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Abstract 
This review explores the incessant evolutionary interaction and co-
development between immune system evolution and somatic 
evolution, to put it into context with the short, over 60-year, detailed 
human study of this extraordinary protective system. Over millions of 
years, the evolutionary development of the immune system in most 
species has been continuously shaped by environmental interactions 
between microbes, and aberrant somatic cells, including malignant 
cells. Not only has evolution occurred in somatic cells to adapt to 
environmental pressures for survival purposes, but the immune 
system and its function has been successively shaped by those same 
evolving somatic cells and microorganisms through continuous 
adaptive symbiotic processes of progressive simultaneous 
immunological and somatic change to provide what we observe 
today. Indeed, the immune system as an environmental influence has 
also shaped somatic and microbial evolution. Although the immune 
system is tuned to primarily controlling microbiological challenges for 
combatting infection, it can also remove damaged and aberrant cells, 
including cancer cells to induce long-term cures. Our knowledge of 
how this occurs is just emerging. Here we consider the connections 
between immunity, infection and cancer, by searching back in time 
hundreds of millions of years to when multi-cellular organisms first 
began. We are gradually appreciating that the immune system has 
evolved into a truly brilliant and efficient protective mechanism, the 
importance of which we are just beginning to now comprehend. 
Understanding these aspects will likely lead to more effective cancer 
and other therapies.
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Introduction and Overview
It often goes unappreciated that the adaptive immune system 
developed hundreds of millions of years ago, and has evolved 
into a truly efficient protective mechanism, the importance  
of which we are just beginning to now understand in science 
and medicine. Acute immune responses have developed and 
evolved alongside infection and genetic diversity, as part of the 
entire evolutionary process of matching organism against organ-
ism. There has been a continuous development of the immune 
system’s capacity to protect an organism against infections  
through rapid genetic somatic mutations that also led to a  
dynamic, intricate interplay between genetic endowment and 
somatic mutations. The immune system acts as an ultimate high 
fidelity ‘read-out’ for cellular genetic change, detecting cellular 
aberration at the molecular level in its very early stages as it devel-
ops, to remove or destroy aberrant cells. Such aberration arises  
from infection of cells by viruses, bacteria or other microbes, 
and from DNA damage, failed repair mechanisms, mutagens, 
carcinogens including UV light, toxins and other chemicals, and 
from cellular damage and ageing, thus embracing a wide vari-
ety of mechanisms causing cellular aberration. Aberration is  
detected by a variety of innate non-specific immune mecha-
nisms through damage (or danger)-associated molecular pat-
terns (DAMPs) that are released in response to trauma or injury 
to tissues, such as heat-shock proteins (HSPs) when cancer 
cells are injured; and also pathogen associated molecular pat-
terns (PAMPs) which are a variety of molecules associated with 
(extrinsic) pathogens usually recognized by the innate immune  
system through pattern-recognition receptors (PRRs), such as 
toll-like receptors (TLRs) which include bacterial lipopoly-
saccharides, glycoconjugates, viral proteins and endotoxins. 
This might explain why addition of bacterial or viral anti-
gens to cancer microenvironments (naturally or therapeuti-
cally) is observed to trigger successful adaptive immunity 
by supplying a suitable ‘danger signal’ in some situations. It  
is unclear whether the immune response is against the pathogen 
signal primarily, with secondary tumour killing; or drives for-
ward augmenting a pre-existing immune response against the 
cancer antigens by releasing inhibition. The recent anti-PD-1  
data would suggest the latter1.

Many pathogens contain intrinsic danger signals, due to an  
evolutionary adaptation selected-for over millions of years, 
capable of inducing an immune response in animal and human 

immune systems. Constant dynamic interaction occurs between 
cells and the immune system to preserve homeostasis. Because  
the rate of mutation during cell division and tissue turnover  
far exceeds the rate of malignant tumour diagnosis, the immune 
system must serve in detecting and eliminating aberrant and 
frankly malignant cells at a developmentally early stage.  
MacFarlane Burnet proposed active immune surveillance occurs 
to detect cancer cells and virally infected cells to remove them  
from the body2–7. However, the fact that cancer does occur in 
humans and animals indicates that the process of detection and 
removal of malignant cells is not completely efficient. The rea-
son for cancer persistence likely resides with observations that 
in the chronic state of antigen persistence the immune system  
continually appears to repeatedly ‘close itself down’ to avoid 
over-activation and to conserve energy. In the acute state, with  
exposure to each new pathogen the immune system responds 
rapidly over several days and then typically retains ‘memory’ 
of that encounter, enabling more rapid responses upon subse-
quent exposure. If the antigen can be acutely removed from 
the system, the immune system returns to its steady basal  
state via homeostatic mechanisms. However, if the anti-
gen persists and cannot be removed from the organism, the 
immune system responds again and again with further cycles 
of activity. Over-reactivity is limited by eliciting an inhibitory 
response after each activation response, in the form of negative  
feedback for biological homeostatic damping. This cyclic feed-
back phenomenon is seen right across many, if not all, biologi-
cal systems in nature. In the chronic state, the immune system 
repeatedly activates in response to persistent antigenic signals. 
When the antigenic signal cannot be removed with a second  
‘round’ of activation, another cycle of activation and then inhibi-
tion occurs. This repetitive cycle continues until the antigenic 
focus is eventually removed, or the organism dies. Although 
this is an efficient system in the acute setting, in the chronic  
setting where the problem persists indefinitely and does not 
appear to resolve, ‘chronic inflammation’ can arise which is often 
far less energy efficient. Vast amounts of energy can be con-
sumed in chronic severe inflammatory conditions1. In areas of 
the world where infection has been effectively reduced by sani-
tation and other public health measures, non-infectious chronic 
inflammatory diseases have emerged as the major causes of  
morbidity and mortality. Clinically, this manifests as a relaps-
ing and remitting process, often with malaise and weight  
loss characteristic of many chronic illnesses. The ‘immunological 
damping’, although on one hand offering some anti-inflammatory  
advantage, results in rather maladaptive processes which  
consume excessive amounts of energy, that may damage  
surrounding tissues and cells. The relapsing and remitting  
phenomenon is widely observable in states including chronic  
infections, chronic inflammatory diseases (like rheumatoid 
arthritis, thyroiditis and multiple sclerosis), and cancers. Over 
a number of generations, natural selection has led to efficiency 
improvements of immune responses. For instance, some spe-
cific chronic infections through co-adaptation of hosts and 
pathogens allowed normal (asymptomatic) functioning of most 
infected individuals; examples are endemic treponematoses8–10 or  
tuberculosis11,12.

