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Abstract: Current epilepsy surgery planning protocol determines the seizure onset zone (SOZ)
through resource-intensive, invasive monitoring of ictal events. Recently, we have reported that
Granger Causality (GC) maps produced from analysis of interictal iEEG recordings have potential in
revealing SOZ. In this study, we investigate GC maps’ network connectivity patterns to determine
possible clinical correlation with patients’ SOZ and resection zone (RZ). While building understanding
of interictal network topography and its relationship to the RZ/SOZ, we identify algorithmic tools
with potential applications in epilepsy surgery planning. These graph algorithms are retrospectively
tested on data from 25 patients and compared to the neurologist-determined SOZ and surgical RZ,
viewed as sources of truth. Centrality algorithms yielded statistically significant RZ rank order
sums for 16 of 24 patients with RZ data, representing an improvement from prior algorithms. While
SOZ results remained largely the same, this study validates the applicability of graph algorithms to
RZ/SOZ detection, opening the door to further exploration of iEEG datasets. Furthermore, this study
offers previously inaccessible insights into the relationship between interictal brain connectivity
patterns and epileptic brain networks, utilizing the overall topology of the graphs as well as data on
edge weights and quantity of edges contained in GC maps.

Keywords: network centrality; epilepsy surgery; seizure networks; intracranial EEG; surgical
planning; Monte Carlo sampling

1. Introduction

Epilepsy is a chronic neurological disorder whose only known cure is surgery to resect
the brain’s seizure onset zone (SOZ, which is often not entirely or exactly removed; the
part of the brain actually removed during surgery is known as the resection zone—RZ).
However, such surgery requires determination of the RZ and SOZ via a lengthy, inconve-
nient period of invasive iEEG (intracranial EEG) monitoring. This is because neurologists
and neurosurgeons must wait for an ictal event (e.g., a seizure) in order to accurately
identify the iEEG electrodes that report abnormal activity and plan for resection surgery.
Armed with iEEG recordings of multiple ictal events, physicians inspect these data by eye,
which is itself an arduous process. Instead, we look to use interictal iEEG recordings as
a basis for surgical planning. If interictal (i.e., everyday activity not from a seizure) iEEG
data alone could be used to determine the SOZ, then the SOZ determination phase could
be theoretically reduced from at least a week to a matter of hours, which is the time it
takes to implant electrodes, run the algorithm, and take out electrodes. It is important
to note that this reduction in resection planning time is theoretical and dependent on
maintaining a rigorous planning process. In any case, since the current standard of care
involves inspection of EEG data streams by the naked eye, this project aims to develop an
algorithm that standardizes this process from case to case, further saving physician time
and boosting accuracy of SOZ prediction.
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The problem of the algorithmic seizure onset zone detection using only interictal
data has been approached from a wide variety of angles, apart from GC. Perhaps the
most developed is the use of interictal high-frequency oscillations (80–500 Hz; HFOs)
derived from iEEG and scalp EEG recordings. HFOs have demonstrated potential in
their ability to serve as a biomarker for the seizure onset zone [1–4]. Localized HFOs
have also been detected from ictal sEEG recordings, supporting the case for the accuracy
of HFOs in SOZ detection [5]. However, despite recent advances in algorithmic HFO
detection, the standard protocol remains physician determination of HFO through visual
inspection of EEG data [3,6]. Furthermore, the HFO methods require processing data in
the frequency domain, which is more computationally intensive than the more recent GC
time-domain method [1]. Because of our motivations to cut down on the time needed for
SOZ determination, eliminating computational steps and automating the entire process are
important for the clinically viability of any SOZ determination methods. Thus, this study
builds upon the GC approach, which require neither physician inspection of EEG data nor
time-intensive frequency domain processing.

Others have applied variants of the Granger Causality algorithm or graph algorithms
that we study to seizure onset detection. Whereas we look at pairs of nodes in our analysis,
studies have looked at triplets to determine whether inclusion of a third node enhances
the information shared between two other nodes in the same network, called synergistic
effects [7]. These have had some success, finding that synergistic effects in the immediate
pre-ictal period correspond to nodes in the SOZ [8]. Combining this triplet approach with
our pairwise one is a potential future area of study. Still others have applied frequency-
domain GC in analysis of pre-ictal data and ranked eigenvector centrality in analysis of
ictal data to determine the SOZ [9,10]. However, none of these studies investigated the
relationship between baseline interictal data and ictal data to predict the SOZ.

