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Currently, tamoxifen is the only drug approved for reduction of breast cancer risk in

premenopausal women. The significant cardiovascular side effects of tamoxifen, coupled

with lack of a survival benefit, potential for genotoxicity, and failure to provide a significant

risk-reduction for estrogen receptor-negative breast cancer, all contribute to the low

acceptance of tamoxifen chemoprevention in premenopausal women at high-risk for

breast cancer. While other prevention options exist for postmenopausal women, there is

a search for well-tolerated prevention agents that can simultaneously reduce risk of breast

cancers, cardiovascular disease, and type-2 diabetes. Metformin is a well-tolerated

oral biguanide hypoglycemic agent that is prescribed worldwide to over 120 million

individuals with type-2 diabetes. Metformin is inexpensive, safe during pregnancy, and

the combination of metformin, healthy lifestyle, and exercise has been shown to be

effective in preventing diabetes. There is a growing awareness that prevention drugs

and interventions should make the “whole woman healthy.” To this end, current efforts

have focused on finding low toxicity alternatives, particularly repurposed drugs for

chemoprevention of breast cancer, including metformin. Metformin’s mechanisms of

actions are complex but clearly involve secondary lowering of circulating insulin. Signaling

pathways activated by insulin also drive biologically aggressive breast cancer and predict

poor survival in women with breast cancer. The mechanistic rationale for metformin

chemoprevention is well-supported by the scientific literature. Metformin is cheap,

safe during pregnancy, and has the potential to provide heart-healthy breast cancer

prevention. On-going primary and secondary prevention trials will provide evidence

whether metformin is effective in preventing breast cancer.

Keywords: breast cancer, prevention, metformin, chemoprevention, diabetes, heart disease

CURRENT BREAST CANCER PREVENTION STRATEGIES

Currently, tamoxifen is the only drug approved for reducing risk of breast cancer in premenopausal
women. The approval of tamoxifen was based on the first National Surgical Adjuvant Breast and
Bowel Project (NSABP) Breast Cancer Prevention Trial (P1) (1, 2). The P1 trial demonstrated that
high-risk women who took tamoxifen had a “50% decrease in the incidence of estrogen receptor-
positive breast cancer” (1). Results from the P1 trial underlined the decision of the US Food and
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Drug Administration (FDA) in October 1998 to approve
tamoxifen as a chemoprevention agent for premenopausal high-
risk women.

In 2013, the risk reduction benefit of tamoxifen was also
shown in a meta-analysis of four randomized controlled trials
(3): (1) Royal Marsden (4, 5), (2) International Breast Cancer
Intervention Study (IBIS-1) (6, 7), (3) P1 (1, 2), and (4) Italian
Randomized Tamoxifen Trial (8, 9). This analysis showed a 33%
reduction (p < 0.0001) in all breast cancers (10, 11) in high-
risk women who took tamoxifen chemoprevention vs. placebo
controls (3). As in the P1 trial, the observed reduction was
primarily due a decrease in the numbers ER-positive breast
cancer (44% in invasive breast cancers (p < 0.0001) and DCIS (p
= 0.009). Although tamoxifen-prevention was given for 5-years,
follow-up evaluation of the high-risk subjects provide evidence
that the long-term risk-reduction in subjects who took tamoxifen
may persist up to 10 years (3).

The benefit of tamoxifen appears to be in risk-reduction of
ER+ breast cancer; tamoxifen has failed to demonstrate in high-
risk women (1) a significant risk reduction for ER- breast cancer
and (2) a survival benefit. An extended analysis (median 16 years)
of IBIS-I study participants, continues to shows in the tamoxifen
vs. placebo arms “no difference in the number of breast cancer
deaths (p= 0.8)” (12).

Despite initial recommendations by the FDA and American
Society for Clinical Oncology, very few women take tamoxifen
(11); it is estimated that only 5–12% of women offered tamoxifen
chemoprevention elect to take tamoxifen (11).

Tamoxifen has been shown to increase risk for cardiovascular
events, including venous thrombosis, pulmonary embolism,
and stroke, and increases risk for endometrial cancer (12–
14). Other side effects of tamoxifen include hot flashes,
dyspareunia, depression, cataracts, weight gain, and bone loss in
premenopausal women (12–15). Consistent with the increased
risk of endometrial cancer in humans, a 2013 study in rats
showed that 13-week tamoxifen treatment increased DNA point
mutations in the liver (16). Lastly, a concern was raised that
tamoxifen may be less active in the 5–10% of individuals who
carried homozygous variant of the CYP2D2 gene; this gene
variant has low activity to convert tamoxifen to its more active
metabolite, 4-hydroxytamoxifen. Lacking in the analysis was
a consideration of the concentration of 4-hydroxytamoxifen
required to saturate ER; consequently, prospective clinical studies
did not demonstrate a reduction in tamoxifen efficacy in
individuals with the CYP2D2 variant (17).

