
Role of the Mitochondria in Immune-Mediated Apoptotic
Death of the Human Pancreatic b Cell Line bLox5
Yaı́ma L. Lightfoot, Jing Chen, Clayton E. Mathews*

Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America

Abstract

Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria
play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose
is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta
cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of
mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, bLox5. IFNc
primed bLox5 cells for apoptosis by elevating cell surface Fas. Consequently, bLox5 cells were killed by caspase-dependent
apoptosis by agonistic activation of Fas, but only after priming with IFNc. This beta cell line undergoes both apoptotic and
necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNc and TNFa. Additionally,
both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved.
Mitochondrial contributions to bLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted bLox5 cells, or
bLox5 r0 cells. bLox5 r0 cells are not sensitive to IFNc and TNFa killing, indicating a direct role for the mitochondria in
cytokine-induced cell death of the parental cell line. However, bLox5 r0 cells are susceptible to Fas killing, implicating
caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation.
These data support the hypothesis that immune mediators kill bLox5 cells by both mitochondrial-dependent intrinsic and
caspase-dependent extrinsic pathways.

Citation: Lightfoot YL, Chen J, Mathews CE (2011) Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic b Cell Line
bLox5. PLoS ONE 6(6): e20617. doi:10.1371/journal.pone.0020617

Editor: Kathrin Maedler, University of Bremen, Germany

Received September 17, 2010; Accepted May 7, 2011; Published June 27, 2011

Copyright: � 2011 Lightfoot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a University of Florida Experimental Pathology Innovative Grant Award (JC) and a grant from the National Institutes of
Health [DK074656 (CEM)]. YL was funded by a supplement for diversity from the National Institutes of Health to DK074656. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: clayton.mathews@pathology.ufl.edu

Introduction

Insulin-dependent, or Type 1 Diabetes Mellitus (T1D) results as

a consequence of the specific autoimmune destruction of the

pancreatic islet beta cells. While better understood in animal

models, the exact progression to T1D in humans remains elusive,

in part due to the limited human pancreatic samples available for

research and the fact that the islets collected are obtained

postmortem resulting in variable quality and functional capacity

[1]. Consequently, animals that develop diabetes spontaneously

and resemble the human form of the disease, like the NOD mouse

and the BB-DP rat, as well as beta cell lines derived from murine

sources, are heavily relied upon for a mechanistic understanding of

the pathogenesis of the disorder [2].

Studies performed using animal models of T1D as well as

primary human donor islets have proposed several direct and

indirect mechanisms of beta cell destruction. For instance, in the

NOD mouse, insulitis begins with the activation of macrophages

and dendritic cells (DC) within the pancreatic islets. These resident

specialized antigen-presenting cells locally produce chemokines

and cytokines that recruit and activate autoreactive T and B

lymphocytes [3]. Additionally, soluble mediators, such as cytokines

and free radicals, both reactive nitrogen species (RNS) and

reactive oxygen species (ROS) produced by the infiltrating

immune cells and the beta cell themselves, can lead to beta cell

death. In previous studies, IL-1b, IFNa, TNFa, and type 1

cytokines (IFNc, TNFb, IL-2, and IL-12) were found to correlate

with destructive insulitis in the T1D prone NOD mouse and the

BB rat [4]. Pancreatic samples from patients with T1D were also

shown to contain the cytokines IFNa and IFNc, TNFa-producing

lymphocytes, as well as TNFa and IL-1b-expressing macrophages

and DCs [5].

In vitro studies on the cytotoxicity of cytokines to beta cells

suggest that individual proinflammatory cytokines can either

enhance or inhibit beta cell insulin secretion depending on dose

and length of exposure. However, when added in combinations,

IL-1b, IFNc, TNFa induce death and dysfunction of both human

and rodent islets [6]. The impact of cytokines on mouse and rat

islets is mainly through nitric oxide (NO)-mediated necrosis with

minor contributions of apoptosis [6–16]. Studies reporting

observations after exposing human islets to cytokines have been

less clear, likely due to differences in experimental systems [17] as

well as the health of the isolated human islets used [18,19]. Taken

together, it is rational to propose that when treated with cytokines,

human islets die by both necrotic and apoptotic mechanisms.

Furthermore, these cytokines can either alone or in combination

change the surface of islet cells, thereby enhancing the potential

for immune surveillance by cytotoxic T cells. Predictably,

molecules elevated by cytokines, such as MHC class I and Fas,

have been correlated with destructive insulitis in both the mouse
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and human [20]. Beta cell surface remodeling by cytokines,

combined with the fact that T1D is considered to be a T cell

dependent disorder, imply that, in vivo, cytokines are responsible

for providing an inflammatory environment conducive for T cell

recognition and destruction of the insulin-producing cells. In this

proinflammatory milieu, recognition of autoantigens by activated

cytotoxic T cells (CTL) leads to direct beta cell lysis. CTL specific

killing mechanisms that are thought to be involved in beta cell

destruction include the Fas/FasL pathway and perforin/gran-

zyme release. Also, analyses of pancreatic tissues of patients with

T1D show Fas expression mainly in the remaining beta cells of

the islets, and FasL expression in the infiltrating T lymphocytes

[20,21].