This article considers the immune system more widely and 
relates cancer immunology in terms of the symbiotic evolutionary  
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relationships between the immune system, somatic cell evolution, 
microbial pressure and chronic inflammation.

Developmental Importance, Genome Diversity and 
Evolutionary Change
The immune system functions diversely across many organs 
to protect and maintain health. Importantly, the host’s immune 
system can regulate the genomic integrity across species and 
generations. Protection extends to all body barrier interfaces  
between the external and internal environment, where inva-
sion of microbial agents is prevented or dealt with. The protec-
tion also acts against deleterious somatic mutations of host cells. 
The immune system is vital for maintenance of the health of all  
other body systems.

Essentially, the process of DNA-based evolution, besides 
adapting organisms to their physical environments, has pit-
ted organism against organism in the quest for ultimate survival.  
According to Darwinian principles, the surviving organisms 
are the most successful in their reproduction either by con-
quering and terminating competing organisms, or in reaching 
symbiotic balance with them. That process requires protection  
of host DNA and also facilitates relatively rapid genomic con-
stitutional adaptation by acquiring and modifying useful DNA 
from the environment13. Indeed, the organism’s DNA is added 
to, modified and diversified to keep ahead of the ‘genetic supe-
rior adaptability game’ by mutation, plasmid transfer, viral trans-
duction, mitotic translocations, and meiotic acquisition to allow  
its successful reproduction. The immune system undergoes 
constant modification of innate and adaptive immunity with 
exposure to antigenic stimuli both at the individual and the  
population levels.

The mammalian immune system represents one of the final 
(to date) central arbiters over the course of human Darwinian 
evolution. Many of the advances necessary for human adapta-
tion have been moderated, directed and shaped by the influence  
of the immune system. Most fundamentally, the defense 
against infection and therefore survival of individuals to per-
mit reproduction, is underpinned by immune system function. 
Less obvious, though equally fundamental, is the role of the 
immune system in maintenance of the organism’s homeostasis 
through removal of cells whose somatic mutations made them  
deleterious or disadvantageous. Natural selection applies not 
only to the successful reproduction of entire organisms, but 
also to the clonal reproduction of cell lineages, both cancer and  
immunological, within an organism14.

The genes coding for the hypervariable regions of the antibody 
molecule and the genes for the variable regions of the T-cell 
receptor, mutate at a much faster rate than somatic genes under 
usual environmental pressure. The critical process of V(D)J  
gene recombination during T and B lymphocyte development 
randomly assembles different gene segments – named vari-
able (V), diversity (D) and joining (J) genes, to generate immu-
noglobulin molecules and T cell receptors that can recognise 
antigens to which either the host or its genetic ancestors might  

have had exposure permitting binding and responsiveness to 
both new or changing antigens. These processes allow for more 
diverse binding patterns for antigens by both antibodies and 
T-cell receptors, which has significant immune adaptational  
advantage15,16. Somatic mutation on the other hand is a relatively 
slow process where genetic changes through (often) weaker 
selection pressures on survival and reproduction usually require 
some generations of cell divisions and progeny. These, changes, 
however, perceived as “millenial” can happen over just a few  
generations17–19. The immune system genes, however, con-
stantly rapidly mutate in order to generate diverse conformations 
capable of binding the multitude of antigens to which an indi-
vidual is exposed. Many of those antigens might be associated 
with threat and danger, for example, from microbial invasion.  
Examples of the somatic hypermutation process in B-cells are 
antibody class switching, and hypermutation of the genes for 
the variable regions of immunoglobulin molecules permit-
ting the rapid antibody recognition of new foreign antigens 
with different molecular shapes. The immune system design  
has necessarily evolved, through continuous successive approxi-
mation, to detect subtle molecular cell surface aberrations. This 
occurs through both non-specific, and specific B- and T-cell,  
mechanisms in an elegantly integrated manner.

How the Genome Monitors Itself and Evolves
Somatic changes of organisms generally occur at a gradual 
pace of varied rates as part of the slow, but effective, evolution-
ary process through such mechanisms as random mutation,  
natural selection and viral infection. For example, human mor-
phological characteristics, like stature, brain size and tooth size 
change at rates ranging from 0.3 darwins to 65 darwins17. Micro-
bial DNA sequences, for example from retroviruses like HIV, 
Herpes viruses and Mycobacterium tuberculosis, have been  
identified in the human genome, and these genes must have been 
structurally incorporated over time from repeated exposure, 
interaction and exchange between mammalian and microbial  
DNA20,21. Human Endogenous Retroviruses (HERVs) are esti-
mated to make up to 8% of the human genome, though fragmented 
and replication incompetent, it bears testament to long and inti-
mate genetic interactions between a parasite with a few genes 
and 10,000 nucleotides, and a host of some 22,000 genes and  
some 2.85 billion nucleotides22–24. Interestingly, the (unin-
fected) C57 black mouse has several whole genomic copies of 
the LMP56 retrovirus in its germline23. Clearly, the retrovirus 
became inserted into the murine genetic complement in the mam-
mal’s evolutionary past23–27. When infected with the virus in the  
experimental situation, the mouse develops a chronic immu-
nodeficiency disease, the clinical course of which parallels 
HIV/AIDS in humans28. It is now suggested that this chronic 
disease state is due to the murine immune system failing to  
differentiate between self and non-self, such that it homeo-
statically attenuates or down-regulates the immune response 
against the virus in vivo29,30. Failure to resolve the disease is due 
to persisting viral (self) antigens. The experimental similarity 
to the immune response in murine cancer models is strikingly  
compelling. In the case of cancer in the mouse the persisting 
antigens are due to the growing cancer which appears to exert  
a similar attenuating effect31.
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Over the millennia the constant exchange of genetic material 
between host and environmental microorganisms has offered 
incremental adaptive advantage to both organisms (host-
pathogen adaptation), but in fundamentally different ways,  
perhaps comprising the ultimate symbiotic relationship, since 
both have evolved and survived32. There remains a debate over 
whether the presence of microbial DNA is the result of incor-
poration or failed gene loss of inherited genes as evolution has 
occurred33–36. However, many microorganisms can expand rapidly,  
possess mechanisms for evasion of host defences, and can 
mutate at a rate that far outpaces somatic evolutionary change 
via much faster division/reproduction rates. This may explain  
the immune system’s evolved ability to match these rapid  
microbial mutational rates to more effectively neutralize them 
via innate mechanisms, antibody production and cellular 
responses. Examples are the microorganisms that rapidly expand 
and produce outbreaks of disease in humans, animals (from  
insects to mammals), and, plants, sometimes with transmis-
sion across species. Rapid, immediate ‘revolutionary’ adaptive 
change is advantageous to keep the immune system ahead of 
microbial mutation, virulence and growth37. To oppose mutated, 
infected and otherwise aberrant cells, the immune system has 
a number of adaptive and protective mechanisms. These include  
somatic hypermutation genes for generation of hypervariable 
region binding domains for antibody molecules produced by 
plasma (B-) cells, and for the process of genetic recombination 
by T-cells forming the variable regions of T-cell surface recep-
tors for rapid response to antigen exposure. In this way, adaptive  
immune responses can rapidly generate multiple molecules 
with variable affinity for binding whole or fragmented antigens. 
An analogy would be ‘random number generation’ to break 
undeciphered digital codes, or in contemporary terms to ‘hack  
into’ a computer system across encrypted firewalls38–40.

