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Fertilization is one of the most important events in living organisms to generate a new life
with a mixed genetic background. To achieve successful fertilization, sperm and eggs
must undergo complex processes in a sequential order. Fertilization of marine invertebrate
Ciona intestinalis type A (Ciona robusta) has been studied for more than a hundred years.
Ascidian sperm are attracted by chemoattractants from eggs and bind to the vitelline coat.
Subsequently, sperm penetrate through the vitelline coat proteolytically and finally fuse with
the egg plasma membrane. Here, we summarize the fertilization mechanisms of ascidians,
particularly from sperm-egg interactions to sperm penetration of the egg coat. Since
ascidians are hermaphrodites, inbreeding depression is a serious problem. To avoid self-
fertilization, ascidians possess a self-incompatibility system. In this review, we also
describe the molecular mechanisms of the self-incompatibility system in C. intestinalis
type A governed by three allelic gene pairs of s-Themis and v-Themis.
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INTRODUCTION

Fertilization of marine invertebrates has been extensively studied in classical research. This is not
only because a large quantity of gametes can be obtained but also because in vitro fertilization
experiments are easier in marine invertebrates than in mammals. Studying marine invertebrates led
to the discovery of fundamental biological processes, including the fertilization process. The marine
invertebrate Ciona intestinalis type A [another name: Ciona robusta (Brunetti et al., 2015)] is one of
the model animals used to study many fields of biology, including reproductive biology (Sawada
et al., 2001). The availability of draft genome sequences, transcriptomic and proteomics data and
gene knockdown and gene editing techniques has supported the progress of C. intestinalis (type A)
studies (Satou et al., 2001; Dehal et al., 2002; Shoguchi et al., 2006; Endo et al., 2011; Sasaki et al., 2014;
Sasakura et al., 2017; Pickett and Zeller, 2018). Since ascidians are hermaphrodites, self-fertilization
can occur. To avoid self-fertilization, many ascidians acquire a self-incompatibility (SI) system. After
self/nonself-recognition, only nonself sperm can penetrate through the proteinaceous egg coat called
the vitelline coat (VC) or chorion.

Ascidian fertilization consists of five major steps: 1) sperm chemotaxis, 2) sperm binding to the
VC, 3) self/nonself-recognition, 4) sperm penetration through the VC, 5) gamete fusion (Figure 1),
similar to the fertilization processes as previously reviewed (Vacquier and Swanson, 2011; Gallo and
Costantini, 2012). In C. intestinalis (type A), spermatozoa are attracted toward the eggs by sperm
attractant SAAF, a sulfated steroid 3,4,7,26-tetrahydroxycholestane-3,26-disulfate (Yoshida et al.,
2002). Transient intracellular Ca2+ increase is induced by SAAF gradient (Shiba et al., 2008), which is
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mediated by store-operated calcium channel (Yoshida et al.,
2003) and sperm-membrane SAAF-binding protein, Ca-
ATPase (Yoshida et al., 2018). After sperm chemotaxis,
spermatozoa bind to the VC and undergo “sperm reaction”,
which is characterized by vigorous movement on the VC and
mitochondrial sliding and eventual shedding (Lambert and Epel,
1979; Lambert and Koch, 1988). Most animal spermatozoon
besides teleosts has an acrosome at the tip of sperm head and
undergoes acrosome reaction, an exocytosis of the acrosomal
vesicle, upon sperm binding to the carbohydrate or proteinaceous
egg coat. However, the acrosome of ascidian sperm is very tiny
and it is still unclear whether the acrosome reaction takes place
before (De Santis et al., 1980) or after (Fukumoto, 1988) sperm
penetration of the VC. In this minireview, we describe our current
understanding and future perspectives on ascidian fertilization,
particularly in steps 2) to 4). After sperm penetration of the egg
coat, gamete fusion takes place, which is mediated by sperm
IZUMO1 and egg JUNO and CD9 in mice (see review: Okabe,
2018). However, the molecular basis of gamete fusion is poorly
understood in ascidians. Recently, GCS1/Hap2 is reported to play
a pivotal role in gamete fusion in plants and animals (see review:
Mori et al., 2015), but the homologous genes and their functions
are not known in ascidians or vertebrates.

