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Neural oscillations in hippocampus and medial prefrontal cortex (mPFC) are a hallmark of rodent anxiety models that build on conflict between
approach and avoidance. Yet, the function of these oscillations, and their expression in humans, remain elusive. Here, we used magnetoencepha-
lography (MEG) to investigate neural oscillations in a task that simulated approach–avoidance conflict, wherein 23 male and female human
participants collected monetary tokens under a threat of virtual predation. Probability of threat was signaled by color and learned
beforehand by direct experience. Magnitude of threat corresponded to a possible monetary loss, signaled as a quantity. We focused our
analyses on an a priori defined region-of-interest, the bilateral hippocampus. Oscillatory power under conflict was linearly predicted by
threat probability in a location consistent with right mid-hippocampus. This pattern was specific to the hippocampus, most pronounced
in the gamma band, and not explained by spatial movement or anxiety-like behavior. Gamma power was modulated by slower theta
rhythms, and this theta modulation increased with threat probability. Furthermore, theta oscillations in the same location showed
greater synchrony with mPFC theta with increased threat probability. Strikingly, these findings were not seen in relation to an increase in
threat magnitude, which was explicitly signaled as a quantity and induced similar behavioral responses as learned threat probability.
Thus, our findings suggest that the expression of hippocampal and mPFC oscillatory activity in the context of anxiety is specifically linked
to threat memory. These findings resonate with neurocomputational accounts of the role played by hippocampal oscillations in memory.
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Introduction
Anxiety comprises a suite of behaviors to account for potential
threat, enabling an organism to strike a normatively optimal bal-

ance in the face of competing goals (Bach, 2015, 2017). Using
rodent approach–avoidance conflict tests, such as the elevated
plus maze (EPM) or open-field test (OFT), a plethora of lesion
and drug infusion studies have implicated the ventral hippocam-
pus and medial prefrontal cortex (mPFC) in the control of such
behaviors (Gray and McNaughton, 2000; Kjelstrup et al., 2002;
Trent and Menard, 2010; Weeden et al., 2015; Ito and Lee, 2016).
In line with these findings, a recent lesion study suggested a sim-
ilar role of the human homolog, the anterior hippocampus, in
anxiety-like behavior (Bach et al., 2014). In rodent anxiety tests,
increased ventral hippocampal theta synchronization with mPFC,
and increased theta power in hippocampus, is observed when
comparing these situations to a familiar environment (Adhikari
et al., 2010; Padilla-Coreano et al., 2016). However, the function
of these oscillations and their expression in humans is currently
unclear. In this proof-of-principle study, we used an operant
conflict test to demonstrate hippocampal power increase in
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Significance Statement

We use a biologically relevant approach–avoidance conflict test in humans while recording neural oscillations with magnetoen-
cephalography to investigate the expression and function of hippocampal oscillations in human anxiety. Extending nonhuman
studies, we can assign a possible function to hippocampal oscillations in this task, namely threat memory communication. This
blends into recent attempts to elucidate the role of brain synchronization in defensive responses to threat.
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human anxiety and hippocampal syn-
chronization with mPFC and to investi-
gate different possible causes.

In rodents, hippocampal and mPFC
theta oscillations have been suggested to
signal aversive or safe aspects of anxiety
situations (Adhikari et al., 2010; Padilla-
Coreano et al., 2016). However, innate
anxiety tests, like the EPM or OFT, in-
volve multiple possible threat features,
which may be learned in plastic circuits or
hard-wired. This precludes better charac-
terizing the function of theta oscillations
in these tests. On the other hand, during
fear conditioning, a more controlled situa-
tion without goal conflict, theta and gamma
synchronization between amygdala, hip-
pocampus, and PFC has been implicated in
the communication of threat memory (Stu-
jenske et al., 2014). Here, we speculated
that hippocampal oscillations, and anxiety-
related synchronization, may preferentially
relate to learned threat probability, but not
to other aversive features, such as explicitly signaled magnitude of
threat.