Most of these studies have been performed using both beta cells

and CTLs derived from animal models. Yet, the appreciated

genetic and immunopathologic differences between animal models

of the disease and humans attest that diabetogenesis in humans

could be distinctive and highlights the need for a human beta cell

line that can be used for the study of death in the context of

autoimmune-mediated destruction. In this report, we test the

usefulness of a cell line derived from purified adult beta cells,

bLox5 [22], in assays of beta cell death, as well as the

mitochondrial contributions to human beta cell killing by immune

effectors. We exposed bLox5 cells to direct killing by an activating

human Fas antibody, CH11, in addition to indirect killing by the

proinflammatory cytokines IFNc and TNFa. The data presented

show that similar to primary islets and beta cell lines derived from

animals, bLox5 cells are killed after ligation of Fas by caspase-

dependent apoptosis, whereas these cells die by caspase-dependent

and –independent apoptosis together with necrosis after incuba-

tion with TNFa and IFNc. Importantly, bLox5 cells depleted of

their mitochondrial DNA were resistant to proinflammatory

cytokine-induced killing, implicating a role for mitochondria

associated cell death mechanisms in the progression to T1D in

humans.

Results

Agonistic activation of Fas kills bLox5 cells by caspase-
dependent apoptosis
bLox5 cells were incubated for 48 hours with a-Fas mono-

clonal antibody (CH11) alone or in combination with rhIFNc.

The combination of CH11 and rhIFNc induced death of the

bLox5 cells (Fig. 1A), while neither CH11 nor rhIFNc were

alone effective. rhIFNc was required for Fas induced cell death

as it increased Fas expression on the cell surface, even at the

lowest level of rhIFNc tested (Fig. 1B). Because bLox5 cells

treated with rhIFNc had a reduction in absorbance during the

MTT assay, we performed the ApoGlow assay to distinguish

between inhibition of proliferation and cell death. rhIFNc
treatment of bLox5 cells lowered ATP levels with little or no

change in the ADP to ATP ratios corresponding with arrested

proliferation (Fig. 2).

To determine the mechanism of a-Fas-induced killing of bLox5

cells, caspase activity was assayed. Caspases 8 and 3 were shown to

be active after only 24 hours of treatment (Fig. 3A). Pan-caspase

inhibitor Z-VAD-FMK (50 mM) was added to cells 1 hour prior to

and again 24 hours after initiation of rhIFNc and CH11

treatment. When compared to rhIFNc control samples, caspase

inhibition increased cell survival to control levels (Fig. 3B) and

eliminated DNA damage (Fig. 3C). These data clearly implicate

caspase-induced apoptosis as the necessary pathway in Fas-

mediated killing of bLox5 cells.

Proinflammatory cytokine-induced killing of bLox5 cells
occurs through caspase-dependent and –independent
apoptosis and necrosis
bLox5 cells were also susceptible to proinflammatory cytokine-

mediated cell death. Treatment of these cells with the combination

of rhTNFa and rhIFNc for 48 hours caused significant killing

(Fig. 4); however, neither of these cytokines alone was sufficient to

kill bLox5 cells. Similar to NOD derived NIT-1 beta cells, the

addition of IL-1b to the combination is dispensable [23,24].

Consequently, NO was not detected in the supernatant when

measured indirectly via the Greiss Reaction. In addition, Heat

Shock Proteins (HSPs), specifically HSP70 and HSP27 (Fig. S1),

which have been shown to protect beta cells against proinflam-

matory cytokine induction of Nitric Oxide Synthase (iNOS) and

subsequent production of NO [8,9,15,25,26], were expressed in

Figure 1. bLox5 cells are susceptible to a-Fas monoclonal
antibody after rhIFNc priming. A. bLox5 cells were treated with
rhIFNc alone or the combination of a-Fas antibody clone CH-11
(0.5 mg/mL) and rhIFNc (1000 U/mL) for 48 h. Viability was measured
by the MTT assay. ** denotes statistical significance, p,0.005. B.
Overnight priming of bLox5 cells with rhIFNc increases the expression
of surface Fas similarly with 250 U/mL (light gray line), 500 U/mL (gray
line), or 1000 U/mL (dark gray line) of rhIFNc when compared to
untreated control cells (black line).
doi:10.1371/journal.pone.0020617.g001
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untreated bLox5 cells and both HSP27 and HSP70 were

significantly upregulated by rhIFNc and the combination of

rhIFNc and rhTNFa. Because rhIFNc was shown to inhibit

proliferation of bLox5 cells, we tested the effects of rhTNFa on the

proliferation of these cells using a tritiated thymidine (3H-TdR)

incorporation assay. In contrast to rhIFNc, rhTNFa-treated cells

(1000 U/mL or 5000 U/mL) incorporated the same amount of
3H-TdR after 24 and 48 hours as untreated cells (Data Not

Shown).