GAMETE INTERACTION

Sperm-Egg Interaction
After sperm attraction to the egg, gamete interaction takes place
between the egg coat and sperm head (Figure 1). The egg coat is
an extracellular matrix called the zona pellucida (ZP) in
mammals and the vitelline envelope (VE) or VC in other
animals. Structurally and evolutionally conserved egg coat
proteins and ZP domain proteins are the major components
of ZP, VE and VC (Aagaard et al., 2006; Goudet et al., 2008;

Yamada et al., 2009). In mouse, the highly glycosylated proteins
ZP1, ZP2 and ZP3, all of which contain a ZP domain at the C
termini, are the building blocks of a filamentous network
generated by polymerization of ZP domains (Bork and Sander,
1992; Jovine et al., 2002; Stsiapanava et al., 2020). Current studies
have revealed that the N-terminal region of mouse and human
ZP2 and the marine mollusk abalone VE receptor for lysin
(VERL) crucially regulate gamete interactions (Gahlay et al.,
2010; Avella et al., 2014; Raj et al., 2017). Similarly, the VC of
ascidian eggs is constructed by ZP domain proteins (Sawada et al.,
2002a; Kürn et al., 2007a; Yamada et al., 2009). In C. intestinalis,
11 ZP domain proteins have been identified by proteomic analysis
of VC, and CiVC57 constitutes the most abundant ZP domain
protein in VC. CiVC57 consists of a von Willebrand factor
domain, 24 EGF-like repeats, a ZP domain, and a C-terminal
transmembrane domain (Yamada et al., 2009). CiUrabin is an
abundant protein on the surface of sperm, and in the lipid-raft-
membrane fraction, it can bind to CiVC57, suggesting that
CiVC57 and CiUrabin play a key role in gamete interaction
(Yamaguchi et al., 2011; Nakazawa et al., 2015). CiUrabin belongs
to a cysteine-rich secretory protein (CRISP) family containing a
pathogenesis-related (PR) domain and a
glycosylphosphatidylinositol (GPI)-anchor attachment site
(Yamaguchi et al., 2011). Sperm CRISP family proteins
participate in several steps in mammalian fertilization
(Gonzalez et al., 2021). In particular, the PR domain of
CRISP-1 is evolutionarily conserved and involved in sperm-
egg binding (Ellerman et al., 2006). In addition, sperm-egg
binding in another ascidian Halocynthia roretzi is mediated by
the CRISP family protein HrUrabin (Urayama et al., 2008). Most
likely, the interaction between CiVC57 and CiUrabin participates
in the primary binding between sperm and VC in C. intestinalis
(Yamaguchi et al., 2011; Saito et al., 2012).

It is also worth noting that C. intestinalis sperm α-L-fucosidase
and L-fucosyl residues of glycoproteins on the VC play a key role

FIGURE 1 | Fertilization steps of C. intestinalis. Fertilization is initiated by the following steps. (1) Sperm chemotaxis. (2) Binding of spermatozoa to the VC. (3)
Interaction of self/nonself-recognition proteins that induce the signal transduction cascade leading to the SI response. (4) Penetration of nonself-recognized sperm
through the VC. (5) Fusion of the egg and sperm plasma membranes resulting in fertilization and subsequent activation of zygote development.
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in sperm binding to the VC for the following reasons (Hoshi et al.,
1983; Hoshi et al., 1985). Sperm binding to the VC of glycerin-
treated (glycerinated) eggs, whose VC sperm can bind to but not
penetrate, was inhibited by L-fucose but not by D-fucose (Rosati
and De Santis, 1980). In addition, α-L-fucosidase substrates (aryl
α-L-fucoside) and competitive inhibitors (aryl β-L-fucoside) but
not stereoisomer (aryl α-D-fucoside) blocked sperm binding to
VC (Hoshi et al., 1983; Hoshi, 1985; Hoshi, 1986). α-L-fucosidase
is located at the tip and the surface of the sperm head, as revealed
by immunocytochemistry using several monoclonal antibodies
raised against the purified enzyme. Whereas C. intestinalis sperm
α-L-fucosidase showed an optimum pH for activity of
approximately 3.9, it showed 2% or less of maximum activity
in normal seawater (Hoshi et al., 1985). Sperm bound to VC in
normal seawater detached within 7 min at 20°C but not at 0°C
after decreasing the pH near the optimum pH of the enzyme
(Hoshi et al., 1985; Hoshi, 1986). These results led to the
conclusion that α-L-fucosidase at the tip of the sperm head is
responsible for the primary binding of sperm to the fucosyl
glycoprotein(s) on the VC in C. intestinalis (De Santis et al.,
1983).