To this end, we capitalized on a previously established human
approach–avoidance conflict model of anxiety (Bach et al., 2014;
Korn et al., 2017), embedded in a virtual computer game (Bach,
2015, 2017), while recording magnetoencephalography (MEG)
to assess neural oscillations. On each trial of the game, a human
player could collect a single monetary token under threat of get-
ting caught by a virtual “predator”. Catch probabilities for three
distinctly colored predators were learned by experience before-
hand (termed “threat level”). Being caught incurred a monetary
loss that was explicitly signaled as a quantity on each trial (termed
“potential loss”). At trial start, the player was presented with the
predator color and the potential loss. After a random interval, the
token appeared to create behavioral conflict (Fig. 1). We analyzed
neural oscillations separately at both time points.

Materials and Methods
Datasets. From the student and general population, 20 right-handed healthy
participants (mean age � SD, 24.3 � 3.91 years; 10 female) were recruited in
Zurich for a behavioral experiment (Experiment 1), and 25 right-handed
healthy participants (22.9 � 3.68 years; 14 female) took part in a MEG
experiment in London (Experiment 2). All participants were fluent speakers
of German or English, respectively, and had normal or corrected-to-normal
vision. Two MEG participants were excluded from the final analysis: one did
not complete the experiment and the other made large head movements
(�0.5 cm) impairing source reconstruction.

The study protocol was in full accordance with the Declaration of
Helsinki. All participants gave written informed consent after being fully
informed about the purpose of the study. The study protocol, participant
information, and form of consent, were approved by research ethics
committees (Kantonale Ethikkommission Zurich, University College
London Research Ethics Committee).

Experimental task. Participants performed an approach–avoidance
conflict task embedded in a computer game (Fig. 1), modified from a
previous study (Bach, 2015). Notably, this task involves only financial
gains and losses, but previous work indicates that participants’ behavior,
in particular the relation of approach latency with expected loss, is not
explained by economic theory and fits accounts of anxiety-like behavior
derived from nonhuman anxiety tasks (Bach, 2015). To make the game
usable for MEG, we segregated individual token presentations into sep-
arate trials.

On each trial, participants could collect one monetary token (approach
motivation) under threat of getting caught by a predator and consequently
losing an explicitly signaled number of tokens (avoidance motivation). Spe-
cifically, at the start of each trial (Fig. 1A), the human player was in a “safe
place”, the bottom grid block in a 2 � 2 diamond grid, and was tasked to
decide whether or not to collect a token that would come up in the left or the
right grid block. The predator was “sleeping” opposite the safe place, and
could become active in a homogenous Poisson process when the human
player was outside the safe place, in which case it would catch the player.
Three frame colors (blue, pink, or orange) represented the threat levels, i.e.,
the Poisson wake-up rate of the predators. Wake-up rates were set to result in
a catch probability of 0.1, 0.2, or 0.3, for the three predators, if the player was
outside of the safe place for 100 ms, a value established in previous work
(Bach, 2015). Threat probabilities were learned by experience beforehand in
36 training trials with zero token loss, which did not count toward the
performance-based remuneration. Crucially, threat probabilities were not
explicitly instructed. Below the grid, potential loss on the current trial was
indicated by red diamonds and varied between 0 and 5.

After a variable time interval, randomly drawn from a gamma distribution
with parameters k � 2, � � 1, and mean of 2 s, truncated at 6 s, the token
appeared. In case the player did not collect the token, it disappeared after a
variable time, drawn from the same distribution, and the trial continued for
another 1 s. If the token was collected (Fig. 1B), the trial continued until the
same predetermined end time. If the player got caught, it disappeared, the
predator turned red and stayed on the screen until the predetermined end
time. The next trial started after a random intertrial interval (ITI) drawn
from the same distribution truncated at 4 s, during which the screen was
blank. Participants were presented with 648 trials in Experiment 1 and 540
trials in Experiment 2, evenly distributed across six different token losses and
three different threat levels in pseudorandom order.