Treatment of bLox5 cells with rhIFNc and rhTNFa resulted in

activation of Caspases 8 and 3 (Fig. 4B). Confirmed pan-caspase

inhibition failed to completely prevent death (Fig. 4C, D),

suggesting that cytokines kill these cells by multiple pathways.

Accordingly, flow cytometric and Comet assay analyses of

cytokine-induced bLox5 killing indicated that these cells die by

apoptosis and necrosis (Fig. 4A, C). Although caspase inhibition

significantly improved bLox5 viability when measured by the

MTT assay, levels did not reach rhIFNc control (Fig. 4D) and

DNA damage was still observed (Fig. 4C). Protein levels of

phosphorylated p53 (S15) increased with pan-caspase inhibition

(Fig. 5), indicating an enhanced effort to repair DNA damage.

Cell death in bLox5 cells was preceded by an increase in the pro-

apoptotic protein SMAC/Diablo (Fig. 5). SMAC/Diablo con-

tributes to the caspase cascade by binding to inhibitors of apoptosis

(IAPs), such as XIAP [27]. As a result, pro-caspase 3 levels

decreased, while cleaved caspase 3 increased (Fig. 5).

Apoptotic and necrotic bLox5 cell death after cytokine

treatment and caspase inhibition were further analyzed by the

ApoGlow assay and detection of passively released High Mobility

Group 1 (HMGB1), which has been demonstrated to only be

released during primary necrosis [28–30]. The ApoGlow assay

showed signatures of apoptosis, including reductions in ATP levels

of cytokine treated groups with and without pan-caspase inhibition

compared to rhIFNc controls, and significant increases in the ADP

to ATP ratios that did not differ between the cells treated with

rhTNFa and rhIFNc (Fig. 6A). These results indicate that the

improved viability after pan-caspase inhibition measured by the

MTT assay was not biologically significant and apoptosis was still

taking place. Necrosis was confirmed by the presence of HMGB1

only in the supernatant of cytokine-treated bLox5 cells, compared

to untreated and rhIFNc control cells (Fig. 6B).

To examine the contribution of caspase-independent, proapop-

totic molecules, Apoptosis Inducing Factor (AIF) localization was

visualized by immunofluorescence. Compared to rhIFNc controls,

more AIF was present in the nucleus of rhIFNc and rhTNFa-

treated cells (Fig. 7). This suggests that AIF is involved in the

demise of bLox5 cells that occurs in the presence of proin-

flammatory cytokines. Inhibition studies to further understand the

mechanisms of bLox5 cell death showed that these do not depend

on Bax translocation, or Cathepsin B activity (Data Not Shown).

Mitochondrial-DNA deficient bLox5 cells are resistant to
cytokine killing but sensitive to Fas

To examine the role of the mitochondria in cytokine-induced

killing of bLox5 cells, the cell line was depleted of mitochondrial-

DNA (bLox5 r0) using low levels of EtBr. PCR and confocal

imaging of the cells confirmed successful depletion of the mtDNA

(Fig. 8). Treated and untreated bLox5 cells amplified primers

specific for the nuclear-encoded human Catalase gene (Fig. 8A),

but only untreated cells amplified mtDNA-specific primers

(Fig. 8B). A mitochondrial marker, TMRM, was used to identify

the mitochondria, and picogreen was used as a DNA dye to

identify cytoplasmic DNA. Co-localization of the red TMRM and

green picogreen in the untreated cells was indicative of the

presence of DNA in the mitochondria (Fig. 8C). However, EtBr

treated cells did not co-localize the fluorescent dyes (Fig. 8D).

Viability of bLox5 r0 cells after cytokine treatment was

measured by the MTT assay and confirmed by FACS analysis

of PI exclusion. bLox5 r0 cells were found to be resistant to

cytokine-mediated cell death but sensitive to Fas-induced killing

(Fig. 9A), supporting activation of the extrinsic pathway by Fas

versus the intrinsic pathway by proinflammatory cytokines.

mtDNA sufficient bLox5 Cybrid cells were sensitive to Fas

ligation and add-back of mtDNA resulted in regained susceptibility

to proinflammatory cytokines (Fig. 9A). Pan-caspase inhibition

was able to prevent Fas-induced cell death in r0 and Cybrid cells

(Fig. 9A). Because the mitochondrial electron transport chain is

the main source of ROS in cells, we analyzed the redox state of the

parental cell line, bLox5, after cytokine treatment. Reductions in

available GSH were observed after 24 h of cytokine treatment

(Fig. 9B) when no changes in cell survival have been noted.