Still others have adopted network modeling techniques for interictal prediction of
the SOZ. These studies have also utilized EEG recordings of interictal patient brain ac-
tivity [11,12]. Demonstrating the difficulty of developing SOZ identification tools that
generalize across a larger cohort of patients, one such study found success in identifying
robust chimera state markers in interictal recordings for one patient out of a cohort of
15 patients [11]. We present similarly generalizable SOZ identification algorithms for all
epilepsy cases with a much higher success rates. However, due to the diverse nature of
epilepsy onset in different regions of the brain and from differing etiologies, identifying
a specific subset of clinical cases for which a SOZ identification tool is most useful will
likely improve the future usefulness of the tools analyzed both in this study and others.
Another study, also based on interictal EEG recordings, interestingly develops a predictive
tool to simulate results of resection of any node in a brain’s network [12]. Their study
differs from ours in that a significant portion of patients (7 of 16) did not have successful
surgical outcomes [12]. Without a definitive source of truth (i.e., neurologist-identified
SOZ via the current standard of care), assessing the accuracy of a novel SOZ identification
tool becomes necessarily speculative. Thus, another contribution of our study is a robust
cohort of 24 patients who underwent resection surgery. All 24 had at least a worthwhile im-
provement (Engel class III or above), and 22 were free of disabling seizures (Engel class I).
Nevertheless, in the cited study, even amongst the nine cases with successful surgical
outcomes, the predicted SOZ inconsistently matched the actual SOZ [12], mirroring the
difficulties we encountered in our own study. Larger patient cohorts created through a
combination of data across studies could prove fruitful for homing in on subsets of patients
for which each SOZ/RZ prediction tool offers accurate predictions. We have included data
on demographic information, clinical background, and seizure localization for the cohort
of patients in this study in Tables S1 and S2.

Specifically, we study electrocorticography (ECoG) recordings, a form of intracra-
nial EEG (iEEG) monitoring where a skull flap is removed and a grid of electrodes is
placed directly onto the brain’s surface. Our population of 25 patients had an average of
102.56 grid electrodes (often referred to as “nodes”) implanted for invasive monitoring.
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The neurologist-determined SOZ contained an average of 19.62 nodes and the RZ contained
an average of 21.88 nodes. One of the 25 patients did not undergo resection surgery after
invasive monitoring, resulting in 24 patients with an actual RZ. Investigations of other
iEEG recording types (including stereotactic EEG, or sEEG) as they pertain to epilepsy
surgery will be the likely subject of later studies by our group.

We build off the previous result that time domain Granger Causality (GC) analysis
of baseline interictal iEEG data indicates which electrodes seem to be more influential for
activity at a network of electrodes [1]. The retrospective study found that brain regions
surrounding these interictally causal electrodes matched the regions chosen for resection
through traditional analysis of ictal data with an aggregate probability much smaller than
chance (p < 10−20) [1]. GC analyses assign a metric for every pair of electrodes to measure
the degree to which activity at one electrode dictates activity at another. This creates a
graph of the patient’s brain, also known as a GC map. From the GC map, summation
of all the GC values originating at each electrode results in computation of a total GC
outdegree metric for that electrode. Nodes are then ranked by their total GC outdegree
and the ranks of nodes belonging to the actual SOZ and RZ are summed to create a rank
order sum metric. Via comparison of this sum to a random distribution of rank order
sums of the same size subset from the same starting number of ranks, it is shown that
total GC outdegree results in a statistically significant rank order sum of actual SOZ and
RZ nodes with an aggregate probability across all 25 patients much lower than predicted
by chance [1]. However, because the total GC outdegree metric was previously applied
without evaluation of alternatives, we start with the GC map and aim to create a more
precise algorithm that informs selection of a RZ/SOZ. For ease of comparison, we also use
the rank order sum method to evaluate algorithms’ predictive capability. It is important
to point out that the Granger statistical approach demonstrates that a particular signal in
one channel statistically follows a signal in a different channel. This does not in fact prove
that one event is causal, but the term ‘Granger Causality’ is widely used as the name of the
statistic. We will keep the name for clarity with this caveat, understanding that the current
study begins with the connectivity data derived and reported earlier [1].