While tamoxifen is the only agent approved for breast cancer
prevention in premenopausal women, other agents have been
approved for postmenopausal women. In the NSABP Study of
Tamoxifen and Raloxifene (STAR) trial (raloxifene 60mg vs.
tamoxifen 20mg), raloxifene was shown to reduce the incidence
of breast cancer in postmenopausal women (18). Raloxifene
does not increase the risk of endometrial cancer, however, the
incidence of ischemic heart disease and stroke was equivalent to
the risk associated with tamoxifen (18). IBIS-II tested anastrozole
(1.0mg) vs. placebo in postmenopausal women; the study found
a significant decrease in breast cancer in women who took
anastrozole; there was no increased incidence of fractures or
cardiovascular disease (19). In the Mammary Prevention.3 trial

(MAP.3) exemestane (25mg) vs. placebo in postmenopausal
women was associated with a decreased incidence of both ductal
carcinoma in situ and invasive breast cancer; with a median
follow-up of 3 years, side effects and impact on quality of life were
minimal (20).

NEED FOR HEART-HEALTHY BREAST
CANCER CHEMOPREVENTION

Women are not just at risk for breast cancer but also
face the risk of developing heart disease, obesity, and type-
2 diabetes. Furthermore, with the risk of currently available
chemoprevention agents potentiating cardiovascular disease,
there is a need to identify agents that can effectively target both
conditions: breast cancer and cardiovascular disease. To this end,
current efforts have focused on finding alternative prevention
strategies that have the potential to reduce not just breast cancer
but also reduce the risk for cardiometabolic diseases. Potential
strategies have included exercise, aspirin, and metformin.

Metformin
Metformin (1,1-dimethylbiguanide hydrochloride) is a well-
tolerated oral agent that is prescribed for first-line treatment
of type-2 diabetes (21, 22) and is approved for treatment of
polycystic ovary and gestational diabetes (23). Metformin is
well-tolerated by the majority of patients; common metformin
side effects include lack of appetite, epigastric pain, nausea,
and diarrhea (24). The most significant potential side effect
is lactic acidosis; consequently, metformin is not prescribed
in individuals with kidney and/or liver disease (23, 25). The
mechanism of action of metformin remains a topic of current
investigations. It is accepted that metformin inhibits hepatic
gluconeogenesis and decreases intestinal absorption of glucose,
secondarily decreasing circulating insulin (21, 26). Metformin
is also thought to indirectly increase insulin sensitivity by
increasing peripheral glucose utilization (21).

Until recently, most clinical care has focused on treatment of
type-2 diabetes rather than its prevention. However, several well-
controlled studies have shown that it is possible to prevent type-2
diabetes through a combination of diet, exercise, and metformin.
The Diabetes Prevention Program/Diabetes Prevention Program
Outcomes Study (DPP/DPPOS) is the largest and longest clinical
trial of metformin for the prevention of type-2 diabetes (27,
28). Study participants in the DPP/DPPOS cohort have over 15
years prospective assessment of the impact of metformin and
lifestyle modification on type-2 diabetes, cardiovascular events,
safety, and fiscal outcomes (27). Metformin and intensive lifestyle
modification resulted in a 50% type-2 diabetes risk-reduction in
women with a history of type-2 diabetes (29). Based on findings
from the DPP/DPPOS study, in 2014, the American Diabetes
Association (ADA) published formal recommendations for
prevention of type-2 diabetes (30). Recommendations included:
(1) individuals with impaired glucose tolerance or a HgbA1c 5.7–
6.4 should be referred to a life-style modification (7% weight
loss target) and moderate physical activity (e.g., walking) for
150 min/week (30). These recommendations may also prove
beneficial in modifying breast cancer risk; as outlined below,
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FIGURE 1 | (A) Circulating insulin and glucose levels in healthy individuals (Healthy), insulin-resistant individuals (Resistant), and individuals with type-2 diabetes

(Diabetes) at baseline and at 2 h after eating. (B) Impact of insulin-resistance on pancreatic islet cells, peripheral muscle, and individual. Insulin resistance in peripheral

muscle tissue results in increased insulin demands from the pancreas. Increased circulating insulin drives hunger and increases weight, leading to a positive feedback

loop that increases the chance of an individual developing type-2 diabetes. Adapted from (42).

metformin is undergoing testing for primary and secondary
breast cancer prevention.

Metformin and Breast Cancer:
Epidemiology Studies
Population-based studies provide evidence that cancer incidence
and mortality decreased in individuals with cancer who

took metformin (31–33). In a retrospective study of women
with breast cancer who received neoadjuvant chemotherapy
individuals who took metformin had a higher rate of pathologic
complete remission vs. those did not [24 vs. 8%, p= 0.007; (34)].
In a 2014 meta-analysis, individuals who took metformin had a

lower incidence of breast cancer (SRR= 0.94; 95% CI, 0.90–0.99)

(35). These epidemiologic studies represent a starting point for
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recent prospective clinical trials testing the impact of metformin
on primary and secondary breast cancer prevention.

Epidemiology studies investigating the impact of metformin
on breast cancer incidence are limited by several factors. These
factors include: (1) racial and ethnic differences in body mass
index (BMI), (2) inability of BMI to precisely identify individuals
who are metabolically unhealthy, and (3) the heterogeneity of
breast cancer as a disease. A BMI ≥30 kg/m2 is the most
frequently used measure of adiposity (36). BMI is an inexact
measure of risk, particularly when comparing individuals of
different race and ethnicity. Muscle tissue weighs significantly
more per unit volume than adipose tissue; consequently fit,
muscular individuals can be mistakenly identified as overweight
(BMI 25–30 kg/m2) or obese.