Discussion

A human beta cell line that can be expanded and maintained

indefinitely would be a useful tool for advancing our understand-

ing of the autoimmune pancreatic beta cell destruction that

precedes Type 1 diabetes development in man. Such a model cell

Figure 2. rhIFNc alone causes arrested proliferation. bLox5 cells were treated with rhIFNc (1000 U/mL) for 48 h. Cell death profile was
analyzed by the ApoGlow assay. NS denotes no statistical difference.
doi:10.1371/journal.pone.0020617.g002
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would also provide an in vitro system to test pharmacological

inhibitors or genetic manipulations intended to block killing by

autoimmune effectors, or invasively study the impact of immuno-

suppressive agents, hyperglycemia, or hyperlipedemia. To date,

there have been publications detailing the production of six

human derived beta cell lines. These lines are NAKT-15 [31], CM

and HP62 [32–40], NES Y2 [41], TRM-6 [42] and bLox5

[22,42–46]; however, only bLox5 is readily available to the

scientific community. We sought to determine the value of this

already established, human pancreatic beta cell-derived line,

bLox5, in studies aimed at elucidating the role of mitochondria in

human beta cell death induced by immune insults.

The Fas/FasL pathway has been associated with the develop-

ment of T1D in animal models and in humans [20,21,47–49].

Although autoreactive T cell clones from transgenic mice lysed

Fas-deficient islets, presumably due to perforin release, perforin-

deficient T cells had similar diabetogenic potential as the wild type

clones when transferring disease to immunodeficient NOD mice

[20,50]. These findings suggest that redundant mechanisms

eliminate beta cells during the autoimmune attack. To mimic

Figure 3. Fas-induced killing is caspase-dependent. A. bLox5 cells were primed overnight with rhIFNc (1000 U/mL) then left untreated or
treated with a-Fas antibody clone CH-11 (0.5 mg/mL) for an additional 24 h before the activities of Caspases 8 and 3 were measured by FACS
analysis. Increased Caspase 8 and 3 activities were noted after only 24 h of Fas stimulation. A representative plot is shown. B & C. bLox5 cells were
treated with rhIFNc alone or the combination of a-Fas antibody clone CH-11 (0.5 mg/mL) and rhIFNc (1000 U/mL) for 48 h with and without pan-
caspase inhibition with Z-VAD-FMK (50 mM x 2). Viability was measured by the MTT assay (B). *** denotes statistical significance with a P value
,0.0001. NS denotes no statistical difference. DNA damage after treatment with and without caspase inhibition was assessed by the Comet Assay (C).
doi:10.1371/journal.pone.0020617.g003
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direct killing by diabetogenic effectors, we incubated the cell line

with an activating a-Fas monoclonal antibody for 48 h. The 48 h

treatment period was chosen to obtain a significant amount of cell

death while still having the required cell numbers to perform

functional assays, such as measuring caspase activity in apoptotic

and live cells. In addition, because bLox5 cells proliferate well,

longer incubation times in 12-well plates leads to death even in

untreated cells.

Similar to primary islets from human and mouse as well as

rodent derived beta cell lines, bLox5 cells required rhIFNc
priming for sufficient surface Fas expression and subsequent

ligation by the antibody (Fig. 1), supporting the role of

proinflammatory cytokines in providing an environment favorable

for cell killing [51]. Moreover, Fas-dependent apoptosis in bLox5

cells was found to be caspase mediated (Fig. 3). mtDNA deficient

bLox5 r0 cells, which are deficient in the electron transport chain

subunits of Complexes, I, III, and IV that are encoded by the

mtDNA, were sensitive to Fas ligation due to the activation of

caspases (Fig. 9A). This is in accordance with the extrinsic type I

model of Fas-mediated apoptosis that proceeds independent of the

mitochondria [52], and with Fas-mediated killing mechanisms

previously identified in the NIT-1, NOD insulinoma cells, and

primary NOD islets [53,54]. These results indicate that bLox5

cells are susceptible to direct killing by immune effectors and die

by a relevant pathway in T1D.

Proinflammatory cytokine exposure of primary rat or mouse

pancreatic islets as well as the RIN and INS1 beta cell lines,

established from rat, results in functional inhibition and death that

is highly dependent upon the production of NO [12] with small

contributions of apoptosis only after long-term culture with

cytokines [13]. In mouse beta cell lines, killing due to IFNc,

TNFa and IL-1b treatment is less dependent on NO production

and in some cell lines death is NO independent [55,56]. In human

islets, timing of treatment as well as cytokine combination and

dose are critical [11,17]. To test if bLox5 cells are also vulnerable

to proinflammatory cytokines, we cultured the cells with rhIFNc,

rhTNFa and rhIL-1b individually or in combination. We found

that the combination of rhIFNc and rhTNFa led to the most

significant level of bLox5 cell death by both apoptosis and necrosis

(Fig. 4). Cytokines promoted both necrosis and caspase-depen-

dent apoptosis of bLox5 cells that was independent of NO,

potentially due to the presence of HSP27 and HSP70 (Fig. S1),

confirming that proinflammatory cytokines can activate a range of

pro-death mechanisms in beta cells [5,10,13,17,53–55,57–63].

