control of the downstream mirror is more difficult when the NA is smaller, because the cur-
vature deviation becomes significant in this case (see Fig. 2). The NA of the downstream mirror was limited to 
between 0.533 ×  10−3 and 0.041 ×  10−3 to avoid excessive deformation of the downstream mirror. We designed 
three focusing modes (Modes I–III), as shown in Table 2. In this experiment, the aperture ratio was defined as 
the ratio of the area illuminated on the downstream mirror to the maximum illumination area. Mode I had the 
maximum NA with an aperture ratio of 1.0, in which case the surfaces of the four deformable mirrors were fully 
illuminated. Mode II had an NA approximately half that of Mode I and aperture ratios of 0.5 and 0.43 in the hori-
zontal and vertical directions, respectively. Mode III had the smallest NA with aperture ratios of 0.20 and 0.11 in 
the horizontal and vertical directions, respectively. The maximum (minimum) mirror deformations from a flat 
shape were 4 μm (2 μm) for the upstream mirrors and 30 μm (10 μm) for the downstream mirrors (see Fig. 2).

Figure 1. Scheme of variable-NA focusing optical system, in which NA can be controlled without changing 
focal plane position. 

Horizontal focusing Vertical focusing

Source-1st mirror (mm)* 50000 50130

1st mirror-mid focus (mm)*

 Mode I 750 620

 Mode II 1000 870

 Mode III 1250 1120

 1st mirror-2nd mirror (mm)* 1500 1240

 2nd mirror-final focus (mm)* 300 430

Grazing-incidence angle (mrad)**

 Upstream mirror 4.0 4.0

 Downstream mirror 4.0 4.0

Table 1.  Design parameters of the optics. *Distance between centres of mirrors. **At centre of mirror.
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Ultra-precise deformable mirrors. In this study, piezoelectric deformable mirrors with bimorph struc-
tures were used (see Fig. 3). Each mirror consisted of a quartz glass substrate and four long piezoelectric plates 
(lead zirconate titanate, PZT), which were attached to the front and back of the substrate with glue. Bimorph 
structures, which are symmetric about their central layers, exhibit minimal deformations in response to temper-
ature changes. The piezoelectric plates on the back of each substrate, which each had a single electrode produced 
using DC magnetron sputtering, formed the quadratic shape of the target ellipse. On the other hand, the piezo-
electric plates on the front face of each substrate, which each had 18 chromium electrodes, were used to produce 
arbitrary shapes with a minimum spatial wavelength of 11.2 mm, which is sufficient to produce a nearly perfect 
ellipse. The continuous long piezoelectric plates used on the front and back enabled the deformable mirrors to 
reduce the surface undulations produced by the gaps between the electrodes19. Furthermore, the undulation 
could be made negligible by placing the effective reflection area at the centre of the substrate, away from the pie-
zoelectric plates19. High-spatial-frequency waviness on the substrates that could not be corrected by deformation 
was directly removed by computer-controlled elastic emission machining (EEM)25 (see Methods section). In 
addition, middle-spatial-frequency shapes, except for the second-order-polynomial shapes, were removed by 
the EEM processing to lower the voltages required to form the ideal shapes. The errors of the shapes, except for 
those of the fitted quadratic shapes, were found to be sufficiently small18, with peak-to-valley differences below 
2 nm when the mirrors were not deformed. The central region (10 mm width) of each mirror was coated with a 
100-nm-thick platinum layer on a thin chromium binding layer.

Figure 2. Shapes of deformable mirrors (Modes I–III). 

Mode I Mode II Mode III

Focusing direction* H V H V H V

NA (× 10−4) 5.33 3.72 2.67 1.60 1.07 0.409

Aperture ratio 1.00 1.00 0.50 0.43 0.20 0.11

Ideal spot size (nm) in FWHM** 103 148 209 353 530 1423

Table 2.  Optical parameters of Modes I, II, and III. *‘H’ and ‘V’ represent horizontal and vertical directions, 
respectively. **The FWHMs were calculated with a wave-optical simulator based on the Fresnel–Kirchhoff 
integral.
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Precise deformation procedure. To control the mirror shapes with 2 nm accuracy (i.e., λ/8), we used the 
following procedure with offline and online adjustments.