BMI is not a precise measure of metabolic health. Over
the past 20 years, the observation has been made that some
individuals with a BMI > 30 kg/m2 are metabolically healthy,
“metabolically healthy obese” (37). In contrast to individuals who
are obese but metabolically healthy, there are also individuals
with a normal BMI (BMI <25 kg/m2) who have abnormal
metabolic profiles and are at increased risk for cardiovascular
disease and type-2 diabetes. Current definition of metabolically
unhealthy individuals with a normal BMI includes (1) BMI
<25 kg/m2, (2) insulin-resistance, hypertriglyceridemia,
(3) abdominal fat distribution, and (4) elevated
blood pressure (37).

TYPE-2 DIABETES, METFORMIN, AND
BREAST CANCER SUBTYPES

Type-2 diabetes is well-established to increase a woman’s risk
of developing breast cancer. The association between Type-
2 diabetes and breast cancer subtypes, however, remains a
work in progress, particularly since the majority of studies are

underpowered. A case-control study of 916 postmenopausal
women with breast cancer cases and 1,094 population-based
controls conducted by Garcia-Esquinas et al. found that type-
2 diabetes was associated with a 2.25-fold increased risk for
triple negative breast cancer (TNBC) (38); this study was
limited by a low number of TNBC and the study of only
postmenopausal women. The Carolina Breast Cancer Study
included 225 women with TNBC; no statistical association
was found between type-2 diabetes and TNBC; unfortunately,
this study did not test for the association between insulin-
resistance and TNBC (39). A case-case study by Lara-Medina
et al. of Latinas with breast cancer (469 women with TNBC)
found no statistical association between type-2 diabetes and
TNBC (40).

The most complete and well-designed epidemiologic study
was a retrospective multi-center population-based case-case
study of 4,557 women with breast cancer ages 20–69 years old
performed by Chen et al.; 1,446 women had TNBC (41). The
investigators identified that women with type-2 diabetes had a
38% (95% CI: 1.01–1.89) increased odds of having TNBC (vs.
women without type-2 diabetes) (41).

Interestingly, Chen et al. also found that current and
extended-time metformin use (13–24 months metformin) within
2 years of diagnosis, increased the odds of a woman having TNBC
(OR = 1.54; 95% CI: 1.07–2.22 and OR = 1.80; 95% CI:1.13–
2.85, respectively) (41). These latter results are puzzling, given
the ability of insulin to activate signaling pathways that drive the
aggressive biology of TNBC and the known ability of metformin
to lower circulating insulin.

Epidemiologic studies are powerful tools for generating
associations but do not test mechanisms. First off, as pointed
out by Chen et al., it may be that the women who had the
most poorly controlled diabetes (41), were the individuals who
had the longest use of metformin; HgbA1c values for these
individuals were not reported. While the number of women

TABLE 1 | Select list of clinically relevant known metformin pharmacokinetic and pharmacodynamic genes.

Gene Protein Effect References

SLC22A1 OCT1 Low-function alleles linked to less reduction in

HgbA1c

(46–54)

SLC22A2 OCT2 Change in metformin PK; no known clinical impact (53)

SLC22A3 OCT3 Changes in metformin PK; no known clinical

impact

(54)

SLC47A1 MATE1 Alleles linked to increased reduction in HgbA1c (47, 50, 55)

SCLa7A2 MATE2 Low-function alleles linked to less reduction in

HgbA1c

(55, 56)

SRR Serine racemase Metabolic changes (57)

ATM ATM Low- and high-function alleles linked to change in

HgbA1c

(58–60)

LBK/STK11 Upstream

regulator of AMPK

Decreased ovulation in women with polycystic

ovarian syndrome.

(47, 61)

PKRAA1, PKRAA2,

PKRAB2

AMPK sub-units Incidence type-2 diabetes (47)

ABCC8-KNKJ11 Subunit beta cell

potassium channel

Incidence type-2 diabetes (47)
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using metformin were carefully determined, it is not clear that
the investigators incorporated insulin-use (insulin-dependent
type-2 diabetes) in their risk models. Furthermore, these risk
models do not account for individuals with insulin-resistance
(Figure 1). Ultimately, the studies by Chen et al. are extremely
important because they highlight how complex the associations
between metformin-use, insulin-use, and TNBC are likely to be
and underscore the importance of window-of-opportunity trials
and ongoing prospective metformin prevention trials (such as
MA-32, described below).

METFORMIN TRANSPORT AND
MECHANISM OF ACTION

After oral administration, the oral bioavailability is 55 ± 16%
(mean ± standard deviation); metformin is predominantly
absorbed in the small intestine (43). Metformin is excreted
unchanged in the urine and has a half-life between 4
and 8 h (44). Metformin’s absorption and renal clearance is
primarily mediated by OCT2/MATE1/MATE2-K (organic cation

transporter 2/multidrug and toxin extrusion 1/ multidrug and
toxin extrusion 2-K) (45). There are frequent polymorphisms in
OCT2, MATE1, and MATE2-K that impact clearance metformin
[Table 1; (46, 62)]. Up to 9% of non-Hispanic Whites exhibit an
“OCT1 null phenotype” (46). To date, there have been variable
findings in pharmacogenomic studies in humans. However, there
is evidence that cancer cell lines with high MATE2 expression
may be resistant metformin’s growth inhibitor effects (63).