Beta cell mitochondria play a key role in insulin secretion [64]

and may be important in beta cell death. Apoptosis-inducing

stimuli result in the mitochondrial membrane permeability

transition (PT) that leads to the release of Cytochrome c (Cyt c)

and other proapoptotic molecules. PT and Cyt c release generally

precede the disruption of mitochondrial inner membrane potential

(DYm) and mitochondrial function [65]. In addition, mitochon-

drial release of proapoptotic molecules potentiates the activation

cascade of caspases [66]. Although caspases are involved in the

killing of bLox5 cells by proinflammatory cytokines (Figs. 4 & 5),

other pathways are also implicated, as the pan-caspase inhibitor,

Z-VAD-FMK, failed to completely prevent death in these cells

(Figs. 4 & 6). Necrosis was shown to contribute to bLox5

cytokine-induced death (Figs. 4 & 6) and could have accounted

Figure 4. Cytokine-induced cell death is partially caspase-dependent. A, B, C & D. bLox5 cells were treated with the combination of
rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL) for 48 h with and without pan-caspase inhibition with Z-VAD-FMK (50 mM x 2). The cell death profile (A)
as well the activities of Caspases 8 and 3 (B) were measured by FACS analysis. A representative plot is shown. DNA damage and death were assessed
via the Comet Assay (C) and the MTT Assay (D), respectively. ** denotes statistical significance with a P value ,0.005.
doi:10.1371/journal.pone.0020617.g004

Figure 5. Apoptosis and DNA repair protein expression of cytokine-treated bLox5 cells. bLox5 cells were treated with the combination of
rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL) for 24 h with and without pan-caspase inhibition with Z-VAD-FMK (50 mM). The Proteome Profiler
Human Apoptosis Array Kit was used for protein detection. Proteins of interest are shown.
doi:10.1371/journal.pone.0020617.g005
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for the above results; however, DNA damage, which is indicative

of apoptosis, was still observed with pan-caspase inhibited cells

(Figs. 4 &5). Therefore, caspase-independent mechanisms of

apoptosis were investigated. Apoptosis Inducing Factor (AIF) is a

caspase-independent, proapoptotic molecule that acts through its

release from the mitochondria and subsequent translocation to the

nucleus, where it binds DNA and causes chromatin condensation

[67,68]. In order to determine if AIF is involved in cytokine killing

of bLox5 cells, treated cells were visualized for AIF localization.

The ratio of nuclear localized AIF to cytoplasmic AIF was

significantly increased in cytokine-treated cells (Fig. 7). This

difference persisted in Z-VAD-FMK pre-treated bLox5 cells,

supporting a role for AIF in rhIFNc and rhTNFa cytotoxicity.

Other caspase-independent pro-apoptotic pathways were stud-

ied for their role in cytokine-mediated bLox5-cell death.

Cathepsin B has been shown to contribute to TNFa-induced

apoptosis in other cell types [69]; however, Cathepsin B inhibition

with CA 074 failed to rescue bLox5 survival after cytokine

treatment. In fact, at the published concentration of 20 mM [69],

CA 074 exacerbated cytokine killing and caspase activation (Data

Not Shown). At the highest non-toxic concentration of 5 mM, CA

074 did not increase survival. Recently, Bax-dependent mito-

chondrial permeabilization was identified as a pro-apoptotic signal

in human islets after cytokine treatment [17]; nonetheless,

preventing Bax translocation into the mitochondria was insuffi-

cient to prevent death in bLox5 cells (Data Not Shown).

mtDNA deficient bLox5 r0 cells were not killed by rhIFNc and

rhTNFa treatment but mtDNA sufficient bLox5 Cybrid cells were

sensitive to cytokine-induced cell death (Fig. 9A). This is

Figure 7. Cytokine treatment of bLox5 promotes nuclear
translocation of Apoptosis Inducing Factor. bLox5 cells were
treated with the combination of rhTNFa (2000 U/mL) and rhIFNc
(1000 U/mL) for 48 h with and without pan-caspase inhibition with Z-
VAD-FMK (50 mM x 2). Immunofluorescence analysis shows increased
AIF translocation to the nucleus in cytokine treated cells. Representative
images are shown. White arrows indicate cells with high nuclear AIF
staining. *denotes statistical significance with a P value ,0.05. NS
denotes no statistical difference.
doi:10.1371/journal.pone.0020617.g007