Without adequate host organism defence, infection would 
cause cellular damage and death. Humans are estimated to har-
bour some 1014 microbes, mostly bacteria, while we consist of 
only 1013 mammalian cells41–43. It might therefore be argued  
that in a cellular sense we are more bacterial than mamma-
lian in constitution. The human body, like any other multicel-
lular organism, should be treated as a complex ecosystem whose 
balance is dynamically maintained by feedback interactions  
amongst its parts.

To understand the human immune system, we must appreci-
ate that each facet of the immune system has evolved con-
currently as life itself has evolved. The mammalian genome,  
therefore constantly monitors itself through the actions of the 
immune system, both non-specific and adaptive. This is in order 
to achieve a state of evolving homeostasis to achieve progressive 
protection of the genome, and of cellular and tissue function, as 
the environmental, microbial and other pressures continually  
change.

History of Immune System Development and 
Cellular Aberration
Life on earth commenced between 3 and 4 Ga (giga or bil-
lion years ago; 3–4×109 years) as unicellular organisms (fungi, 
bacteria and viruses) adapted to survive environmental hazards  

through rapid reproduction, colony formation and repopu-
lation. At some 1.2 Ga algal mats developed as the first  
multicellular organisms, and then about 1 Ga more complex  
chlorophyll-containing organisms evolved. About 450 Ma (mega 
or million years ago) even more complex plants developed and 
acquired fundamental innate static immune systems largely 
through intracellular anti-microbial molecules to resist infection  
principally from existing fungi, bacteria and viruses.

Recent studies indicate that sponges and other invertebrates 
developed both innate and adaptive immunity at around 800 Ma  
ago so that from that period marine sponges, coelenterates,  
gastropods (snails & slugs) and helminths (worms) possessed 
the ability for allograft rejection, indicating distinction between 
self and non-self44,45. A further advance in adaptive immu-
nity developed with vertebrates around 450 Ma in primitive fish 
and amphibians, and with reptiles, about 300 Ma, this evolved  
rapidly for protection against infection.

Mammalian life began about 120 Ma, with immune sys-
tem evolution to meet the need for local and systemic protec-
tion from invasive microorganisms, and with placentation32.  
Indeed, for effective adaptive symbiosis the mammalian immune 
system must have developed evolutionary tolerance for spe-
cific microorganisms since some organisms conferred adaptive 
advantages and others did not. A part of these adaptations  
may have been inherited from therapsid ancestors.

In contrast to the 3–4 billion years of immune system evolution,  
for only a mere 60 years or so, humans have more intensively 
investigated the immune system and its intricate interplay  
between non-specific (innate) and more specific (adaptive) 
immune mechanisms for fundamental evolutionary and devel-
opmental advantage (Figure 1). Often viewed as separate 
arms of the immune response, it is clear that they are rarely 
mutually exclusive or separate. The ‘artificial’ division arose 
for experimental explanatory research reasons, rather than  
physiological ones, but both are inextricably inseparable.

Genomic intrinsic mutational phenomena and exogenous  
infection of cells are significant forces capable of exerting  
phenotypic change to produce cell membrane ‘aberration’.  
During cellular transformation to dysplasia, metaplasia and 
malignancy, cell membrane changes are detectable. Since gene 
mutations occur about 1 in every 106 cell divisions, the risk of 
cellular aberration is high in rapidly dividing tissues, with some  
leading to malignant transformation. The immune system is the 
only system capable of high-level detection and action, and must 
therefore detect aberrant cells early and remove them exceed-
ingly effectively and efficiently, otherwise, the rates of can-
cers would exceed that observed clinically. About 106 cells  
form a 5mm diameter tumour mass from some 30 divisions  
(assuming a regular process applies).

Progressive exposure to environmental antigens in-utero, dur-
ing infancy and subsequently, ultimately leads to acquisition 
of a very individual repertoire of antigens for which immuno-
logical tolerance and memory are established, thus shaping the  
immune system over time with the maturity of the individual 
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enhancing adaptive immunity and survival. Recent data indi-
cate that early antigenic exposure, including through the 
microbiome, transplacentally and during infancy is related to  
antigen tolerance and that lack of exposure is associated with 
higher allergic sensitisation and atopic reactions. There is also 
evidence that the level of antigen exposure (dose) is important in 
induction of T-cell responses and tolerant states to antigens46,47  
and that progressive sensitisation with small repetitive doses of 
antigen can induce (variable) tolerance to serious peanut and 
bee-sting allergy48–52, with some relevance to the breaking of  
immune tolerance to cancer1,53,54.