Despite metformin being one of our oldest medications,

the precise molecular mechanism(s) underlying metformin’s

insulin-lowering effects, as well as its potential anti-neoplastic
potential, are not completely understood. It is well-accepted

that metformin inhibits hepatic gluconeogenesis and secondarily

lowers circulating insulin. However, the precise mechanism(s)
of metformin-action remains a work in progress. Two major

pathways are thought to account for the main actions
of metformin and metformin’s proposed anti-cancer effects
(Figure 2); both pathways converge on mammalian target of

rapamycin (mTOR): (1) AMPK (adenosine monophosphate-

activated protein kinase) independent, driven by metformin’s

FIGURE 2 | Impact of metformin on insulin-resistance, serum insulin, and signaling pathways important for breast cancer aggressive biology.
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FIGURE 3 | Metformin signaling in the liver.

ability to secondarily lower serum insulin and (2) AMPK-
dependent, regulated by metformin-suppression inhibition of
mitochondrial complex-I (complex-I).

Metformin signals via an AMPK-independent pathway; in
this pathway metformin secondarily lowers circulating insulin
levels and inhibits insulin/insulin-like growth factor-1 (IGF-1)-
signaling. Under nutrient-rich circumstances, IGF-1 binds to
the IGF-1 receptor (IGF-1R) leading to activation of (1) PI3K
(phosphatidylinositol-3-kinase)/AKT/mTOR-network signaling
and (2) RAS/RAF/mitogen activated protein kinase (MAPK)
[Figure 2; (64)]. Activation of PI3K/MAPK-pathways increase
cell proliferation and activates signaling pathways associated with
aggressive cancer biology in humans. By lowering circulating
insulin, metformin inhibits IGF-1/IGF-1R signaling and inhibits
PI3K- and MAPK-signaling pathways (Figure 2).

Metformin also signals through an AMPK-dependent
pathway; in this pathway, metformin first inhibits the
mitochondrial electron transport protein complex-I (65, 66).
Inhibition of complex-I, in turn, blocks production of
mitochondrial adenosine-5′-triphosphate (ATP), increases
the AMP/ATP ratio, results in a reduction of AMP, and lowers

hepatic energy state [Figures 2, 3; (65–69)]. This hepatic
energy state restriction leads to AMP binding to AMPK
and, thereby, increasing AMPK’s affinity for serine-threonine
liver kinase B1 (LKB1) (70, 71). AMPK-LKB1-activaiton
inhibits AKT/mTOR-network signaling leading to downstream
inhibition of S6-Kinase (S6K) and 4E binding protein-1 (4EB-
1). Metformin’s inhibition of mTOR suppress additional
downstream cancer-promoting pathways including (1)
Nuclear Factor kappa-light-chain-enhancer of activated B
cells NFkB/interleukin-6 (IL6), (2) MAPK/Ras, and (3) cMyc
[Figure 2; (64, 72, 73)]. NFkB, IL6, MAPK, Ras, and cMyc
together play a role in tissue inflammation, metabolism, and
immune cell signaling.

Increasing attention has been paid to identifying molecular
mechanisms that promote chemotherapy-resistance. Kevin
Struhl’s group first showed in 2009 that 0.1mM metformin
in vitro blocked transformation and killed cancer-like stem
cells (74). The combination of metformin and doxorubicin
in a mouse xenograft model (metformin 100µg/ml) exhibited
synergy. These results provided a potentially novel mechanism of
action for metformin and an experimental rationale for using the
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FIGURE 4 | AMPK-dependent and AMPK-independent metformin signaling. Adapted from (42).

combination of metformin and chemotherapy. The metformin
doses in this study, however, were supratherapeutic and this very
interesting mechanism of metformin-action remains an area of
active investigation.

There is also evidence that metformin acts on the tumor
microenvironment. Metformin increases intracellular oxygen;
this increase is thought to reduce tumor hypoxia (75).
Metformin’s decrease in hypoxia has been shown to inhibit

hypoxia-inducible factor 1 (HIF1) and vascular endothelial

growth factor A (VEGFA) driven angiogenesis; there is
also evidence for a direct anti-tumor effect on endothelial

cells (76, 77). Metformin’s increase in tumor oxygenation

and or activation of AMPK is thought to shift cancer

associated macrophages from a M2 to an M1 phenotype (78).

Metformin has been shown to reduce programmed death-ligand

1 (PD-L1) expression on cancer cells, increase lymphocyte
anti-tumor cytotoxicity, and downregulate myeloid derived

tumor cell activity (79–82). Taken together, these findings
highlight a potential role for metformin to be used in concert
with immune-therapy.