Participant’s payment depended on performance in six trials ran-
domly drawn after the experiment and excluding the 36 training trials.
The experiment was programmed in Cogent (Version 2000v1.25; www.
vislab.ucl.ac.uk/Cogent) under MATLAB 7.14 (MathWorks).

MEG data acquisition. MEG signals were recorded in a magnetically
shielded room with a 275-channel Canadian Thin Film system with super-
conducting quantum interface device (SQUID)-based axial gradiometers, a
hardware anti-alias filter of 150 Hz cutoff frequency, and digitization rate of
600 Hz. Head positioning coils were attached to nasion, left, and right auric-
ular sites, to provide anatomical coregistration, and allowed continuous
head localization. Synchronizing markers were written into the MEG data
file for precise detection of trial start, token appearance, and trial end. A
projector displayed the computer game on a screen (�0.8 m distance from

Figure 1. Virtual computer game. A, At trial start, the player (green triangle) is placed into a “safe place” on a 2 � 2 grid with
one of three different frame colors, representing threat level of a sleeping predator (gray circle). Red tokens signal potential token
loss upon being caught (0 –5). After a random interval, a monetary token (yellow diamond) appears. If not collected, it disappears
after a random interval. B, Possible outcomes depend on participants’ choice and chance.
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the participant). Participants made responses with a button box, and eye
blinks were monitored using an eye tracker.

This type of MEG system has been successfully used in the past across
different laboratories to demonstrate hippocampal oscillations. This in-
cludes theta oscillations during navigation, well known from nonhuman
electrophysiology (Cornwell et al., 2012; Kaplan et al., 2012), theta oscil-
lations during memory recall, known from fMRI and animal electro-
physiology (Guitart-Masip et al., 2013), hippocampal-mPFC phase
coupling during decision making (Guitart-Masip et al., 2013), increased
theta oscillations during memory encoding, a phenomenon well known
from nonhuman electrophysiology (Backus et al., 2016), and theta-
gamma coupling during replay, another phenomenon from nonhuman
electrophysiology (Poch et al., 2011). Furthermore, the approach has
been used to replicate an fMRI experiment on stimulus novelty, showing
increased hippocampal theta oscillations with novelty (Garrido et al.,
2015). Simultaneous intracranial EEG and MEG recordings have also
provided support for the validity of hippocampal source reconstruction
in the gamma band (Dalal et al., 2013). In sum, the gradiometer system
appears well suited to record oscillations from hippocampal sources. In
terms of theoretic considerations, while there is greater attenuation of
distant sources for gradiometers than for magnetometers, this is gener-
ally compensated for by an increased SNR due to better noise rejection
performance. Under an assumption that the hippocampus is 8 cm away
from the nearest sensor, then a 5 cm baseline gradiometer will provide
60% of the signal compared with a magnetometer. However, at the same
time, the gradiometer offers typically a 100-fold improvement in far-field
external noise rejection compared with the magnetometer.

Data analysis
Behavioral data analysis. Statistical analysis of behavioral data were per-
formed in R (www.r-project.org, v3.1.2). Because the data were unbalanced
by design, we used linear mixed-effects models (lme4 package), which pro-
vide meaningful parameter estimates in this case, using a previously de-
scribed method (Bach, 2015). All models had the following form:

� � �0 � �1X1 � �2X2 � �3X3 � bk; k � 1 . . n, bk � N�0, �b
2�,

(1)

where �0 is the group intercept, �1…3 are the fixed effects parameter vectors
for three threat levels, six potential losses, and their interaction, and bk is the
random subject intercept. The linear predictor � is related to the data y
through the identity link function for the approach latency data:

yijk � N��ijk, �2I�, (2)

and through the logit link function for binary choice data (i.e.,
approach–avoid):

yijk � B�1,
1

1 � exp��ijk�
�. (3)