The link between the extent of environmental exposure to  
antigens shaping and developing the immune system and the 
incidence of disorders such as chronic infections, allergy and 
cancer has been extensively discussed49–54 and remain topics of  
considerable on-going interest.

Fundamental Reactivity to Aberrant Antigens
Aberrations, arising from multiple events such as infec-
tion of cells, cellular injury, trauma, ageing or from genetic 
mutation, are reflected by cell surface expression of aberrant  
proteins, lipids (especially glycolipids) and carbohydrates. 
Detection of aberration through both non-specific and spe-
cific adaptive mechanisms is essential for destruction and  
removal of abnormal cells to restore tissue integrity. Mem-
brane profile alterations from normal to dysplastic and malig-
nant transformation are evident using magnetic resonance  
spectroscopy55–57. The immune system is carefully tuned to 
detect relatively subtle changes in proteins through the stand-
ard HLA systems via Class I and II molecules, and the far less 
explored CD1 system for the detection of lipid, glycolipid and  
carbohydrate molecules58. In addition, the Fc receptor mecha-
nism of the non-specific arm of the immune system detects for-
eign and altered cells. Activation of granulocytes, macrophages,  
B-cells and T-cells pushes the immune system in one direction 
or in the other, producing either overall responsiveness/activa-
tion, or inhibition/tolerance. Increasingly, it is being appreciated 
that almost all levels of the immune system can either respond 
or inhibit, providing a certain redundancy at multiple levels  

of control. Therefore, infected, damaged or malignant cells can 
be either actively eliminated or tolerated. Clinically, this is pre-
cisely what is observed, in a variety of infections and malignan-
cies. Indeed, chronic inflammatory states have emerged as the 
predominant illnesses affecting many individuals, including per-
sistent infections, autoimmunity and malignancy. Diseases such 
as cancer, cardiovascular disease and diabetes are now appreci-
ated as chronic persistent inflammatory states, capable of modu-
lation by factors such as anti-inflammatory medication and  
immune modulation.

Evolutionary Roots of Cancer
In recent years there has been increasing interest in cancer as 
a biological phenomenon found across almost all multicellular  
species59 suggesting deep evolutionary roots dating back to the 
dawn of multicellularity. The transition from unicellularity to 
multicellularity occurred several times starting over one bil-
lion years ago, although evolutionarily modern multicellular  
organisms with a large variety of cell and tissue types did not 
emerge until the Ediacara and Cambrian eras <600 million 
years ago. In 1929, Boveri60 proposed that cancer represents a 
type of atavism or reversion to a more primitive ancestral phe-
notype. This general idea has now been widely confirmed using  
phylostratigraphy to study the evolutionary ages of cancer genes. 
It is generally recognized that the genes responsible for cel-
lular cooperation in multicellular organisms (e.g. signalling,  
adhesion, angiogenesis, migration) are precisely those genes 
that are corrupted in cancer and lead to loss of regulatory  
function61–63.

In a series of papers64–68, Boveri’s idea of cancer as a type of ata-
vism has been developed into a detailed theory of cancer onset 
and progression, which makes many quantitative predictions  
testable using phylostratigraphy.

It has long been recognized that there is a close link  
between cancer and early-stage embryogenesis69–71 which makes 
sense in the context of the atavism theory given von Baer’s 1828 
so-called 4th law of embryology: “The embryo of a higher ani-
mal form never resembles the adult of another animal form, such 

Figure 1. Timeline of estimated and known evolutionary developments of Life on Earth, and parallel changes in development 
of the immune system components [Ga = Giga/ billion / 109 years; Ma = Mega/ million /106 years; PRR = pattern-recognition 
receptors; PAMPs = pathogen associated molecular patterns; DAMPs = damage (or danger)-associated molecular patterns; NK 
= natural killer cells]. Note:  representative non-linear timeline scale.
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as one less evolved, but only its embryo.” Although ‘law’ is an  
overstatement, Haekel’s much-criticised 1866 aphorism ‘ontog-
eny recapitulates phylogeny’ is nevertheless still a useful 
guide72, and supported by evidence that complex interactions 
between genes, cells and developmental processes peak during  
mid-embryogenesis when the basic body plan of the organ-
ism is being laid down73. The atavism theory predicts that as 
cancer progresses, cells de-differentiate towards ‘stemness’ 
and in a general sense resemble more closely the cells of both  
early stage embryogenesis and the unicellular world.

Phylostratigraphic analyses relevant to cancer began with 
the pioneering work of Domazet-Lošo & Tautz74. They 
assigned ages to ‘cancer-associated genes’ from several cancer  
gene compilations and found two peaks where cancer genes 
are over-represented compared to the age distribution of all 
human genes. One was in the pre-eukaryote unicellular era. The 
other correlated with the origin of multicellularity and meta-
zoa. The most important finding was the under-representation  
of cancer-associated genes younger than about 400 million 
years, confirming the basic notion that the evolutionary roots  
of cancer are very ancient.

Chen et al. set out to test the atavism model by examining 
xenograft human breast tumours in mice and characterized the 
complete evolutionary history of a tumour75. The expression pro-
files were found to evolve towards that of embryonic stem cells.  
The most highly mutated and consistently downregulated 
genes in the metastatic samples were enriched in functions 
related to multicellularity. In another analysis, the phylogenetic 
tree of Tyrosine Kinases (TKs), which compose a major por-
tion of oncogenes, demonstrated “a general trend of atavism in  
tumourigenesis”76. Studies by Wu et al. of multiple myeloma 
evolving in a microfabricated ecosystem also supported the gen-
eral thesis that “cancer represents a reversion back to ancient  
forms of life”77.