Current Consensus
While the study of metformin’s molecular mechanisms of actions
remain an area of active research, there is a growing consensus of
the key signaling targets of metformin. The following consensus
statement for metformin’s key mechanisms of actions is updated
from Pernicova and Korbonits (83):

• Metformin alters cellular energy metabolism and promotes
metabolic reprogramming.

• Metformin acts to lower glucose and increase insulin-
sensitivity: (1) primarily by inhibiting hepatic gluconeogenesis
and glucagon-signaling and (2) to a lesser degree, in the
skeletal muscle by increasing glucose uptake.

• Metformin lowers circulating glucose by inhibiting hepatic
gluconeogenesis and opposing glucagon-action.

• Mitochondria complex-1 is a key target of metformin-
signaling.

• Antihyperglycemic effect of metformin remains an area of
active investigation, more work is needed.

• Metformin impacts lipid metabolism primarily via activation
of 5′-AMP-AMPK.
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• Anti-cancer effects of metformin are hypothesized to be:
(1) indirect—decrease in circulating insulin and (2) direct—
energetic stress. However, additional studies are needed.

• Metformin induces energetic stress in cancer cells.
• AMPK-mediation inhibition of mTOR is important for much

of metformin’s anticancer activity.
• Impact ofmetformin on cancer stem-like cells needs validation

in vivo and in human clinical trials.
• Metformin may have direct and indirect anti-tumor effects on

the tumor microenvironment.

RATIONALE FOR METFORMIN’S ABILITY
TO PREVENT BIOLOGICALLY
AGGRESSIVE BREAST CANCERS

In breast cancer, particularly TNBC and basal-type breast
cancer, activation of PI3K/AKT/mTOR-signaling pathway is
associated with poor prognosis (84, 85). Activation of the
PI3K/AKT/mTOR results in cell cycle progression, apoptosis-
resistance, and invasion (86, 87). PI3K/AKT/mTOR is a regulator
of glucose metabolism and aerobic glycolysis (Warburg effect)
(88–90). The Warburg effect is directly linked to aggressive
cancer biology due to its impact on glycolysis/glucose-uptake;
increased glycolysis/glucose-uptake promotes increased growth,
mitochondrial dysfunction, and apoptosis-resistance. Metformin
targets the PI3K/AKT/mTOR pathway and promotes metabolic
reprogramming. These actions support the use of metformin
for prevention of biologically aggressive breast cancers
(Figures 2–4).

Prevention options for premenopausal women who carry a
deleterious germline BRCAmutation are limited. There is strong
scientific rationale for testing metformin in chemoprevention
of breast cancer in BRCA mutation carriers: (1) metformin
activates AMPK and (2) signaling networks regulated by
both AMPK and BRCA1, include PTEN, p53, and acetyl
coenzyme A carboxylase alpha (ACCA) (83, 91, 92). AMPK
regulates the phosphorylation/dephosphorylation cycles of
ACCA (93, 94). Given that AMPK and BRCA1 both inactivate
ACCA, it is hypothesized that metformin might compensate
for BRCA1-loss. Further rational for metformin prevention
in BRCA1 mutation carriers has been provided by Cuyas
et al. (95). Introduction of BRCA1 mutation185delAG in
MCF10A cells resulted in metabolic reprograming including
(1) mitochondrial activation, (2) increased glucose- and
glutamine-dependent activation of the tricarboxylic acid
cycle (TCA), and (3) increased production of acetyl-CoA and
malonyl-CoA (95). Metformin was shown in vitro to inhibit
(1) mitochondrial biosynthetic capacity, (2) the TCA cycle,
and (3) generation of lipogeneic precursors. The authors
hypothesize that the ability of metformin to block (“starve”)
mitochondrial-generated biosynthesis, might provide further
rationale for using metformin for cancer prevention in women
with germline BRCA1-mutation (95). As described below, to
date, the epidemiologic and clinical trials using metformin have
yielded conflicting results. The ability of metformin to prevent
biologically aggressive breast cancers, particularly TNBC,

requires the completion of the on-going prospective trials, such
as MA-32.

Clinical Studies
Dr. Pamela Goodwin has been a pioneer in the use of metformin
for lowering insulin and breast cancer chemoprevention; she
has developed some of the first trials testing metformin. In
a trial of 32 women (4 dropout) with early stage breast
cancer and fasting insulin of ≥45 pmol/L and glucose <7.0
mmol/L, administration of metformin 1500mg per day for
6 months was associated with a 22.4% decrease in serum
insulin [p = 0.024; (34)]. This study provided the rational
for subsequent randomized clinical trials using metformin
vs. placebo.

Window-of-opportunity trials provide important insight into
metformin’s mechanisms of action but have had conflicting
results. In a Scottish trial, Hadad et al. tested the impact of
metformin 500mg ramp up and then 1,000mg twice a day on Ki-
67 and gene expression on 8 pilot women and a further 47 women
with primary breast cancer; 7/32 women receiving metformin
withdrew due to gastrointestinal upset (96). In women receiving
metformin, Ki-67 fell significantly following metformin in both
the pilot study (p = 0.041) and in the metformin arm (p
= 0.027) but was unchanged in women who did not take
metformin (96). Gene expression studies showed a decrease in
mRNA expression in genes regulating AMPK; further analysis
demonstrated that tumor necrosis factor receptor signaling, and
mTOR- and AMPK-signaling were impacted by metformin (96).