This study comprises three angles from which the above problem is tackled. These
were motivated by numerous reasons, chief among them a desire to explore methods that
built upon previous GC techniques without adding significant algorithm runtime as well
as attempts to naturally mimic brain signals traveling through the network of the GC map.
First is a Monte Carlo sampling approach that visits nodes with probabilities weighted
by the GC map. Second is an application of Google’s PageRank algorithm where nodes
take the place of webpages and are assigned a metric of importance relative to other nodes.
Third are centrality algorithms that aim to tease out the subset of nodes most important for
transmission of information through the brain’s network. Variants of each algorithm are
developed, fine-tuning their application to the problem of RZ/SOZ determination and to
the goal of revealing connectivity patterns in an epileptic patient’s brain.

2. Materials and Methods
2.1. Patients

For comparison purposes, we utilized the same 20 min interictal iEEG recordings of
a population of 25 patients exhibiting medically intractable epilepsy used by Park and
Madsen, 2018. After careful review by the multidisciplinary Epilepsy Surgery Conference,
each patient underwent long-term monitoring in preparation for resection surgery with
the epilepsy team at Boston Children’s Hospital. The goal of monitoring was to obtain
iEEG data necessary for accurate SOZ determination. Ultimately, resection surgery was
performed in 24 out of 25 patients in this cohort on the basis of data obtained through both
iEEG recordings and less invasive means. Because of the retrospective nature of our study,
we obtained Institutional Review Board approval without requiring patient consent.
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2.2. Granger Causality Map Computation

GC maps were computed for each patient using MATLAB’s Granger causal connec-
tivity analysis (GCCA) toolbox [13]. Due to the computationally intensive nature of each
run of a Granger Causality algorithm, 20 s segments of iEEG data were processed at a time.
There were 60 separate time segments analyzed and 60 GC maps created for each patient
for a total of 20 min of data analyzed. The 20 s segments were selected randomly from
interictal portions of a week of invasive monitoring. For each 20 s segment, each computed
GC map is then viewed as a network (i.e., graph, which is hereafter referred as G) with
each iEEG electrode recording point representing a node and edge weights determined by
the values contained in the GC map. Next, an F Test is applied to the GC matrices in order
to identify and eliminate edges that do not achieve statistical significance [1].

2.3. Graph Algorithms
2.3.1. Monte Carlo Sampling Approach

From a broad perspective, this algorithm visits nodes one by one, with each step
determined by probabilities defined by GC map edge weights. Nodes’ importance to the
epileptic network is thus decided according to their number of visitations.

A Monte Carlo Sampling metric is computed for each patient using a Python script
implementing the algorithm as follows. A node n ∈ V is selected at random from a graph
G = (V, E) and becomes the current node n1. A new current node n2 is then selected with
probabilities

{
p1, p2, . . . , p|V|

}
, the set of GC matrix edge weights originating from n1.

Note that these probabilities are normalized such that all the edge weights add up to one.
Then, another current node n3 is recursively selected using probabilities derived by the
weights of the GC matrix edges leaving n2. This process continues until 1000 nodes have
been visited. Then, another node n ∈ V is selected at random from G and the process
continues all over again. For each GC matrix, this process happens 1000 times, each time
with a random selection of one node followed by up to 999 subsequent visitations according
to GC matrix probabilities. Across all of the up to 1000 × 1000 visitations of individual
nodes, a dictionary keeps track of how many times each node is visited. It is hypothesized
that nodes with a greater number of visitations are more central to the network and thus
should be prioritized for inclusion in the RZ/SOZ.

It is important to note that although 1000 represents the maximum number of iterations
possible, some nodes do not contain any outdegree edges. Visitation of such a node
prematurely stops the chain of visitations and moves the algorithm onto the next random
restart. The F Test applied to GC matrices results in elimination of edges that do not achieve
statistical significance; thus, many nodes do not contain outward edges [1].

Five separate variants of this approach are independently tested.
The number of visitations per random restart, originally 1000, is tested at various

orders of magnitude: 100, 1000, 10,000.
The number of random restarts, originally 1000, is also tested at various orders of

magnitude: 100, 1000, 10,000.
Edges in the GC map are reversed, such that an edge weight describing how much

activity at a node ni causes activity at a node nj now describes how much activity at nj
causes activity at ni. It is hypothesized that when edges are reversed, sampling tokens now
travel “uphill” towards the node that instigated neural activity as opposed to the node
that exhibits the “downhill” activity itself. In this variant, “uphill” nodes would receive a
greater number of visitations and a higher ranking.