Figure 6. bLox5 cells die by apoptosis and necrosis after cytokine treatment with and without pan-caspase inhibition. A & B. bLox5
cells were treated with the combination of rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL) for 48 h with and without pan-caspase inhibition with Z-
VAD-FMK (50 mM x 2). Viability was analyzed by the ApoGlow Assay (A). * denotes statistical significance with a P value ,0.05. NS denotes no
statistical difference. The supernatant was analyzed for passive HMGB1 release (B). +: bLox5 cell lysate/positive control, 1: Untreated Control, 2:
rhIFNc, 3: rhIFNc + rhTNFa, 4: rhIFNc + rhTNFa + Z-VAD-FMK.
doi:10.1371/journal.pone.0020617.g006
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consistent with a recent report that demonstrated the intrinsic

apoptosis was activated during cytokine treatment of human islets

[17]. Therefore, because we found that functional mitochondria

are required for IFNc and TNFa killing and mitochondria are a

major source of ROS, we tested the cells for signs of oxidative

stress. GSH levels after cytokine treatment indicated oxidative

stress in these cells (Fig. 9B), demonstrating that cytokine

treatment tilts the redox balance towards oxidation, likely due to

increased ROS production.

The susceptibility of isolated human islets to killing in vitro by

proinflammatory cytokines has been the focus of significant

hypothesis testing, while mechanisms of Fas killing of human

islets has been less intense [70]. Post-mortem histological analysis

of pancreas from patients with T1D have demonstrated that

within the insulitis, CD8+ T cells express cell surface FasL

suggesting a role for Fas in beta cell destruction during disease

development [71]. Information on how Fas kills islets has been

derived from studies using mouse islets with no clear published

mechanism using human islets. Mouse studies indicated Fas

activated caspases. The enclosed studies are the first demonstra-

tion of a mechanism for Fas mediated apoptosis of human beta

cells, and clearly indicate that Fas activates the extrinsic pathway

for apoptosis in bLox5 cells (Figs. 3 & 9). It remains to be

investigated whether this is a shared mechanism with primary

human islets.

The ultimate effector molecule resulting from a cytokine attack

on primary islets is NO [11]. In contrast to primary human islets,

bLox5 cells do not produce NO when exposed to the combination

of IFNc, TNFa and IL-1b. In the absence of NO production,

IFNc, TNFa and IL-1b can activate a range of pro-death

pathways, including caspase-dependent apoptosis and necrosis, in

isolated primary human islets [17,70]. bLox5 cells undergo both

necrosis and caspase-dependent and –independent apoptosis after

treatment with rhIFNc and rhTNFa. However, IL-1b is required

to kill primary human islets yet, its addition is superfluous for

killing of bLox5 cells. Therefore, this cell line is likely unsuitable as

a model to use in studies of cytokine-induced iNOS-mediated beta

cell killing.

In summary, bLox5 cells are a partially dedifferentiated beta

cell line that produces a lower level of insulin than primary islets

and has blunted glucose stimulated insulin secretion. This cell line

and its derivative line, bLox5 r0, have been established as

unlimited sources of human beta cells, that are inappropriate to

study mechanisms of beta cell function; however, they can be used

for the study of autoimmune beta cell apoptosis as well as

mitochondrial contributions to cell death. These cells are primed

by proinflammatory cytokines for Fas-induced caspase-dependent

apoptosis via the extrinsic pathway and are susceptible to cytokine-

mediated apoptosis and necrosis through mitochondrial mecha-

nisms that are both caspase-dependent and –independent. We

Figure 8. Confirmation of mtDNA depletion in bLox5 r0 cells. A. PCR primers specific for a segment of the Catalase gene (CAT) were used as a
positive control. Genomic DNA from both EtBr (100 ng/mL) treated and untreated cell cultures exhibited robust amplification with the CAT primer
pair (product length: 292 bp). B. Using primers that are specific for the human mtDNA we were unable to amplify mtDNA from the EtBr treated cells,
while the untreated cells produced a band of appropriate size (product length: 2372 bp). C. Confocal images of untreated bLox5 cells using the
fluorescent probes picogreen (Green-DNA) and TMRM (Red-mitochondrial membrane potential). Untreated cells exhibit a co-localization (Orange) of
these dyes in the cytoplasm. D. Confocal images of EtBr treated (100 ng/mL) bLox5 cells (bLox5 r0) using the fluorescent probes picogreen (Green-
DNA) and TMRM (Red-mitochondrial membrane potential). bLox5 r0 cells exhibit mitochondrial membrane potential but no cytoplasmic positivity for
picogreen.
doi:10.1371/journal.pone.0020617.g008
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conclude that these cells will likely be beneficial for analyzing

direct methods of killing employed by autoimmune effector cells.