The results by Hadad et al. contrast with a second window
of opportunity trial. In a double-blind pre-surgical trial Bonanni
et al. (2008-004912-10) randomized 200 non-diabetic women to
metformin 850 mg/day vs. placebo for 4 weeks prior to surgery
(97). Unlike findings by Hadad et al., Bonanni et al. observed no
statistical difference in Ki-67 between arms (97). However, there
was a differential impact on Ki-67 based on insulin-resistance
(measured by homeostatic model assessment—HOMA). In
women with HOMA >2.8 there was a 10.5% decrease in mean
Ki-67 vs. an 11% increase in women with HOMA <2.8 (p-
interaction = 0.045); women with Luminal B breast cancer had
the greatest benefit [p= 0.005; (97)]. Further, biomarker analysis
showed that this trial represented a significant accomplishment,
given the difficulty of coordinating window-of-opportunity
trials; importantly, this trial provided a key piece of evidence
that non-diabetic metabolically unhealthy women may benefit
from metformin chemoprevention (97). A third window-of-
opportunity trial reported by Kalinsky et al. in women with
early stage breast cancer and a BMI ≥30 reported that in
women taking 1,500mg metformin there were no significant
differences in Ki-67 for either DCIS or invasive breast cancer
(98). There has been significant discussion about the differences
observed in these: trials; one potential difference is that women
in the Scottish trial had larger breast cancers and therefore,
had larger tumors for analysis [see Kalinsky and Hershman for
a more in-depth analysis (99)]. Still, given the short duration
of window-of-opportunity trials, longer duration trials with a
cancer endpoint are required. See Table 2A for additional clinical
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TABLE 2 | Review of metformin in breast cancer treatment or prevention.

ClinicalTrials.gov

(reference if

available)

Study Study design Inclusion Endpoint and results (if

available)

(A) Adjuvant, window-of-opportunity, and secondary prevention trials

Breast phase II (34) Insulin-lowering effects of

metformin in women with

early stage breast cancer

Metformin 500mg tid ×

6 months

IBC completed therapy with

fasting insulin of ≥45 pmol/L

and glucose <7.0 mmol/L

Serum insulin

Results: Metformin was associated

with a 22.4% decrease in serum

insulin (p = 0.024)

NCT00897884 (100) Clinical and biologic effects

of metformin in early stage

breast cancer

Window-of-opportunity.

Single group. Metformin

500mg tid × 3 weeks

Early stage disease. Women

18–70 years; T1-4;

presurgical

Comparison pre- and

post-operative biopsy; Ki67

Results: HOMA significantly

reduced; Ki67 decreased

36.5–33% p = 0.016

TUNEL increased from 0.56 to 1.05

p = 0.004

NCT00909506 Efficacy and safety of

adjuvant metformin for

operable breast cancer

patients

Window-of-opportunity.

Metformin 500mg ×

1–2 weeks; then 500mg

bid weeks 3–24

Operable breast cancer

BMI>23; no medications

except tamoxifen

Weight loss

NCT00930579 (98) Effects of metformin on

AMP/mTOR pathway

Window-of-opportunity.

Metformin 1,500mg qd

for >12 weeks before

surgery

Operable breast cancer; BMI

>30 overweigh and obese

women with newly diagnosed

breast cancer

Results: No significant differences

in Ki67 for DCIS or invasive breast

cancer

NCT00933309 (101) Impact of obesity and

obesity treatments on

breast cancer

Exemestane with

metformin 1,000mg per

day and Rosiglitazone

Postmenopausal obese, ER+

metastatic breast cancer

Dose-limiting toxicity

Results: Metformin

was well-tolerated

NCT01042379 I-SPY 2 TRIAL:

neoadjuvant and

personalized adaptive

novel agents to treat breast

cancer

Window-of-opportunity.

Randomized novel

drugs in combination w/

standard chemotherapy

Presurgical breast

cancer—neoadjuvant

chemotherapy

Pathologic complete remission rate

NCT01101438

(MA-32) (102)

A phase III randomized trial

of metformin vs. placebo in

early stage breast cancer

Randomization to 1 of 2

treatment arms

Patients stratified by ER/PR

status, BMI, HER2 status, and

prior chemotherapy

Disease free survival

Metabolic parameters: Results at 6

months: Weight −3.0%, glucose

−3.8%, insulin −11.1%

NCT01310231 (103) A trial of standard

chemotherapy with

metformin (vs. placebo) in

women with metastatic

breast cancer

Standard chemotherapy

Metformin 850 bid

vs. placebo

Metastatic breast cancer

1–4th line chemotherapy

Results: No significant impact on

RR, PRS, or OS

NCT01650506 Study of Erlotinib and

metformin in triple-negative

breast cancer

Phase I to establish

maximum tolerated

dose

Open label single arm.

Diagnosis of triple-negative

breast cancer

Maximum tolerated dose

NCT01980823 Pre-surgical trial of the

combination of metformin

and atorvastatin in newly

diagnosed operable breast

cancer

Window-of-opportunity.