This is equivalent to the R model formula:

Y � threat level * potential loss � �1	subject�, (4)

where Y is the binary choice, or the approach latency. Fixed-effects
F-statistics were computed using the R function anova. P-values were
calculated using a conservative lower bound on the effective denomina-
tor degrees of freedom as

df � N � K, (5)

where N is the number of observations and K is the number of all mod-
eled fixed and random effects. Because the data are unbalanced, i.e., some
participants made no approach responses for higher potential loss or
threat level, the averaged approach latencies at higher potential loss or
threat level will be biased by participants who are more likely to ap-
proach. This is why we estimated the approach latency from the model
for illustration (lsmeans package). This approach takes the unbalanced
dataset into account and estimates the mean approach latency that would
be expected in a balanced dataset.

MEG data preprocessing. MEG data analysis was conducted in SPM12
(Statistical Parametric Mapping, Wellcome Trust Centre for Neuroim-
aging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). Continuous
data from each session were high-pass filtered at 0.1 Hz and low-pass
filtered at 150 Hz using a fifth-order Butterworth filter, down-sampled to
150 Hz, and notch filtered at 50 and 100 Hz to remove mains noise. Data
were down sampled to 300 Hz resolution. Epochs from 0 to 1000 ms relative
to trial start and to token appearance of each trial were extracted separately.
Epochs in which the interval between trial start and token appearance, or the
interval between token appearance and trial end, were shorter than 1000 ms
were discarded from further analysis. This excluded �26% of the trials as
expected from the cumulative density function of the gamma distribution.

Source localization. The linearly constrained minimum variance scalar
beamformer spatial filter algorithm (implemented in DAiSS toolbox,
https://github.com/SPM/DAiSS) was used to generate maps of source
activity on a 5 mm grid. Coregistration to the Montreal Neurological Insti-
tute (MNI) brain template was based on three fiducial points: nasion, left,
and right preauricular points. We used a single-shell head model to fit the
inner skull surface of the inverse normalized SPM template to more precisely
characterize the MEG forward model. The beamformer source reconstruc-
tion calculates a set of weights that maps the sensor data to time-series at the
source locations. Our broad-band beamforming spatial filters were based on
covariance matrix of all trials, in a frequency range of 1–150 Hz and a time
window of 0–1000 ms relative to trial start or token appearance.

For each participant, we then created four normalized 3D source
power images depicting the following contrasts: difference between high
threat and low threat level, linear effect of potential losses across different
threat levels, quadratic effect of potential losses across different threat
levels, and interaction between threat levels and potential losses. The
resulting images were smoothed using a Gaussian kernel of 10 mm
FWHM (Guitart-Masip et al., 2013). We then performed a second level
one-sample t test on smoothed contrast images from all the participants
(df � 22). All statistical parametric maps were thresholded at p 
 0.001
uncorrected, and small volume corrected for family wise error at p 
 0.05
using Gaussian random-field theory at the cluster level (Worsley et al.,
1996) within the bilateral hippocampus defined by the AAL toolbox
(Tzourio-Mazoyer et al., 2002).

Lateralization. To assess the laterality of our main finding, we extracted
averaged power from the significant clusters and contralaterally mir-
rored hippocampal regions (i.e., the clusters flipped about the midline).
Because this analysis is biased toward exposing a difference, we also ex-
tracted data from left and right hippocampus separately. These data were
analyzed in a 3 (threat level) � 2 (hemisphere) ANOVA.

Controlling for behavioral variables. To exclude that behavior (decision to
approach or approach latency) explained our findings, we extracted aver-
aged power from both clusters on a trial-by-trial basis. Because behavior is
strongly coupled to threat level and potential loss, the number of instances
for each combination of experimental condition and behavioral response is
extremely unbalanced. This is why we departed from our previous ANOVA
approach and analyzed these data in a full hierarchical linear mixed-effects
model in line with behavioral data analysis, using the R formula:

Y � behaviour * threat level * potential loss � �1	subject�,

(6)

where behavior corresponds to the approach–avoidance decision (con-
trol analysis 1) or to the approach latency (control analysis 2, accounting
only for data on trials where participants chose to approach).