Materials and Methods

Cell Line and Reagents
The bLox5 cell line was kindly provided by Dr. Fred Levine

(Sanford Children’s Health Research Center, Sanford-Burnham

Medical Research Institute, La Jolla, CA). bLox5 cells were

maintained in low glucose (1 mg/mL) DMEM (Cellgro, Manassas,

VA), supplemented with 10% FBS (HyClone, Fisher Scientific,

Pittsburgh, PA), 1% MEM non-essential amino acids (Cellgro), 1%

penicillin-streptomycin (Gemini Bio-Products, West Sacramento,

CA) solution, 0.02% BSA (Sigma, St. Louis, MO) and 15 mM

HEPES (Cellgro) (VC-DMEM). Recombinant human IFNc was

obtained from BD Biosciences (San Jose, CA). Recombinant

human TNFa and recombinant IL-1b were purchased from R&D

Systems (Minneapolis, MN). Fas agonistic antibody (Clone CH11)

was purchased from Millipore (Temecula, CA). A monoclonal

antibody to HMGB1 was acquired from Abcam Inc. (Cambridge,

MA). An antibody to hCD95 (Fas)-PE-Cy5 and the isotype control

were purchased from BD Biosciences. Annexin V-APC was

purchased from Invitrogen (Carlsbad, CA).

Generation of bLox5 r0 Cells and bLox5 Cybrid Cells
bLox5 r0 cells were cultured in high glucose (4.5 mg/mL)

DMEM (Cellgro) supplemented with 10% FBS (HyClone, Fisher

Scientific), 1 mM sodium pyruvate (Sigma), 50 mg/L Uridine

(Sigma), and 1% penicillin-streptomycin (Gemini Bio-Products).

mtDNA was depleted by culturing cells in the above medium

supplemented with 100 ng/ml Ethidium Bromide (EtBr) for 6

months. Depletion of mtDNA was confirmed by: 1) PCR; 2)

confocal microscopy imaging; 3) failure of bLox5 r0 cells to

survive in pyruvate- and uridine-free medium.

Figure 9. Functional mitochondria are required for cytokine killing of bLox5. A. bLox5 r0 cells (empty bars) and bLox5 Cybrid cells (gray
bars) were treated with rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL) or with CH-11 (0.5 mg/mL) and rhIFNc (1000 U/mL) for 48 h. Z-VAD-FMK
(50 mM x 2) was used to inhibit caspase activity. Viability was measured by the MTT assay. Only mtDNA sufficient cells were killed by cytokines. ***
denotes statistical significance with a P value ,0.0001 compared to rhIFNc control. NS denotes no statistical difference when compared to rhIFNc
control. B. Changes in GSH levels were measured after a 24 h incubation period with rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL), with and without
pan-caspase inhibition. ** denotes statistical significance with a P value ,0.01 compared to rhIFNc control.
doi:10.1371/journal.pone.0020617.g009

Immune Mediated Human Beta Cell Death

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20617



bLox5 Cybrid cells were generated as described before [72].

Briefly, cybrid cells were made by fusion of bLox5 r0 cells with

mtDNA donor platelets from a healthy individual under the

presence of 50% (W/V) polyethylene glycol 1500 (Roche). Cells

were cultured in the medium for bLox5 r0 cells during the first 3

days after the fusion and then in selective medium (uridine and

pyruvate-free DMEM supplemented with 10% dialyzed FBS,

Penicillin and Streptomycin). After selection for 3 weeks, surviving

cybrid cells were cultured in DMEM for bLox5, as described

above, without pyruvate and uridine. Cybrid cells were cloned

using cloning cylinders (Corning, Corning, NY) when visible

colonies appeared in the culture.

Cell Death Assays. bLox5, r0 and Cybrid cells were seeded in

twelve-well Corning Costar culture plates (Fisher Scientific) at a

density of 56104 cells per well in a total volume of 500 mL and

allowed to adhere for 48 hours. The cells were then incubated with

rhTNFa (2000 U/mL) and rhIFNc (1000 U/mL) for 48 hours.

bLox5, r0 and Cybrid cells were also cultured in the presence of a-

Fas activating antibody CH11 (0.5 mg/mL) with and without

rhIFNc (1000 U/mL). Cell viability was examined using the MTT

assay [73,74], propidium iodide (PI) uptake, and externalization of

phosphatidylserine (PS) by Annexin V-APC staining.

Percent cell survival after cytokine or a-Fas antibody treatment

was measured by determining the ability of the live cells to reduce

yellow MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide (Sigma), to insoluble purple formazan crystals.

The cells were treated with MTT solution [5 mg/mL in

phosphate buffered saline (PBS)] for 2 hours at 37uC, 5% CO2.

Excess solution was removed and the formazan crystals were then

resuspended in acid isopropanol (0.04 N HCl in isopropanol). The

optical density of the product was measured at a wavelength of

560 nm and background subtracted at 670 nm.

bLox5 cells were analyzed on a BD LSR-Fortessa flow cytometer

using the BD FACSDiva software (BD Biosciences) and FlowJo flow

cytometry analysis software (Tree Star, Inc., Ashland, OR). Cellular

apoptosis was determined by double staining with PI and Annexin

V-APC, while necrotic cells were identified as PI single positive cells.