Metformin 500mg a.m.

and 1,000mg p.m.

w/atorvastatin 80mg or

at least 2 weeks prior to

surgery

Histologically confirmed DCIS

or IBC who undergo CNB

followed by surgery

Ki-67

NCT02145559 (104) Pharmacodynamic study of

sirolimus and metformin in

patients w/advanced solid

tumors

Pharmaco-dynamics

study

Phase 1 Investigation of combination

therapy in targeting mTOR pathway

Results: No dose limiting toxicities.

No significant differences in fasting

glucose, insulin, p70S6K

NCT02278965 Metformin and omega-3

fatty acids in women with a

history of early stage breast

cancer

Metformin 850mg bid

and Omega-3 1,120mg

bid × 12 months

Stage 1–3; no evidence of

disease at entry

Safety and feasibility

(Continued)
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TABLE 2 | Continued

ClinicalTrials.gov

(reference if

available)

Study Study design Inclusion Endpoint and results (if

available)

(A) Adjuvant, window-of-opportunity, and secondary prevention trials

NCT02874430 Metformin hydrochloride

and doxycycline in treating

patients with localized

breast or uterine cancer

Metformin days 1–3;

then 2x per day on day

4. Treatment repeats

every 7 days

Breast or Uterine cancer;

localized; no neoadjuvant

chemotherapy

Increased caveolin in cancer

associated fibroblasts

NCT03238495 Randomized trial of

neo-adjuvant

chemotherapy with or

without metformin for

HER2 positive operable

breast cancer (HERMET)

Randomized taxotere,

Carboplatin, Herceptin

+ Pertuzumab

With or

without metformin

cT1c-cT4a-d HER2+ breast

cancer

Pathologic complete response

Instituto Europeo di

Oncologica

2006-006236-22

(105)

Use of metformin to reduce

serum level of testosterone

and improve the metabolic

picture for women treated

with breast cancer

Metformin 1,000 vs.

1,500 mg/d × 3 months

Postmenopausal with history

of IBC and 6 months

post-surgery, on TAM for at

least 6 months and plan to

continue, or at least 6 months

post-chemo

1,500 mg/d decreased

testosterone by 23% (p < 0.01)

Instituto Europeo di

Oncologica

2007-000306-70

(105)

Effect of metformin on

biomarker activity in

primary breast cancer.

Window-of-opportunity

trial. Metformin 500

mg/d × 1 week; then

metformin 1,000 mg/d

× 1 week vs. placebo

Menopausal; Stage 1–2 IBC,

>1 cm, no history of diabetes

High risk of recurrence due to

elevated testosterone

3.4% decrease in Ki-67 (p = 0.02)

Instituto Europeo di

Oncologica

2008-004912-10

(97, 106, 107)

A randomized double-blind

pre-surgical phase II study

on activity of metformin on

breast cancer cell

proliferation

Window-of opportunity

trial. Metformin 850

mg/d × 3 days; then

metformin 850mg bid

day 4–28 vs. placebo; 4

weeks prior to surgery

Presurgical-Stage IIII IBC

patient not suitable for

neoadjuvant therapy

No overall change in Ki-67 10.5%

decrease in Ki-67 if HOMA >2.8 (p

for interaction = 0.045)

ClinicalTrials.gov

(reference if

available)

Study title Study design Inclusion Primary endpoint

(B) Primary prevention and presurgical trials

ACTRN

12610000219088

Phase I trial metformin

followed by reduction

mammoplasty

500 mg/d × 1 week;

then 1,000 mg/d × 4

weeks; then reduction

mammoplasty

Women age 40–60 AMPK signaling and aromatase

expression in reduction mastectomy

NCT01302379 (108) Reach for Health study:

Obesity-related

mechanisms and mortality

in breast cancer survivors

Metformin

Placebo

Lifestyle interventions

2 × 2 design

Breast cancer survivor; no

active disease

Overweight or obese

Study powered for metformin vs.

placebo and weight loss vs. control.

Metformin associated with

decrease in serum insulin, estradiol,

testosterone

NCT01793948 Metformin hydrochloride

vs. placebo in overweight

and obese patients at

elevated risk for breast

cancer

850mg qd × 30 days;

then bid × 11 months

vs. placebo

Postmenopausal and high risk

for breast cancer with BMI

≥25

Changes in mammary epithelial

phosphorylated proteins

NCT01905046 Metformin hydrochloride

vs. placebo in preventing

breast cancer in obese

premenopausal women

with atypical hyperplasia or

in situ breast cancer

850mg qd × 4 weeks;

then 850mg bid vs.

placebo × 24 months

Premenopausal, BMI >25,

prior

AH, LCIS or DCIS, >1.66%

Gail or known BRCA carrier,

and cytological atypia

1O Endpoint: Regression of atypia

at 12 and 24 months

2O Endpoint: Changes in

phosphorylated proteins

NCT02028221 Phase II study of metformin

for reduction of

obesity-associated breast

cancer risk

850mg × 1 month; then

850mg bid × 11

months vs. placebo

Premenopausal women age

30–45 with BMI of 25 or

greater and metabolic

syndrome

Change in breast density from

baseline at 6 and 12 months

NCT02431676 Survivorship promotion in

reducing IGF-1 trial

Metformin

Coach directed

behavioral weight loss

Self-control weight loss

Breast cancer

Prostate cancer

Lung cancer

Serum IGF-1

IGF-1/IGFBP3 ratio

(Continued)
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TABLE 2 | Continued