Instead of keeping track of total visitations, an algorithm variant instead keeps track
of the average interval between visitations for each node. For example, if node n1 is visited,
then three other nodes are visited before n1 is next visited again; 4 would be recorded as a
visitation interval for n1. Intervals are averaged for each node and nodes are ranked from
shortest average interval to longest. It is important to note that visitation intervals do not
carry over in the event of a random restart (i.e., a random restart resets visitation intervals
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for all nodes to zero and does not impact nodes’ final rankings). This limits the possibility
that nodes achieve a higher ranking through visitations purely due to chance.

Multiple nodes are sampled at the same time, such that one can imagine more than
one token simultaneously traversing a graph. In this algorithmic variant, a visitation is
only recorded if all tokens are visiting the same node at the same time.

2.3.2. PageRank Approach

PageRank once was the website ranking system used by Google’s search engine,
determining the importance of each website in order to display relevant results [14]. An
analogous problem is the ranking of iEEG electrode contacts by their importance to a
patient’s epileptic network. Computed using the Python network library implementa-
tion, the algorithm is explained here through a simplified example. Let P represent the
entire internet. In our internet, there are three webpages: p1, p2, and p3. There are also
only three total links across all three webpages: p1 links to p2 and p3, and p2 links to
p1. Each webpage starts off with an equal PageRank metric, which we will call 10. In
each iteration of the algorithm, each page evenly divides all of its PageRank metric and
transfers it to all of the links it is connected to. This can be expressed mathematically

as PageRank(pi) = ∑pj∈Api

PageRank(pj)
Out(pj)

, where Api represents the set of all nodes with an

edge heading into pi and Out
(

pj
)

represents the outdegree of node pj. Note that this is
the computation for a single node pi for a single iteration of PageRank. In the case of a
node with no outward edges, the node’s PageRank is evenly distributed amongst all other
nodes. So, in our example, p1 transfers 10/2 = 5 to p2 and 5 to p3, and at the same time p2
transfers 10/1 = 10 to p1. Because p3 has no outward edges, 5 is transferred both to p1 and
to p2. At the end of the first iteration of the algorithm, we have 15 for p1, 10 for p2, and 5
for p3. In the second iteration of the algorithm, p1 transfers 15/2 = 7.5 to p2 and 7.5 to p3,
p2 transfers 10/1 = 10 to p1, and p3 transfers 2.5 to p1 and to p2. At the end of the second
iteration of the algorithm, we have 12.5 for p1, 10 for p2, and 7.5 for p3. This is continued
until the algorithm converges, at which time pages are ranked by their PageRank metric
from highest to lowest.

There are a couple of small caveats. First is the damping factor, δ < 1, that is set to
0.85 by default. For each iteration, every node’s PageRank metric is multiplied by the
damping factor to encourage convergence. Second is that instead of a node evenly dividing
its PageRank metric amongst all the nodes it connects to, it divides its PageRank metric
according to a ratio specified by its outward edge weights. This is useful for the application
of PageRank to SOZ identification because the weights of PageRank are now set according
to the GC map. Finally, similar to the Monte Carlo Sampling approach’s motivations and
implementation, a PageRank variant with reversed edges is attempted.

2.3.3. Centrality Approach

Centrality algorithms were developed to analyze social networks for identification of
their most influential members [15]. In this study, all centrality algorithms are computed
using the Python network library implementation.

Betweenness centrality is computed as follows. First, the algorithm finds all shortest
paths between all pairs of nodes in the graph. Note that this takes edge weights into
account in an inverse manner, where a larger edge weight means a “shorter”, or easier-
to-take, path. For each node, the betweenness centrality metric becomes the fraction of
shortest paths that pass through that node. The idea motivating this algorithm is that
signals, cars, people, etc. are all more likely to take the shortest path over a longer one
to get somewhere, and that the shorter the paths a node is involved in, the more central
that node can be said to be. Betweenness centrality can be expressed mathematically as

betweenness(n) = ∑∀p,q 6=n
σpq(n)

σpq
, where σpq represents all the shortest paths from p to q

(taking into account ties for shortest path) and σpq(n) represents all the shortest paths from
p to q that pass through n [15].
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The harmonic centrality metric for a node n is calculated by taking the summation
of inverse distances between n and every other node in the network, normalized to the
total number of nodes in the network [16]. This can be expressed mathematically as

harmonic(n) =
∑∀p 6=n

1
Lpn

N−1 , where Lpn represents the length of the shortest path from node p
to node n and N represents the total number of nodes in the network [16].