In the offline adjustment step, an optical Fizeau interferometer (VeriFire XPZ, Zygo Corp.) was used to mon-
itor the mirror shape. Each mirror was deformed into the target ellipse with an accuracy of 2 nm by monitoring 
the mirror shape. During the offline adjustment step, the voltages applied to each of the electrodes were recorded 
in a log file.

In the online adjustment step, the mirrors were deformed after being installed in the X-ray focusing system 
(Fig. 4), while monitoring their shapes with the pencil beam method26,27 (see Methods section). Before the fine 
adjustment process, voltage patterns identical to those used in the offline adjustment step were applied to the 
electrodes. The shapes could be reproduced with small deviations of less than ~50 nm. Then, the deformations of 
the upstream mirrors were finely adjusted while monitoring their shapes using the pencil beam method with the 
beam monitor located at the mid focus (BM1). After obtaining sufficiently small deformation errors, the down-
stream mirrors were finely adjusted in the same manner using the beam monitor placed at the final focus (BM2). 
Performing the pencil beam method with BM2 yielded information that included the shape errors of both the 
upstream and downstream mirrors. In Mode III, only the curvatures of the downstream mirrors were adjusted 
by applying voltages to the back electrodes after adjusting the upstream mirrors, because their illuminated areas 
along the optical axis were limited to 10 mm (20 mm) for the vertical (horizontal) focusing mirrors and there were 
too few electrodes within the illuminated areas to produce shapes with the required complexity. The wavefronts of 

Figure 3. Piezoelectric deformable mirror with bimorph structure. (a) Schematic of deformable mirror. 
(b) Photograph of deformable mirror. (c) Figure errors of deformable mirrors, except for second-order 
polynomials.

Figure 4. Experimental setup of focusing system. DCM: double-crystal monochromator. TC: transport 
channel. PD: photodiode. BM: beam monitor.
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the whole focusing system were thus adjusted by changing the shapes of the upstream mirrors while monitoring 
the wavefronts using BM2, based on the concept of wavefront compensation17.

Hard X-ray focusing with variable-NA function. An experiment was performed at BL29XUL of 
SPring-828 to test the proposed system. The optical elements were installed on a large granite bench in the third 
experimental hutch, which is ~98 m away from the undulator light source (Fig. 4). The four mirrors were pre-
cisely aligned with manipulators and autocollimators with sufficient accuracies. The incident X-ray beam with 
a photon energy of 10 keV was monochromatized with a Si 111 double-crystal monochromator. A cross-slit  
(TC slit) with a width of less than 10 μm was placed downstream from the monochromator (i.e., ~50 m upstream 
from the mirrors) to create a virtual small X-ray source. The total demagnification ratios were evaluated to be 
12–117 and 33–167 in the vertical and horizontal directions, respectively, in Modes I–III. To illuminate only 
the effective areas of the upstream mirrors, a 320-μm-wide cross-slit (incident slit) was placed in front of the 
upstream KB mirrors. This slit was also used in the pencil beam method. The beam passing through the focusing 
system was characterized at the mid and final foci using the knife-edge scanning method29,30 (see Methods sec-
tion). When changing the NA, a voltage pattern determined in the offline adjustment process was applied, and 
BM1 and the knife-edge scanning system were translated along the beam axis to follow the shift of the mid focus 
position. The beam was then characterized in the same manner at the mid and final foci. Mode I was set up first 
and was then transformed into Mode II. Finally, Mode III was assembled.

In Modes I–III, the mirrors were successfully deformed with an accuracy of ~2 nm. The typical shape 
errors after the correction using the pencil beam method in Mode I are shown in Fig. 5. Figure 6 presents the 
one-dimensional beam profiles obtained at the final foci in Modes I–III together with those calculated (solid 
lines) with our wave-optical simulator based on the Fresnel–Kirchhoff integral31. The obtained beam profiles have 
small side lobes almost symmetric to the main peak, in good agreement with the simulation. As can be seen from 
the widths of the main peaks, the beam size clearly changed as the NA was adjusted.