In addition, Trevigen’s CometAssay kit (Trevigen Inc, Gaithers-

burg, MD) was used to evaluate DNA damage in treated and

untreated bLox5 cells based on DNA tail shape and migration

pattern. The Proteome Profiler Human Apoptosis Array Kit (R&D

Systems) was utilized to measure the expression of proteins involved

in apoptosis and DNA repair.

Passive release of high-mobility group box 1 (HMGB1) protein

by necrotic cells was determined Western Blot. Briefly, bLox5 cells

were treated as described and the supernatant of each well was

removed without disturbing the attached cells. The supernatant

was concentrated using an ultracentrifuge (100,000 x g for 25

minutes), separated by SDS-PAGE, and then transferred to a

nitrocellulose membrane (Bio-Rad Laboratories, Hercules, CA).

HMGB1 was detected by chemiluminescence (SuperSignal West

Pico Chemiluminescent Substrate Kit, Thermo Scientific, Wal-

tham, MA) according to the manufacturer’s instructions.

Nitric Oxide Detection
The amount of nitric oxide (NO) released by bLox5 cells after

cytokine treatment was indirectly measured using the Griess Reaction

as previously described [14]. The optical density was read using a

SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA).

Oxidative Stress Analysis
Glutahione (GSH) levels were detected and quantified with the

GSH-Glo Glutathione Assay (Promega, Madison, WI) after a

24 hour-incubation with rhTNFa (2000 U/mL) and rhIFNc
(1000 U/mL).

Caspase Activity and Inhibition Assays
Caspase-8 and caspase-3 activities were measured using a

commercially available caspase detection kit (Cell Technology,

Inc, Palo Alto, CA) according to the manufacturer’s instructions.

Briefly, caspase-8 (FAM-LETD-FMK) or caspase-3 (FAM-DEVD-

FMK)-specific carboxyfluorescein (FAM) labeled peptide fluoro-

methyl ketone (FMK) caspase inhibitors were incubated with

48 hours cytokine-treated, 24 hours and 48 hours a-Fas-treated, or

untreated control bLox5 cells for 1 hour at 37uC. Cells containing

bound inhibitor were analyzed by flow cytometry on the FL1

channel. In some cases, the cells were treated with 50 mM of the

pan-caspase inhibitor (Z-VAD-FMK), purchased from Calbiochem

(San Diego, CA), for 1 hour prior to treatment. Z-VAD-FMK was

also added after 24 hours of incubation to maintain caspases

inactive. Pretreatment for 1 hour with the specific inhibitor CA 074

(20 mM) (Sigma) was used to inhibit the lysosomal protease

Cathepsin B. Bax translocation into the mitochondria was inhibited

with 100 mM of the peptide V5 (Calbiochem).

Flow Cytometry
Cytokine-treated and untreated bLox5 cells were analyzed for

Fas surface expression by standard flow cytometry techniques. In

brief, bLox5 cells were treated with increasing concentrations of

rhIFNc (250, 500, and 1000 U/mL) for 48 hours, stained for

1 hour at 4uC and washed to remove excess unbound antibody

before analysis.

Immunofluorescence
bLox5 cells were incubated with cytokines as described. Cells

were fixed with 2% paraformaldehyde (PFA) for 10 minutes at room

temperature (RT), permeabilized with 100% ice-cold methanol for

10 minutes, then blocked with 10% Normal Goat Serum (NGS) for

40 minutes at RT with single PBS washes between each step and

two washes before adding the antibody. bLox5 cells were

conjugated with AIF antibody (R&D Systems) for 1 hour at 37uC,

washed 3 times, then stained with FITC conjugated anti-rabbit IgG

(1:200) for 60 minutes in the dark. Before visualization, cells were

washed and slides were covered using 49,6-diamidino-2-phenylin-

dole (DAPI)-containing mounting medium. A Zeiss Axioskop

Microscope was used to visualize and image the cells. Images were

analyzed using ImageJ/Fiji (National Institute of Health).

Statistical analysis
Unless stated otherwise, data are shown as mean 6 SEM.

Significance was determined by a T-test for two group

comparisons (GraphPad Prism 5.02 San Diego, CA).

Supporting Information

Figure S1 Cytokine treatment of bLox5 cells induces the
expression of Heat Shock Proteins. bLox5 cells were treated

with the combination of rhTNFa (2000 U/mL) and rhIFNc
(1000 U/mL) for 24 h with and without pan-caspase inhibition

with Z-VAD-FMK (50 mM). The Proteome Profiler Human

Apoptosis Array Kit was used for protein detection.

(TIF)
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