An Australian group applied phylostratigraphy to RNA tran-
script sequencing data from The Cancer Genome Atlas for 
seven solid cancers, using 16 age categories78. Consistent with 
Domazet-Lošo & Tautz74, they found significant patterns in the  
relationship between gene age and expression levels in can-
cer. Genes of unicellular evolutionary origin are over-expressed 
in human cancers, whereas genes appearing at multicellular 
stages are down-regulated. The over-expression of unicellu-
lar genes was associated with major dysregulation of the con-
trol structures imposed on unicellular processes during the 
evolution of multicellularity. Significantly, Trigos et al. found 
that the atavistic signature was not a simple re-primitivisation 
to unicellularity. Rather it is a rewiring of the coupling between 
the gene networks that control unicellular processes from 
those that control multicellular processes79. Their results thus 
provide evidence that cancer is a nuanced reorganization of 
the relationship between the unicellular and multicellular  
domains. A key prediction of this theory is that the reversion-
ary sequence is systematic and should display regularities across  
species and across cancer types.

Zhou et al.80 examined transcriptomes to compare differen-
tial gene expression between normal and cancer cells, and 
between embryonic and mature epithelial cells. Starting with  
11 phylostrata, they made 5 age bins: LUCA, Eukaryota, Meta-
zoa, Vertebrata, Primata, and then reduced these to two bins: 
pre-metazoan and post-metazoan. They found that compared 
to normal cells, cancer cells were enhanced in pre-metazoan 
and depleted in post-metazoan gene expression. Compared to  
embryonic cells, differentiated epithelial cells were enriched 
in post-metazoan expression. Their summary: “These find-
ings support the atavism theory that cancer cells manifest the 
reactivation of an ancient ancestral state featuring unicellular  
modalities.”

Using phylostratigraphy, Cisneros et al.81 found that reces-
sive cancer genes older than 900 million years are homologs 
of the ancient genes in bacteria that turn up mutation rates 
when the cells are stressed–suggesting that the well-known  
genomic instability of cancer can be interpreted as a rever-
sion to an ancient prokaryotic stress response, a phenomenon 
recently confirmed by the analysis of Cipponi et al.82 showing 
mTOR (mammalian target of rapamycin) signaling orchestrates 
stress-induced mutagenesis, facilitating adaptive evolution in  
cancer.

The retention over evolutionary time scales of a DNA repair 
mechanism that increases the mutation rate in response to 
cellular stress may seem counter-intuitive. One reason is  
that the generation of somatic genome diversity is critical to the 
functioning of the immune system via somatic hypermutation 
of V regions to generate antibody diversity83. Somatic genome 
diversity is also implicated in the implementation of poly-
ploidy in megakaryocyte development84, and the appearance of  
tetraploidy in normally functioning liver and cardiac tissues85.

Cancer is conveniently characterized as displaying a set of  
distinctive hallmarks86 which represent both gain and loss of 
function. Significantly, cancer does not evolve the hallmark  
properties ab initio; neoplasms merely appropriate pre-existing 
modalities latent in the genome75,87, retained because they 
play critical roles in key processes such as genetic diversity,  
embryogenesis, tissue maintenance and wound healing71,88.

A central prediction of the atavism theory is that there should 
be definite patterns in the direction, order and timing of both 
the loss and gain of function as cancer progresses, occurring  
via a sequence of increasingly malignant transformations89. Can-
cer progression should roughly correlate inversely with the  
chronological sequence in which the relevant cancer genes 
evolved phylogenetically. By contrast, Hanahan & Weinberg 
(2015) remark: “The order in which these hallmark capabilities  
are acquired…appears to vary across the spectrum of human 
cancers.” Thus, the existence of non-randomness in hallmark 
acquisition provides a useful test to discriminate between the 
atavism theory and the prevailing somatic mutation theory.  
Evidence for the non-random nature of hallmark acquisition  
has been identified by Lineweaver and Chopra90.
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A well-known hallmark of cancer is its ability to evade or block 
the adaptive immune system, a feature that forms the basis 
of immunotherapy. Given the relatively young evolutionary  
age of adaptive immunity (< 500 million years), the atavism 
theory predicts that adaptive immunity should be lost soon after 
the onset of tumourigenesis65. Another familiar hallmark is the 
default in cancer metabolism to anaerobic glycolysis even in  
the presence of normal oxygen tension, a phenomenon known 
as the Warburg effect91. Glycolytic metabolism is well adapted 
to hypoxic environments of the sort encountered in tumours, 
but was also the normal circumstance for life before the great  
oxygenation event about 800 million years ago. By upregulating  
the Warburg effect, cancer can be regarded as reverting to 
the ancient hypoxic roots of early multicellular life. Indeed, 
it has been argued by Vincent65 that cancer engineers its tis-
sue microenvironment to recreate congenial atavistic niches in  
which neoplasms can flourish in competition with healthy cells.

The atavism theory has important implications for therapy65. 
The history of the interaction of bacteria, viruses and cancer is 
a very long and somewhat confused one, since William Coley 
obtained some notable clinical results over a century ago92. 
Some infections will boost the immune system and bring addi-
tional pressure on cancer cells, but some agents will directly  
infect the cancer cells preferentially in their immunosup-
pressed niches, for example oncolytic viruses. A variety of 
new approaches1,93–99 to immunotherapy exploits these features. 
The atavism theory predicts that advanced cancer will be par-
ticularly vulnerable to certain infectious agents, and specific 
treatment regimes have been advocated to take advantage of  
that aspect65.

We also note that, taking into account the discovery of stress-
induced mutagenesis – a very ancient stress response found 
in bacteria and pre-dating multicellularity – the practice of  
maximum tolerable dose for chemotherapy is likely to be coun-
terproductive. It risks provoking an elevation of the mutation 
rate (another hallmark of cancer), thus facilitating the abil-
ity of the neoplasm to evolve drug resistance. Instead, a more 
measured and nuanced treatment regime is likely to be more  
efficacious.

Contemporary Cancer Evolution
Not only is there an evolutionary past of considerable longev-
ity, but the tumour deposit itself has frequently been demon-
strated to have wide genetic heterogeneity arising from the  
initially clonal multi-cellular growth, and moreover different 
metastases show considerable heterogeneity between them. It  
is therefore evident that the ‘cancer’ is not truly clonal, but rep-
resents a mix of cells resulting from genetic instability with 
different genetic profiles, which the immune system must  
recognise in order to react to remove the constituent cancer 
cells within the tumour mass(es)100–104. Cancer phenotype has 
been proposed as an evolutionary interaction between nor-
mal and malignant cells105, and furthermore, recent evidence  
indicates that the hierarchical structures in normal host tis-
sues are structurally mirrored in a very similar way by tumour  
tissues106. Additionally, mathematical models have been devel-
oped to investigate how de-differentiation of tumour cells  

appears to be an adaptive mechanism actively selected-for to  
permit invasion into cellular hierarchies106.