Self/Nonself-Recognition Molecules
Shortly after sperm binding to the VC, a self/nonself-
recognition process takes place on the VC (Morgan, 1939;
Rosati and De Santis, 1978; Kawamura et al., 1987; Figure 1,
Figure 2A). Identification of self/nonself-recognition molecules
was attempted by several groups, and candidate molecules have
been proposed (Kawamura et al., 1991; Pinto et al., 1995;
Marino et al., 1998; Kürn et al., 2007a; Kürn et al., 2007b;
Harada et al., 2008). Marino et al. proposed that autologous
peptide-associating hsp70 on the surface of folliele cells
participates in self/nonself-recognition during oogenesis, by
analogy to antigenic peptide-presenting MHC (Marino et al.,
1998). However, the peptides trapped by hsp70 have not been
identified. Kawamura et al. found several factors in the acid-
extract involved in allorecogniton, i.e., a non-allorecognizing
glucose-enriched inhibitor of the gamete interaction and Glu/
Gln-enriched peptide modulators, which function as cofactors
in allorecognition of sperm receptors (Kawamura et al., 1991;
Figure 2A). Khalturin and his colleague identified several genes
expressed in oocytes and follicle cells that are highly
polymorphic among individuals. They suggested that these
highly polymorphic ZP domain proteins and sushi domain-
containing protein vCRL1 may be the molecular basis for
fertilization and allorecognition in C. intestinalis type B
(Khalturin et al., 2005; Kürn et al., 2007a; Kürn et al.,
2007b). However, their segregation and gene-knockdown
analyses of vCRL1 indicated that vCRL is important for the
establishment and maintenance of the blood system, not in self/
nonself-recognition (Sommer et al., 2012).

Self-sterility in C. intestinalis was first reported by Thomas
Hunt Morgan, the founder of modern genetics, more than a
hundred years ago (Morgan, 1910). Murabe and Hoshi (2002)
and Harada et al. (2008) repeated Morgan’s experiments to
determine whether crossing between sperm and eggs from
selfed F1 siblings resulted in fertile or sterile offspring