The final two centrality algorithms tested, indegree and outdegree, are motivated
by the observation that a high total GC outdegree at a node n can be due to two factors:
first, the outward edges originating from n can have larger weights and, second, n can
simply have more outward edges. Because an F test of statistical significance is applied
to GC matrices before computation of additional algorithms [1], thereby zeroing out any
edges that seem to be the product of noise, the second factor is hypothesized to be a
potential difference-maker for identification of causal SOZ, RZ, and SOZ ∩ RZ nodes
versus unremarkable nodes. If a node has a greater number of outward or inward edges,
measured by outdegree centrality and indegree centrality, then it is hypothesized to be
more likely to instigate epileptic activity at other nodes.

2.4. Statistical Analysis

Each of the graph algorithms tested returns a metric for each node’s importance
to the epileptic network. Nodes are then ranked according to this metric, as shown in
Figure 1, where all the ranked nodes for a single patient are displayed along with the
largest magnitude edge weights from the GC map. The graph algorithm used to create
such a ranking is evaluated via the rank-order sum method as follows [1]. First, each node
is assigned a metric (i.e., number) by the algorithm under evaluation. For example, the
Monte Carlo sampling metric is the number of visitations each node receives. The nodes are
then ranked sequentially according to their metric, such that ∀n ∈ V, 1 ≤ rn ≤ N, where
the patient in question is being recorded by N nodes and rn, is the rank of a node n. A rank
of 1 corresponds to the node with the highest metric of all nodes and a rank of N with the
lowest. The rank order sum of neurologist-determined RZ and SOZ nodes (this acts as the
true RZ and SOZ against which algorithmically determined RZs and SOZs are validated) is
computed by adding the ranks of all the nodes in the RZ and SOZ, respectively. This rank
order sum is compared to a normal distribution of possible rank order sums created via
Monte Carlo simulation for a subset of size |SOZ| from N total nodes. In other words, the
normal distribution of rank order sums is obtained by selecting |SOZ| integers from the set
{1, 2, 3, . . . , N − 1, N} and summing them. This process of selecting and summing integers
is repeated 105 times, thus creating the normal distribution [17]. In order to determine
significance of the experimental rank order sum from the algorithm being tested, if the
experimental sum is significantly less than the sum as expected by chance from the normal
distribution of sums, then it can be concluded that the algorithm reveals information about
the causality of each node and the makeup of the RZ and SOZ [1].
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Figure 1. Results of one run of any of the graph algorithms tested can be visually depicted as shown.
In this example, displayed are the Indegree Centrality results for one patient for one run of the
algorithm. Axes here are arbitrary units from the GC map. Each number labels a node, with a square
representing those in the SOZ and a circle representing all others. The top eight nodes by Indegree
Centrality metric are yellow. Directed edges are shown. Figure produced using matplotlib.

As can be seen, the algorithms being tested in this manner do not immediately suggest
a resection zone; rather, they create a ranking of nodes where the nodes in the SOZ
are much more likely to be ranked first. Methods can be devised to select a SOZ from
this ranking, such as selecting the top 3 or 10 ranked nodes as shown from one patient
by the starred nodes in Figure 2C,D, respectively. This is compared to the neurologist-
identified SOZ and RZ in Figure 2A,B and the top 3 or 10 nodes as ranked by total GC
outdegree in Figure 2F [1]. Figure 2E displays the largest magnitude GC map edge weights
for reference. Figures 3 and 4 are analogous to Figure 2 and display additional patients
offering diversity of seizure types. Refinement of a method to select a SOZ from these ranks
would represent the final step towards theoretical creation of a single-stage algorithmic
basis for determination of SOZ in preparation for epilepsy surgery. Nevertheless, allowing
for ease of comparison to the literature, this study displays results via the rank order sum
method, leaving this last step for future study.
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Figure 2. Results for the Monte Carlo sampling algorithm (1000 random restarts, 1000 samples per
random restart) run on one patient are shown. Shown are the neurologist-determined SOZ (panel A)
and surgical RZ (panel B) determined through means currently utilized for epilepsy surgery. The top
3 (panel C) and top 10 (panel D) ranked nodes according to the sampling algorithm are displayed.
Note the similarities between top sampling nodes and neurologist-determined SOZ and RZ nodes.
(Panel E) shows the most influential edges of the GC map for reference. It is along such edges that
tokens travel in the sampling algorithm. (Panel F) shows the top 3 and 10 nodes as determined by
the total GC outdegree method, also for reference [1].