Homeostatic Regulation of Immune Reactivity and 
Cancer
The relapsing and remitting behaviour of many chronic inflam-
matory states, such as arthritis, inflammatory bowel diseases, 
multiple sclerosis, and thyroiditis is well recognised. Diabetes, 
cardiovascular diseases and cancers of all types are now being 
considered similarly. The fluctuating, oscillating nature of these  
diseases has largely confounded our understanding to date and 
remained frustratingly unexplained, but is indicative that the 
immune system must be repeatedly transitioning between stimu-
lation/activation and suppression/tolerance phases repeatedly 
to produce the observed clinical picture. Moreover, oscillatory  
behaviour is highly characteristic of any homeostatic biological 
system under negative feedback control. This cyclical dynamic 
is a physical expression of physiological control to maintain 
relative constancy of the milieu intérieur, as recognised by  
Claude Bernard around 1867, and later by Walter Cannon. 
Physiological constancy, or homeostatic control, of the body’s 
immune status requires proportioned synchrony between effec-
tor stimulation and regulatory functions to be operational. 
Many cyclical examples, such as the diurnal temperature cycles,  
peri-monthly menstrual cycles, and 24-hour cortisol cycles 
have been elucidated by close serial monitoring. The fluctuat-
ing pattern in these situations defines the “set-point” which that 
specific physiological parameter is maintained at to define the  
mean and standard deviation of that variable.

The association between cancer and the host immune response 
has been recognised for over a century107–112. In animals, 
North et al.’s group113–121 and more recently Klatzmann et al.’s 
group122, demonstrated that the timing of delivery of cytotoxic  
agents after tumour transplantation was crucial in determin-
ing whether tumour regression occurred or not. Early clinical 
observations of inflammation and cancer regression were made 
by those treating cancer107–110, particularly the development of 
infection/fever after surgery. Chronic inflammation has long  
been associated with cancer development, for example chronic 
ulceration and Marjolin’s squamous cell cancer of the skin.

The immune system has innate and adaptive arms. Chemicals 
are released into the serum during inflammatory responses 
and can be used as clinical and laboratory markers of the pres-
ence and strength of inflammation. These can be used to 
infer the rate of increase or decrease of inflammation that  
is occurring at the time and are dependent on the half-lives of 
the relevant marker(s), and often other factors such as organ 
function. Acute phase markers include C-Reactive Protein 
(CRP), serum amyloid A, complement factors, ferritin, ceru-
loplasmin, erythrocyte sedimentation rate, white blood cell  
count, haptoglobin, immunoglobulin and a range of cytokines 
released into the serum and/or tissue. Many of these tests are 
routinely used clinically for measurement of inflammation  
and for monitoring of treatment and disease progression.

One of the easiest to measure, is the relatively reliable 
and clinically widely useful acute phase marker CRP, a  
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non-specific functional analogue of immunoglobulin that  
binds to self/non-self cellular breakdown products of inflamma-
tion to initiate the adaptive immune responses123,124. T & B cells 
respond to cellular changes due to infection, damage or muta-
genesis. To fine-tune and limit these responses, the ensuing 
immune response is down-regulated paradoxically by the same  
cytokines and receptors that initiated it, but on function-
ally different cell types. Regulatory T-cells play a major role 
in this homeostatic attenuation and experimental and clinical  
evidence has shown that when these cells are either removed 
or blocked, cancer can completely regress, while autoimmune  
conditions may develop or worsen125–130.

In recent years, it has become clear that the immune sys-
tem recognises and processes both self- and non-self antigens 
to either respond or tolerate the antigen, but that homeostatic  
balance usually prevails.

Immune responses can therefore be thought of as an oscillat-
ing or dual-phase “bi-stable” system existing in either of two 
principal states (responsiveness or tolerance). Antigen is the  

prime mover for either of these two states, and cytokines, most 
notably interleukin-2 (IL2) as an example (but also includ-
ing IL-7, IL-10; IL-12; IL-15; IL-17; IL-21; IFN-γ) and  
other molecules (eg. anti-PD-1, anti-CTLA4), provide the  
temporal feedback loop to govern the immune response direc-
tion. If antigen is continuously supplied to such a system (due 
to tumour cell growth/ turnover) logic and physiology dictate 
that this response must oscillate123,124,131–134. Oscillatory sys-
tems are characteristic of any homeostatic system with feedback  
loop(s) (Figure 2).

Not only is the immune response governed by ‘when’ the  
cytokine or antigen signals are delivered, but also by the 
strength (how much) of the signal that is delivered. Small  
quantities of cytokine, IL-2 for example, induces a different 
effect to a larger quantity of the same cytokine – a point exploited  
to some degree in IL-2 therapies135–138.

Anti-cancer Agents and Immune Responses
Cytotoxic agents inhibit cell division to therapeutically dam-
age and kill tumour cells. However, cancer cells divide  

Figure 2. C-Reactive Protein (CRP) Level Fluctuation. An example of CRP oscillatory behaviour in a patient with cancer - an example of 
the immune system fluctuating with a varying inflammatory response to an antigen stimulus. Several CRP levels (results) were taken each 
day. Antigen is capable of driving activation or inhibition depending on the strength and timing of the signal input and on operational 
feedback facilitatory and inhibitory loops, alternately driving both responsiveness and tolerance to create net homeostasis around a  
set-point mean. Multiple cytokines (eg. IL-2, IL-7, IL-10; IL-12; IL-17; IL-21; IFN-γ) and other molecules (eg. anti-PD-1, anti-CTLA4, antigen) 
have the capability of either activating or inhibiting immune responses, so are bi-functional.
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asynchronously. About 20–30% of malignant cells within many 
solid cancers are dividing at any one time-point (greater rates 
of division occur in some cancers such as childhood leukae-
mia, choriocarcinoma and testicular carcinoma). Regimens 
have evolved often with weekly dosing of sequential ‘lines’  
(1st, 2nd, 3rd etc) of therapy or in combinations. Repeti-
tive dosing of agents inducing multiple cycles of cell dam-
age and antigen release (vaccination events) from the tumour is  
emerging as highly significant1,54,123,131.