(Morgan, 1942; 1942), and they confirmed Morgan’s
observation that one-way cross-sterility occurs between
selfed F1 siblings, and this scarcely occurs under natural
conditions (Murabe and Hoshi, 2002; Harada et al., 2008).
Morgan concluded that the SI system is genetically controlled
and hypothesized that this explains one-way cross sterility
(Morgan, 1942). Morgan assumed that the “male” SI genes are
expressed in haploids, while the “female” SI genes are
expressed in diploids. This is called the “haploid sperm
hypothesis”. Heterozygous individuals (A/a) release
A-sperm and a-sperm, either of which can fertilize a
homozygous individual’s eggs (a/a-eggs or A/A-eggs). On
the other hand, homozygous individuals (A/A or a/a)
release A-sperm or a-sperm alone, respectively, which
cannot fertilize a heterozygous individual’s eggs (A/a-eggs),
because both the A-sperm receptor and a-sperm receptor
reside in the VC. Based on these criteria, Harada et al.
carried out fertilization experiments between selfed F1
siblings and searched for a one-way cross-sterile
combination. Seventy marker genes on 14 chromosomes
were examined by PCR to determine whether they were
homozygous or heterozygous (Harada et al., 2008).
According to these strategies, two loci (locus A on
chromosome 2q and locus B on chromosome 7q) were
identified as loci responsible for SI. Among the
approximately 20 genes in locus A, only one gene product
(fibrinogen-like protein) was identified in the VC by proteome
analysis (Yamada et al., 2009), and a polymorphic gene
expressed in the testis was identified as a candidate sperm-
side SI factor. These gene pairs were designated v-Themis-A
and s-Themis-A, and two similar gene pairs were identified in
locus B and named s/v-Themis-B and s/v-Themis-B2 (Harada
et al., 2008; Sawada et al., 2020). Taken together, there are three
multiallelic pairs of SI candidate genes: egg-side genes
(v-Themis-A, v-Themis-B and v-Themis-B2) and sperm-side
genes (s-Themis-A, s-Themis-B and s-Themis-B2) (Harada
et al., 2008; Yamada et al., 2009; Sawada et al., 2020).
Interestingly, these are highly polymorphic genes and are
tightly linked: v-Themis genes are encoded in the first
intron of s-Themis genes in the opposite direction (Harada
et al., 2008; Sawada et al., 2020). The sperm-side SI genes
s-Themis-A, B, and B2 show homology to mammalian PKD1 or
PKDREJ, which both contain a hypervariable region (HVR),
receptor for egg jelly (REJ), G protein-coupled receptor
proteolysis site (GPS), lipoxygenase homology 2 (LH2)
domain, and 5 (in case of s-Themis-A) or 11 (in case of
s-Themis-B and s-Themis-B2) pass transmembrane (TM)
domain. Notably, s-Themis-B and s-Themis-B2 possess a
cation channel [polycystic kidney disease (PKD) channel]
domain in their C-terminal regions (Harada et al., 2008;
Sawada et al., 2020). When three allelic gene pairs were
matched (in the case of the same haplotypes), even nonself-
fertilization was strongly blocked (Sawada et al., 2020). In
addition, by gene editing experiments, s/v-Themis-A genes and
s/v-Themis-B/B2 genes were found to be indispensable for self-
sterility (Sawada et al., 2020). After sperm recognize the VC as
self, drastic and acute Ca2+ influx occurs in spermatozoa,
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referred to as the SI response (Saito et al., 2012). This dramatic
SI response causes sperm detachment from the VC and loss of
sperm motility, because intracellular Ca2+ concentration
regulates sperm behavior and flagellar beating. Although the
SI response abolishes the fertility of self-recognized sperm,
low-Ca2+ seawater enables self-fertilization (Hashimoto et al.,
submitted; Figures 2A,B). These results indicate that the
increase in intracellular Ca2+ concentration triggers the SI
response in spermatozoa.

Since the SI system is abolished by acid treatment of the VC,
putative SI proteins might be released (Kawamura et al., 1991).
Therefore, acid extracts of the VC were investigated by LC/MS,
and Ci-v-Themis-like protein was identified as a new SI candidate
protein (Otsuka et al., 2013). As the name indicates, Ci-v-Themis-
like protein has a fibrinogen-like domain, similar to v-Themis-A,
-B and -B2. However, Ci-v-Themis-like protein is not
polymorphic among individuals. Although this protein is
unlikely to participate in the SI system, it is probably involved
in gamete binding or the assembly of v-Themis proteins on the
VC (Otsuka et al., 2013).

Taken together, spermatozoa are equally attracted to self and
nonself eggs and are capable of binding to the VC before

recognizing the eggs as self or nonself. The interaction between
sperm fucosidase and the VC fucose moiety must be maintained
even after recognition as nonself, since nonself sperm binding to
the VC is inhibited by fucose and fucose glycosides (Hoshi et al.,
1983; Hoshi et al., 1985). Sperm fucosidase-fucose interactionsmay
be involved in the interaction between s-Themis and v-Themis. On
the other hand, the CiUrabin-CiVC57 interaction may be broken
after sperm recognize the VC as self, since most self-sperm detach
from the VC (Kawamura et al., 1987; Saito et al., 2012). In this
process, GPI-specific phospholipase might be activated after
sperm recognize the VC as self. Shortly after sperm binding to
the VC, gametes undergo a judgment of self- or nonself-gametes
using three allelic protein pairs of s-Themis and v-Themis, and
only self-recognized sperm are rejected because self-recognition
triggers the SI response (Figure 2B). s/v-Themis homologous
genes were also identified in self-sterile species, such as H.
roretzi and C. savignyi. However, participation of these
proteins in SI is not known, since crossing experiments and
genetic analysis have not been done. Since human sperm
PKDREJ shows significant polymorphism (Hamm et al.,
2007), it is an intriguing issue to clarify whether these
variations are related to fertilization efficiency.