Figure 3. Similar to Figure 2, results for the Monte Carlo sampling algorithm (1000 random restarts,
1000 samples per random restart) run on one patient are shown.
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Figure 4. Similar to Figures 2 and 3, results for the Monte Carlo sampling algorithm (1000 random
restarts, 1000 samples per random restart) run on one patient are shown.

3. Results

A summary evaluation of all graph algorithms tested via the rank order sum
method for RZ is provided in Figure 5. Displayed are the number of patients, out of the
24 retrospectively tested, that exhibited a significant rank order sum for the RZ (one patient
did not undergo resection surgery after completing invasive monitoring). Each algorithm
is run at least five times on all patients in the sample and the average of all runs for an
algorithm is shown. Certain runs of the Monte Carlo Sampling algorithm variant that keeps
track of the visitation interval achieve statistically significant rank order sums for 16 out
of 24 patients’ RZ, representing an improvement of three patients from methods in the
literature [1]. As seen in Figure 5, in general, sampling algorithms utilizing more than one
token achieved a larger number of patients with statistically significant rank order sums
than sampling with a single token, suggesting that tracking the convergence of multiple
tokens eliminates much of the noise found in random sampling. However, as can be seen
from the SE depicted by error bars in Figure 5, there is significant variation between runs in
most variants of the Monte Carlo Sampling algorithm, likely limiting its overall usefulness
for surgery planning.

PageRank offers consistency of results from run to run, yet does not improve from
the literature on the number of patients with a statistically significant rank order sum.
Nevertheless, the fact that such a widespread algorithm used for other means in society
can also be applied to the problem of seizure onset prediction opens the possibility for
exploration of other graph algorithms originally invented for other purposes.

Combining the best of PageRank and Monte Carlo Sampling, indegree and outdegree
centrality combined consistency of results with an improvement on the number of patients
exhibiting statistically significant rank order sums. Notably, the 13 patients with statistically
significant RZ rank order sums from Park and Madsen, 2018, do not completely overlap
with the corresponding set of patients for graph algorithms tested in this study. Of the
16 significant patients from the most successful Monte Carlo sampling run, 10 patients are
also part of the 13 from the total GC outdegree method from the literature. However, of
the 16 significant patients from indegree centrality, 12 are also part of the 13 from total GC
outdegree. Nevertheless, the lack of complete overlap suggests a combination of these
methods could yield greater RZ and SOZ predication accuracy.
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Figure 5. The RZ rank order sums of all algorithms and their variants are displayed here, with total
GC outdegree included for comparison. SE bars are shown from sample sizes of five runs for each
algorithm. Note the results of in/outdegree centrality algorithms, which exceed that of the total GC
outdegree method from the literature while avoiding stochasticity of results found in other tested
graph algorithms.

There was minimal improvement in SOZ rank order sums (13.6 patients on average
versus 13 for total GC outdegree), likely limiting the immediate clinical potential of any of
the algorithms tested. Nevertheless, important findings are derived from comparison of
the graph algorithms’ results across their many variants. One such finding is displayed
in Figure 6 and discussed further below, where algorithm variants “reversing” edges to
identify the trigger nodes of neural activity instead of the nodes exhibiting that activity
itself almost universally perform better than their “forward” counterpart algorithms. For
further details, results from each trial of centrality, PageRank, and total GC outdegree
algorithms are reported in Table S3.

Figure 6. In this chart, sampling algorithms are described by the number of random restarts and the
number of samples taken per random restart. Algorithms utilizing GC maps with forward edges
include downhill sampling and indegree centrality. Algorithms utilizing GC maps with reverse
edges include uphill sampling and outdegree centrality. Across nearly all algorithms tested, graph
algorithms run on a reversed GC map had higher SOZ predictive capability, suggesting that interictal
brain regions that cause neural activity in other regions better corelate with the SOZ rather than brain
regions with the resulting neural activity itself.
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4. Discussion

This study is the first to the authors’ knowledge that applies graph algorithms to
Granger Causality analyses to holistically consider baseline interictal EEG data for RZ/SOZ
detection, using approaches which can be influenced by the topology of nodes’ connections
and not just the sum of their GC outdegrees. By demonstrating the comparable utility
of these algorithms to those from the literature, we hope to motivate future refinement
of other algorithm variants that take this holistic lens. Especially when different graph
algorithms yield statistically significant rank order sums for different subsets of patients,
further exploration of these algorithms has the potential to exhibit predictive capabilities
for patients not yet covered by any previous algorithms.