Cells of the immune system rapidly divide, but they usually 
divide synchronously and the arms of the immune response 
proliferate alternately (effector then regulatory) at different 
times sequentially to initiate then reduce an immune response  
over time123,124,131–134.

Cytotoxic agents, as well as desirably ablating actively divid-
ing cancer cells, unless applied discriminately, are capable of 
ablating different groups of proliferating immunological cells,  
including proliferating effector T-cells.

It is now clear that the immune system is not ignorant to 
the presence of tumours, that it does recognise tumour anti-
gens, and that the normal homeostatic regulatory mechanisms  
suppress active anti-tumour immune responses, and are at the 
seat of the problem. This explains why immuno-modulatory 
agents, such as IL2, and CTLA4, PD1/L1 monoclonal antibod-
ies can deliver random dramatic complete responses in a lim-
ited percentage of late-stage cancer patients by releasing the  
pre-existing homeostatic suppression/tolerance1,125–130. All of 
these immunotherapeutic agents can induce immune activa-
tion, but can also induce immune tolerance. The lack of efficacy 
of these agents in most patients is explained by induction of  
tolerance with some doses via regulatory T-cells while acti-
vating with other doses, the net balance of which might  
determine overall clinical outcome.

The application of immune therapies or cytotoxic chemothera-
pies to the oscillating and fluctuating immune system occur-
ring in the individual patient presents a significant problem  
if the action of the specific agent depends on precisely when 
the agent is administered with reference to the phase of acti-
vation or inhibition of the immune system at the time. Recent 
work has been unable to accurately define the periodicity of 
the immune oscillation in cancer patients despite initial work  
using less robust mathematics appearing to show this139–142. 
Advanced mathematics and periodicity models have been inca-
pable of verifying regular, consistent, clear, regular immune 
cycles, principally due to infrequent inflammatory marker serial 
sampling and confounding noise-to-signal issues, but machine 
(deep) learning may offer alternative methods. On-going work 
into the oscillatory behaviour of the immune system, espe-
cially in advanced cancer patients, may reasonably offer useful 
opportunity to understand and to forecast or predict treatment  
intervention more accurately than exists at present143.

Improving results of natural selection
Tissues in the body are usually maintained with a very uni-
form cell composition. Most aberrant cells appearing in the 

human body as a result of somatic mutations are detected and  
disposed of by the immune system. Some are not and can pro-
duce pathology, with the majority of clinical cases of cancer 
occurring in older patients. This is explicable by the fact that 
natural selection operates principally by differential reproduction, 
consequently it is unable to operate for selection of biological  
characteristics in non-reproductive (older) individuals. Thus, over 
the generations immune responses to malignant cells appear-
ing in young people became adjusted by natural selection and, 
statistically speaking, operate efficiently, while such responses  
in older age were not “reachable” by natural selection for 
genetic adjustment. This principle is not only applicable to spe-
cific immune responses, but encompasses the entire regula-
tion of homeostatic balance of an organism. In practical terms, 
clinical intervention should imitate adaptation by selection of  
immunological processes occurring in younger organisms, to 
support, adjust and enhance natural operation of immune sys-
tems of older patients. Since the onset of significant clinical 
interventions about a century ago, death has been reduced such 
that the operational pressures of natural selection have been  
relaxed and, as one of the consequences, the incidence of many  
cancers has increased19, while concurrently improved treatments 
have also extended the lives of many patients.

Concluding Remarks and Implications
Although knowledge has deeply developed concerning the 
immune system and cancer immunology, our contemporary 
understanding needs to be placed in evolutionary perspective.  
Our immune systems are the adaptive result of the necessity for 
defence against persistent selective pressures from environmen-
tal microbial pathogens, injury and repair. Over the millennia, 
the immune system and other body cells have undergone 
a continuous adaptive symbiotic process of synchronous,  
coordinated, cooperative, progressive immunological and somatic 
evolutionary change to provide what we observe today. Gradual 
evolution of innate and adaptive immunity against infected and 
aberrant cells now explains many of the observations regard-
ing cancer immunity and clinical responses. It is gradually  
being appreciated that normal immune regulatory mecha-
nisms are holding back an already primed immune response 
from selectively killing cancer cells in most, if not all cases, 
where clinical cancer is present. With an appreciation that  
immuno-modulation of pre-existing endogenous immune 
responses appears to occur with most cancer therapies, there 
is the serious prospect that serial immune monitoring might 
define optimal time-points for targeted administration of thera-
pies to engineer effective complete clinical responses in a much  
more predictable, reliable and durable manner in the future1. 
Effective treatments may indeed hinge on deep evolutionary 
immune and cellular mechanisms which likely underpin suc-
cessful clinical responses. If achievable, increased long-term 
survival from advanced cancer, with reduced toxicity, might 
become a reality by harnessing the immuno-modulatory capacity 
of many currently existing therapeutic agents. The cost savings  
would likely prove truly enormous144.
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This will now provide a valuable source for investigating the evolutioanry link between the 
immune system and cancer. 
 
The section on time line evolution reporting in "Darwins" and millions of years etc, could be made 
more impactful by using a figure to capture the scale and of genomic, immune response in living 
organsisms.
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Some comments on immunological aspects (only):
Recommend use of the generic term 'patter-recognition receptors, PRRs' instead of the 
more-specific term 'toll-like receptors, TLRs, which are a subset of PRRs. 
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Helpful to distinguish between somatic recombination - for generation of BCR and TCR, and 
analogous process for antibody class switching - and somatic hypermutation which should 
be restricted to antibody V regions, at least in humans. (There is evidence for somatic 
hypermutation of TCRs in shark alpha chains).