FIGURE 2 |Current status of fertilization and self-incompatibility system. (A) Schematic representation of artificial self/nonself-fertilization inC. intestinalis. There are
several ways to achieve artificial self-fertilization. Removing the VC and treating the VCwith acidic seawater or proteases relieves the self-fertilization block. In addition, the
inhibition of Ca2+ influx in spermatozoa, which is controlled by the external Ca2+ concentration, is sufficient to block the self-fertilization signal. (B) Gamete proteins
involved in each step of fertilization are illustrated. Ub, ubiquitin; Tast, tunicate astacin-like metalloprotease with thrombospondin-type-1 repeat.
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SPERM VITELLINE-COAT LYSINS

Sperm utilize the lytic agent “lysin”, which enables sperm to
penetrate through the proteinaceous egg coat (Figure 1). In
ascidians, nonself-sperm lysin must be activated after self/nonself-
recognition on the VC, which allows sperm to penetrate the VC.
Generally, deuterostome spermatozoa appear to utilize enzymatic
lysins, since protease inhibitors can inhibit fertilization, particularly
sperm penetration of the ZP, VE orVC. Inmammals, sperm acrosin,
an acrosomal trypsin-like protease, is thought to be a zona-lysin
(Hoshi, 1985). However, acrosin was found to be a nonessential gene
for sperm penetration of the ZP and fertilization in mouse, as
revealed by studies of acrosin knockout (KO) mice (Baba et al.,
1994). In fact, acrosomal protease(s) other than acrosin are
responsible for the sperm penetration process in mice (Yamagata
et al., 1998). On the other hand, it was recently reported that acrosin
is essential for hamster fertilization, more precisely sperm
penetration of the ZP, by studying an acrosin-KO hamster model
(Hirose et al., 2020). Therefore, whether acrosin is a zona-lysin
depends on the species.

Hoshi et al. explored sperm proteases functioning as lysins using
Halocynthia roretzi. Trypsin inhibitor (leupeptin) and chymotrypsin
inhibitor (chymostatin) blocked the fertilization of intact eggs but
not of VC-free eggs. Therefore, sperm trypsin-like and
chymotrypsin-like proteases appear to participate in the sperm
penetration of the VC, most likely as lysins (Hoshi et al., 1981).
Sawada and his colleagues purified two trypsin-like proteases,
ascidian acrosin and spermosin, from H. roretzi sperm extract
(Sawada et al., 1984a). The involvement of both enzymes in
fertilization was confirmed by comparing the abilities of various
leupeptin analogs in inhibition of fertilization with their purified
enzymatic activities (Sawada et al., 1984b). However, these enzymes
showed no appreciable VC-degrading activity. Then, chymotrypsin-
like protease was purified using Suc-Leu-Leu-Val-Tyr-MCA, the
strongest inhibitor of fertilization among the chymotrypsin
substrates tested, and the purified enzyme was identified as the
proteasome (Sawada et al., 2002a). The purified proteasome from
sperm can degrade the main component of the VC, HrVC70, after
ubiquitination. Furthermore, anti-proteasome and anti-
multiubiquitin antibodies and proteasome inhibitors inhibited
fertilization. Lys-234 of HrVC70 appears to be ubiquitinated
during fertilization, followed by degradation by the proteasome
secreted upon sperm activation (sperm reaction) (Saitoh et al.,
1993; Sawada et al., 2002a; Sakai et al., 2003). These results
indicate that the sperm ubiquitin–proteasome system plays a
pivotal role in fertilization, functioning as a VC lysin (Sawada
et al., 2002b; Sawada, 2002). Notably, spermatozoa of mammals
(Sutovsky et al., 2004), quail (Sasanami et al., 2012) and sea urchins
(Yokota and Sawada, 2007) also utilize the sperm proteasome as egg-
coat lysin.