ClinicalTrials.gov

(reference if

available)

Study title Study design Inclusion Primary endpoint

(B) Primary prevention and presurgical trials

NCT04300790 Study to evaluate the effect

of Metformin in prevention

of hyperglycemia in

HR+/HER2-

PI3KCA-mutant advanced

breast cancer patients

[METALLICA]

Metformin

Alpelisib

Fulvestrant

Prevention hyperglycemia in

cancer patients

Number of patients with grade 3–4

hyperglycemia

IBC, invasive breast cancer; DCIS, ductal carcinoma in situ; qd, one a day; bid, twice a day; tid, three times a day; Tam, Tamoxifen; BMI, body mass index; HOMA, Homeostasis Model

Assessment; CNB, core needle biopsy; RR, recurrence rate; PFS, progression free survival; OS, overall survival.

AH, atypical hyperplasia; LCIS, lobular carcinoma in situ; DCIS, ductal carcinoma in situ; qd, one a day; bid, twice a day; tid, three times a day; Tam, Tamoxifen; BMI, body mass index;

RPPM, reverse phase proteomic microarray profiling.

and window-of-opportunity metformin trials in women with
breast cancer.

Currently many ongoing prospective clinical studies are
testing the metformin for primary and secondary prevention
of breast cancer (Tables 2A,B). Together, these clinical studies
represent an important investment by the National Institute of
Health, United States (NIH), European Cancer trials groups,
and the National Cancer Institute, Canada (NCIC) (Table 2).
The largest adjuvant (secondary prevention) trial is NCIC MA-
32, comparing metformin 850mg p.o. twice a day vs. placebo
(NCT01101438) in women with breast cancer; the endpoint
of this trial is breast cancer recurrence. After 2,382 women
were enrolled, in 2012, the eligibility criteria were amended
to mandate TNBC status for patients with T1cN0 disease
and at least one adverse tumor characteristic for patients
with T2N0 tumors. Interim analysis of the first 500 women
taking metformin entered in MA-32, showed at 6 months
there was a significant decrease in weight (−3.0%), serum
glucose (−3.8%), and serum insulin (−11.1%) (102); further
results from this trial are pending. ACTRN12610000219088
is currently testing the impact of metformin (1,000mg) on
LKB1 and AMPK signaling; NCT0430079 tests the impact
of metformin in preventing grade 3–4 in (1) men and (2)
post-menopausal women receiving treatment for ER/PR+,
HER2-not amplified advanced breast cancer, with a PI3K-
mutation [METALLICA trial]. Primary prevention studies
include (1) NCT01793948: randomized testing the impact
of metformin on postmenopausal women with high breast
density, (2) NCT01905046: metformin vs. placebo in high-
risk premenopausal women (including BRCA mutation carriers)
with cytologic atypia, and (3) NCT01905046: randomized
testing of whether metformin alters breast density, serum IGF-
1/IGFBP-e ratios, IGF-2, and leptin/adiponectin ratios, body
weight/body composition (109). See Table 2B for additional
trials. Given the wealth of primary and secondary metformin
chemoprevention trials, it is anticipated that over the next
5 years, these trials will provide important insights into
whether metformin is a viable chemoprevention agent for
breast cancer.

METFORMIN AND HEART-HEALTHY
PREVENTION OF BIOLOGICALLY
AGGRESSIVE BREAST CANCERS

Metformin is cheap, safe during pregnancy, and has shown to
prevent type-2 diabetes. There is a need for prevention drugs
that target both ER+ and ER- breast cancer as well as providing
prevention for cardiometabolic disease. Metformin clearly lowers
insulin-signaling; signaling pathways activated by insulin are
known to drive biologically aggressive breast cancer and predict
poor survival in women with breast cancer. Despite the fact that
metformin targets many key breast cancer pathways, there is
much to be learned about whether metformin can prevent breast
cancer and/or breast cancer recurrence. Window-of-opportunity
trials provide important clues to metformin’s impact on normal
and malignant breast tissue, but results have not been entirely
consistent. Currently, it is unclear which breast cancer subtypes
may benefit the most from metformin. It is likely that MA-
32 will provide answers to many of these questions. There is
also much to be learned about metformin, insulin resistance,
and BMI; specifically, whether metformin’s impact is only in
women who are metabolically unhealthy and/or have high BMI,
or whether metformin can benefit all women. Biomarker studies
that define key signaling pathways impacted by metformin will
be critical to design and inform future clinical trials. Over the
next 5 years on-going primary and secondary prevention trials
will show (or not show) the ability of metformin to prevent breast
cancer. Hopefully, these studies will not just provide a yes/no
answer also provide the biomarkers to determine which women
will maximally benefit frommetformin. In the words of several of
my patients “Please do not quote statistics at me; these statistics
are about other women. If I take a prevention agent, I want to
know if the prevention agent is working in my breasts.”
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