2. 
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Angus Dalgleish  
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I was asked to review this article, with full access to previous reviewer's report, Jonathan M Austyn, 
from the John Radcliffe Hospital. I agree that the article contains some very interesting ideas and 
concepts, which will be very stimulatory to a wide readership, particularly those studying cancer 
and practicing cancer (oncologists) who are slowly becoming aware that the immune system is 
important in the control of cancer and hence the development and evolution. 
 
The review touches on some very broad and very interesting concepts, particularly with regards to 
evolution over time and the evolutionary difference between innate and adaptive immune 
systems and he has some of the concepts that are relevant to the hypothesis but perhaps not 
been elucidated that clearly, especially with regards to the concept of atavism and this has been 
pointed out by Jonathan Austyn with regards subtle differences in somatic recombination and 
hypermutation and mutation. 
 
I also agree with rather more reaching, throwaway statements, such as 'cancer occurs in all 
humans and animals, thus remaining a mystery when several reasons have already been 
explored, such as random mutations and the concept of escaping tumour surveillance.cancer 
 
Whereas references made to many infectious agents and the fact that they have ended up making 
up the vast majority of the intron genome, which has been shown to be due to the incorporation 
of many virus and bacterial sequences.  The hypothesis depends very much on the shaping of 
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these agents and the immune system but does not deal adequately with how the immune is 
shaped by exposure to infectious agents during infant and childhood development.  
 
Much of the references of this article is in large chunks, whereas the authors' papers are listed in 
large batches, for example; the work by North and colleagues are all listed together and 
referenced together. 
 
I feel that in addressing this, that they have not acknowledged the work of others who have spent 
a long time working out the affects of basic infectious diseases on the immune system and how 
this translates to chronic infectious diseases and one author in particular stands out for his work 
on this and that is Graham Rook, he has published much on this about the exposure of pathogens 
and the dirt theory, how it impacts on chronic diseases in later life in the western world and, 
indeed, a review by him and this reviewer (Rook and Dalgleish, 2011) published in Immunological 
reviews in 2011 goes into great detail with regards to its impact on cancer. 
 
Similarly, the impact of both infectious and non-infectious chronic activation/inflammation, which 
is relevant to many of the issues raised in this article, have not been addressed sufficiently, 
especially as it is so relevant to many of the speculations discussed.  Again, there are a large 
number of authors and contributors who have gone from broad brush theories of the association 
of chronic inflammation and cancer, to those who have gone into great detail pointing out how it 
impacts on the molecular level of mutations in suppressor genes, such as P53, all the way through 
to immunological hypoxic pathways, etc., and I do not recognise this from the reference list which, 
as mentioned, is very block buster in its approach with an author's several contributions all being 
listed together throughout. 
 
I also feel that, with regards to the homeostatic component focusing purely in Interleukin-2, that 
although it is true that it is one of several cytokines which contribute to activation and tolerance 
that a little bit more background should be given. 
 
In conclusion, I think this is a very valuable piece of work of great interest to the rapidly 
proliferating and emerging population of cancer specialists who are slowly becoming aware that 
the immune system is extremely important in the management of this disease, a concept that has 
been ignored for the last few decades and foreign to most oncologist practising today. However, 
to make it more impactful and a 'must read' article it does require considerable focusing on the 
aspects raised by the referees and tighter structure, as it does seem to read rather like a 
speculative lecture in its current format. 
 
With regards to referencing, there is a referral to Klazmann et al. and there is no Klazmann et al. in 
the references and this is a further example that the references need to be very carefully looked 
into, although a paper where he is the senior author is listed, I do not think that it is appropriate 
therefore to refer to it in the text as Klazmann et al.
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Jonathan M. Austyn  
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This article contains some very interesting ideas and concepts. However, to this reviewer (and with 
the greatest respect to the authors), it tends to read perhaps as ‘stream of consciousness’ writing 
rather than a considered scientific article. The authors show abundant enthusiasm in their writing, 
but this often appears to mask real scientific rigour. It is very difficult to identify a key hypothesis 
(or hypotheses), the structure of the sections seems to lack definition or focus, and it is sometimes 
almost impossible to understand what the main conclusions are from each. Furthermore, in a 
number of places, there seems to be a significant lack of scientific accuracy. For example, 
regarding some statements regarding the immune system, the authors do not clearly discriminate 
between somatic recombination (which applies to both T cell receptors and B cell receptors), 
somatic hypermutation (which applies only to the latter), hypervariable regions (which are present 
in both) and mutation (per se). As another example, in their discussion of atavism theory, the 
authors use the term ‘tumour immunosuppression’ but appear to apply this to the tumour rather 
than the host, where it really belongs. Even the authors’ brief review of the evolution of the 
immune system seems to lack sufficient focus going from species to species during evolutionary 
time. There are also some rather vexing ‘throwaway statements’. As just one example, regarding 
cancer, the authors state “The reason why cancer occurs at all in humans and animals thus 
remains a mystery”. While it is certainly true that much remains unknown, the authors might 
usefully consider further Burnet’s concept of tumour surveillance, particularly in its more recent 
form comprising immunoediting, equilibrium and escape phases. It might also be valuable to 
reconsider, in relation to the immune system’s apparent capacity to eliminate tumours whether or 
not the immune system actually helps to eliminate the infectious agents (e.g. viruses) that can 
cause tumorigenesis rather than actual or potentially malignant cells (and, on that point, it is 
perhaps a little surprising that there is no mention of generic ‘DAMPs’ and ‘PAMPs’). A further 
criticism is that the choice of immunological mechanisms under discussion sometimes feels rather 
random – why, for example, do the authors specifically focus on Fc receptors rather than 
complement receptors, or C-reactive protein rather than the many other molecules that play 
similar or related roles? Finally, regarding the single diagram that is presented, it is completely 
unclear why the authors have chosen to illustrate an ‘IL-2 [sic] feedback loop’; without any 
justification this seems to be over-simplistic in the extreme. Nevertheless, to return to the initial 
point: this article does appear to contain some very interesting material that would potentially be 
of value to readers of the journal. To do these the greatest justice, however, really does seem to 
require a very careful, focussed, and considered rewriting of the present text into a completely 
revised and possibly restructured article. 
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