Discussion
To illustrate the relationship between the NAs and the full widths at half-maximum (FWHMs) of the focused 
beam, Fig. 7 shows the calculated and experimentally measured FWHMs plotted against the aperture ratio. Both 
the experimental and calculated FWHMs are inversely proportional to the aperture ratio. The result shows that 
the beam size was successfully controlled by varying the NA of the adaptive focusing optics while keeping the 
diffraction-limited conditions and maintaining the positions of the foci. In addition, in Mode III, the errors in 
the downstream mirror shapes were successfully compensated for by adjusting the shapes of the upstream mir-
rors. This method will simplify the adjustment of two-stage adaptive focusing systems, leading to their practical 
application in the near future.

One of the remaining challenges in this focusing system is to increase the range in which the NA can be tuned. 
In this research, the ratio between the maximum and minimum NAs was approximately 10. This range can be 
expanded by thinning the substrates of the mirrors or by increasing the distance between the upstream and 

Figure 5. Typical deformation errors in Mode I before and after correction based on pencil beam method. 
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downstream mirrors. The former option is unsuitable because undesirable and unpredictable deformation will 
arise when mounting a thin mirror and contacting the electrodes to apply voltages. In addition, a focusing system 
with thin mirrors may be sensitive to vibration. However, the second option, increasing the distance between the 
mirrors, is acceptable. In this experiment, the distances between the upstream and downstream mirrors were 
1.5 m (1.2 m) in the horizontal (vertical) direction due to limitations of the granite bench used for the optical 
system. If the distance were increased by a factor of 10, the range could be enlarged to ~100. Such a configuration 
can be applied for the two-stage focusing system32 in BL3 of SACLA, which has a large distance of 78 m between 
the upstream and downstream mirrors.

We expect that the proposed adaptive focusing system will be used in various multi-functional microscopes 
and advanced CDI in existing synchrotron radiation X-ray sources and advanced light sources, such as XFELs 
and ultimate storage rings.

Figure 6. Intensity profiles of focused beams. Circles and solid lines show measured and calculated profiles, 
respectively. Small side lobes are observable, which might have resulted from mirror figure errors produced by 
slow PZT drift.

Figure 7. Relationship between FWHM and aperture ratio. 
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Methods
Substrate surface shape correction. Substrate shape correction was performed by EEM with a computer 
control system25 after constructing the bimorph structure. A 10-mm-wide central region of each substrate was 
processed by EEM with a shape accuracy of approximately 2 nm, except for the second-order-polynomial shapes. 
The shapes were measured with at least 1 nm accuracy using our developed stitching interferometer33,34. The 
roughness of each processed surface was confirmed to be ~0.2 nm (root mean square) with a microscopic inter-
ferometer (NewView 5030, Zygo Corp.), which is sufficiently small to retain ideal reflectivity.

Pencil beam method. The pencil beam method26,27 was used to determine the slope error distribution on 
a target focusing mirror using a slit and a beam monitor. Typically, ~20 μm X-ray beams passing through the slit 
placed immediately upstream of the target mirror illuminated one section of the mirror surface. The reflected 
beam position was detected using a beam monitor placed at the focus. This process was repeated until the entire 
effective area was scanned. Then, by calculating the median point shift of the reflected beam with sub-pixel accu-
racy, the slope error distribution over the scanned area was obtained. For this study, special beam monitors with 
high magnification, consisting of complementary metal–oxide–semiconductor (CMOS) cameras, thin scintilla-
tors, and lenses, were developed18. The detectable minimum median point shift was ~10 nm18. The pencil beam 
scan measurements of the deformable mirrors were repeated with a typical accuracy of ~50 nrad18.

Focused beam characterization. Except for the profile at the mid focus in Mode III, the one-dimensional 
intensity profiles of the focused beams were measured by the dark-field knife-edge scanning method29. In 
this method, signals scattered from a knife edge are collected by blocking the bright field area with a slit. A 
50-μm-diameter gold wire was employed as the knife edge in order to reduce the intensity of reflected X-rays 
from the wire surface. For the mid focus in Mode III, the intensity profile was obtained by the conventional 
knife-edge scanning method30 due to the space limitations. In this method, a 200-μm-diameter gold wire was 
used as the knife edge. The wires were scanned with a motorized feedback stage with 1 nm positioning accuracy, 
and the X-ray signals were detected with a PIN photodiode. Each beam was characterized several times using 
different scanning steps to reduce the measurement errors.
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