Other contributions of this study to algorithmic seizure onset and resection zone
identification via EEG data are the patterns it reveals in seizure network topography across
patients. Namely, the effects of edge direction on algorithm performance reveal that the
brain region influential in triggering neural activity better correlates to the SOZ as opposed
to the brain regions exhibiting triggered neural activity itself. This observation holds true
for Monte Carlo sampling, centrality, and PageRank algorithms, as seen through their
tested variants. Uphill sampling, outdegree centrality, and reversed edges PageRank, all of
which can be said to have “reversed edges”, give a higher rank to the root cause of neural
activity rather than the regions exhibiting activity itself. These patterns are summarized in
Figure 6, where uphill/outdegree edge directions universally correspond to equal or better
patient SOZ identification outcomes. This result is intuitive, given that the goal of surgery
might be expected to be removal of high generators, rather than receivers, of causative
signals. This result is also in line with previous studies based on the total GC outdegree
method, which gives a higher rank to nodes that have greater total outward edge weights,
likely indicating such nodes are more influential in the generation of activity in a seizure
network [1].

Additionally, we find that stochasticity in many of the algorithm variants in this
paper impacts patient results to the point where predictions about which nodes are to be
included in the SOZ and RZ are no longer reliable. This point is proven by the success
of sampling algorithms with multiple tokens and the requirement that numerous tokens
have to simultaneously be present in order to record a visitation. Such an algorithm
eliminates the effects of randomness and keys future algorithm variants to be developed to
do the same.

Finally, all of the algorithms tested in this study reveal that seizure activity truly is
localized to a specific brain region. The relative success of recording nodes’ length of
intervals between sampling as opposed to nodes’ overall number of visitations shows this,
as sampling intervals seek to tease out cyclical brain activity. This is corroborated by the
success of indegree and outdegree centrality compared with betweenness and harmonic
centrality. The latter two identify patterns in a node’s role in the context of the entire brain
network, because they look at shortest paths between all pairs of nodes. On the other
hand, indegree and outdegree zero in on the localized role of a node in relation to only its
neighbors. The success of the indegree and outdegree approaches exemplifies the need to
focus on localized areas of the brain network instead of approaching all nodes together.

All of these insights were achievable only with information told by the edge weights
contained in GC maps, data which were previously discarded. As data becomes available,
future work will involve a greater number of patients than the 25 included in this study,
in order to better determine the applicability of GC to a wider patient population. These
additional patients will include those with sEEG implants as well as more ECoG cases
similar to the 25 already studied. Future directions of this work include identifying the
interictal time window when GC map-based SOZ and RZ predictions are most accurate.
Because we obtain 60 different GC maps selected at random for each patient, these maps
can be tagged with time elapsed since previous ictal activity and time to next ictal activity.
With this data, an optimal window during which predictions most resemble the actual SOZ
and RZ can be identified.
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5. Conclusions

In this retrospective study, we develop and test new algorithms based on the entire net-
work as revealed by GC, rather than simply each node’s outdegree. Within our cohort using
these approaches, we find informative trends. Firstly, the matching of and improvement on
algorithms in the literature by this study’s graph algorithms helps to solidify the relevance
of GC maps to epilepsy surgery planning. Secondly, uphill sampling, outdegree centrality,
and reversed edges PageRank, all of which can be said to have “reversed edges”, give a
higher rank to the root cause of neural activity rather than the regions exhibiting activity
itself. Thirdly, stochasticity in some algorithms impacts results such that predictions about
nodes to include in the SOZ/RZ are no longer reliable. As such, variants that eliminate
stochasticity such as sampling with multiple tokens greatly increase the usefulness of these
highly random algorithms. Fourthly, the success of recording nodes’ sampling intervals
as opposed to nodes’ overall number of visitations, as well as the success of indegree and
outdegree over betweenness and harmonic centrality, reveal that seizure activity tends
to localize to a specific brain region. Future work will involve more patients, including
sEEG patients, to fine-tune the applicability of GC-based graph algorithms to a wider
patient population.
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25 patients included in this study’s dataset; Table S3: Results from each trial of the centrality, PageR-
ank, and total GC outdegree algorithms attempted. Note that there are 25 total patients for the SOZ
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