In C. intestinalis, the effects of leupeptin and chymostatin on
fertilization were examined (Hoshi, 1985). In this species,
fertilization was inhibited by chymostatin but not by
leupeptin, suggesting that C. intestinalis (Phlebobranch) and
H. roretzi (Stolidobranch) utilize a different lysin system. A
24-kDa chymotrypsin-like protease was purified from C.
intestinalis sperm, and the purified enzyme affected the outer

layer of the VC, as revealed by electron microscopy (Marino et al.,
1992). Analogous to H. roretzi, the participation of the sperm
proteasome in fertilization was investigated in C. intestinalis. The
proteasome inhibitors MG115 and MG132 inhibited the
fertilization of intact eggs but not VC-free eggs (Sawada et al.,
1998). In addition, these inhibitors showed no appreciable
inhibition of sperm binding to the VC of glycerinated eggs.
These results suggest that the proteasome plays a key role in
sperm penetration through the VC but not in sperm binding to
the VC (Figure 2B). Further studies are needed to clarify the
target VC protein(s) of these proteases.

To investigate whether these proteases are exposed to the
plasma membrane of the sperm head, proteomic analysis of
sperm surface proteins from C. intestinalis was performed
(Nakazawa et al., 2015). Unexpectedly, chymotrypsin-like
protease or proteasome subunits were not identified under the
conditions tested. Instead, several metalloproteases, which are
referred to as “Tast (tunicate astacin-like metalloprotease with
thrombospondin type 1 repeat)”, were identified as the major
proteases (Nakazawa et al., 2019). The involvement of
metalloproteases in fertilization was tested by the
metalloprotease inhibitor GM6001. GM6001 strongly inhibited
the fertilization of intact eggs but not VC-free eggs, and GM6001
did not inhibit sperm binding to the VC of glycerinated eggs.
Furthermore, when isolated VC was incubated with intact sperm,
several VC proteins, including CiVC57, were degraded and
inhibited by GM6001. Therefore, Tasts are promising
candidates for VC lysin, although we cannot exclude the
possibility that the 24-kDa chymotrypsin-like protease and the
proteasome are also involved in sperm penetration of the VC.
Generally, metalloproteases, such as matrix metalloproteases, or
the proteasome are very powerful tools to degrade insoluble
proteins. It is interesting to note that several egg coat-targeting
proteases, such as mouse egg ovastacin (Burkart et al., 2012) and
medaka hatching enzymes (Yasumasu et al., 1992), belong to
astacin-like metalloproteases. Further detailed studies on the
molecular mechanisms of degradation of VC proteins by
sperm proteases functioning as lysins remain to be elucidated.

CONCLUDING REMARKS

We summarized the current working hypothesis of the
mechanisms of fertilization in C. intestinalis, particularly from
the sperm binding to the VC to the sperm penetration through
the VC (Figure 2B). Shortly after sperm binding to the VC, which
is mediated by interactions between CiUrabin and CiVC57, self/
nonself-recognition molecules may be recruited to the binding
site. When three allelic pairs (haplotypes), i.e., s/v-Themis-A,
s/v-Themis-B, and s/v-Themis-B2, are matched (self-
recognition), drastic Ca2+ influx occurs in spermatozoa, and
the self-recognized sperm detaches from the VC or quits
moving on the VC. Recognizing autologous proteins rather
than an enormous number of allogeneic proteins is much
easier and more reasonable. Genome editing experiments
clearly demonstrated that s/v-Themis-A and s/v-Themis-B/B2
are indispensable for self/nonself-recognition. In addition,
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s-Themis-B and -B2 were more crucial than s-Themis-A in the SI
system (Sawada et al., 2020). This is not at variance with the fact
that both s-Themis-B and s-Themis-B2 contain a cation channel
at their C-termini that is probably involved in Ca2+ influx. Similar
to the SI system in Papaveraceae, Ca2+ influx in spermatozoa may
induce sperm cell apoptosis. Further studies are necessary to
demonstrate the protein–protein interaction between s-Themis
and v-Themis. Intracellular signal transduction after the SI
response is also an intriguing issue to be investigated. In the
lysin system, we revealed the importance of a novel astacin-like
metalloprotease (Tast) in sperm passage of the VC. Elucidating
the physiological substrates of sperm Tasts and proteasomes are
also important issues that remain to be clarified.
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