Comparing threat level and potential loss. To compare the effect of
threat level and token loss in an unbiased region-of-interest, we extracted
theta power for all trials from all image voxels within the bilateral hip-
pocampus. For each individual voxel and for the average across all voxels,
we compared a reduced model containing either the linear effect of threat
level together with subject intercepts, or the linear effect of token loss
together with subject intercepts. For both models, we computed Akaike
information criterion (AIC). An absolute AIC difference of �3 was re-
garded as decisive (Penny et al., 2004).

Decomposition into frequency bands. We extracted power from the signif-
icant clusters separately for five frequency bands: theta (1–8 Hz), alpha
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(8–12.5 Hz), beta (12.5–30 Hz), gamma (30–80 Hz), and high gamma
(80–150 Hz). To define the frequency range of theta oscillations in humans,
we drew on previous work exploring their distinctive association with
gamma oscillations at species-specific frequencies. In rodents, these appear
to occur between 4 and 12 Hz (Adhikari et al., 2010). In contrast, intracranial
recordings have revealed that human hippocampal theta oscillations occur
in an overall lower frequency range (1–8 Hz) (Jacobs, 2014). Definition of
the other frequency bands was based on conventions in the field.

Time-frequency decomposition. To analyze the evolution of theta activ-
ity at different time points and frequencies, we extracted all sources from
the significant cluster and obtained time-frequency decomposition using
Morlet wavelets. We computed mean power per subject and condition
for each time point (0 –1000 ms at 3 ms resolution) and frequency (1–150
Hz at 1 Hz resolution). These were then statistically analyzed by comput-
ing a two-tailed t test comparing high and low threat level for each data
point. To account for multiple comparisons across time points or across
frequencies, results were cluster-level corrected using a random permu-
tation test on the trial labels (Maris and Oostenveld, 2007).

Modulation of gamma power envelope. Gamma power modulation at
theta frequency may indicate theta phase– gamma power coupling. To
address gamma power modulation, we first averaged power at each time
point across the predefined gamma band (30 – 80 Hz) and thus produced
a time series of the gamma power envelope for each trial. For this power
envelope, we obtained time-frequency decomposition using Morlet
wavelets. We discarded all frequencies �30 Hz as they have limited in-
terpretability. These data were averaged over time points and trials for
each condition. We then averaged either across all conditions (overall
gamma envelope), or computed the difference between high and low
threat. These data were averaged within theta, alpha, and beta frequency
band, and analyzed in a univariate (frequency band) ANOVA or threat
level � frequency band ANOVA. To address evoked (time-locked) mod-
ulation of the gamma envelope, we first averaged the gamma envelope
within conditions and then repeated this analysis.

Synchronization analysis. To estimate synchronization of hippocampal
theta oscillations with the rest of the brain, we computed the phase lag
index (PLI; Stam et al., 2007). We extracted trial-by-trialwise time series
for the time window following token appearance, for the first principal
component of all sources within the significant cluster (seed source), and
then for all other sources in the brain. These time series were filtered (1–8 Hz
bidirectional fourth-order Butterworth) and Hilbert transformed to com-
pute instantaneous phase 	(t, n) at time t for source n. Phase lag index was
then calculated for each trial as follows:

PLI �
1

T
� �t�1

T
sign� 	�t, seed� � 	�t, n��� , (7)

where 	(t, seed) represents instantaneous phase of source in the significant
cluster at time t. PLI will range from 0 to 1, where a PLI of 0 indicates no
coupling or randomly distributed phase angles and a PLI of 1 indicates con-
stantly positive or negative phase angle across time points and thus tight
coupling between two sources-of-interest. The PLI measure is less prone
than other synchronization measures to the influences of volume conduc-
tion from a strong source (Stam et al., 2007; Kaplan et al., 2014). PLI between
seed source and any other source in the brain was averaged across trials for
each condition, written onto the 5 mm resolution source grid, averaged
within each condition, and smoothed with a 10 mm FWMH Gaussian kernel
before entering them into a second level statistical analysis. Statistical para-
metric maps were thresholded at p 
 0.001 uncorrected, and small volume
corrected for familywise error at p 
 0.05 using Gaussian random field
theory at the cluster level (Worsley et al., 1996) within an anatomical mPFC
mask defined by combining BA 8-11, 44-47 in the AAL toolbox (Tzourio-
Mazoyer et al., 2002), and restricting this mask to the medial cortex surface
(�4 mm about the midline).

To make plausible that these results are not biased by condition dif-
ferences in difference phase angle, we extracted for each trial and time
point the difference phase angle between seed source and all sources
within the significant mPFC cluster from the PLI analysis. This showed
no large overall phase angle differences, thus rendering the analysis of PLI
unproblematic.

Results
Increasing threat level, or potential loss, enhances passive
avoidance and behavioral inhibition
Figure 2 shows that participants adapted their behavior across
varying level of threat and potential loss in a behavioral control
sample, and in the MEG experiment. The proportion of approach
responses significantly decreased with increasing threat level, and
with potential loss (Fig. 2A,B; Table 1), similar to passive avoid-
ance observed in rodents during anxiety tests. Also, when partic-
ipants made an approach response, approach latency was longer
at high threat level or potential loss (Fig. 2C,D; Table 1). This
suggests behavioral inhibition relates to expected loss. These re-
sults replicate previous reports with a similar operant conflict
game in which participants collected tokens cumulatively (Bach,
2015, 2017), whereas here potential loss did not depend on pre-
vious actions. We also noted that participants’ behavior separated

Figure 2. Behavioral results. Proportion of approach responses (A, B) and approach latency
(C, D) for a behavioral experiment (n � 20; A, C) and the MEG experiment (n � 23; B, D).
Approach latency is estimated from a linear mixed-effects model to account for the unbalanced
data structure.

Table 1. Effect of threat level, potential loss, and their interaction on proportion of
approach responses, and approach latency in control and MEG study, as estimated
in a linear mixed effects model on single trial data

F p df

Effect on approach responses
Behavioral experiment 1 (n � 20)

Threat level 109.14 
0.001 2; 12,276
Potential loss 346.78 
0.001 5; 12,276
Threat level � potential loss 1.67 0.08 10; 12,276

MEG experiment 2 (n � 23)
Threat level 27.85 
0.001 2; 12,380
Potential loss 438.78 
0.001 5; 12,380
Threat level � potential loss 7.18 
0.001 10; 12,380

Effect on approach latency
Behavioral experiment 1 (n � 20)

Threat level 29.42 
0.001 2; 9268
Potential loss 42.69 
0.001 5; 9268
Threat level � potential loss 4.65 
0.001 10; 9268

MEG experiment 2 (n � 23)
Threat level 3.54 0.029 2; 9082
Potential loss 20.84 
0.001 5; 9082
Threat level � potential loss 2.29 0.019 10; 9082
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between high- and low-threat situations, but less so between me-
dium and high threat level. A behavioral effect of varying threat
level and potential loss on approach latency indicates that our
model captures approach–avoidance conflict in humans, and
hints at the cross-species comparability of the model.

Hippocampal oscillations relate to threat probability
Upon token appearance, but not at trial start, we observed signif-
icantly greater power for high � low threat level in a cluster
overlapping with the right mid-hippocampus (Table 2; Fig. 3A).
We also observed a power decrease for high � low threat level in
a cluster overlapping with the left posterior hippocampus and
extending into the thalamus (Fig. 3B). We extracted power from
each cluster and averaged across voxels. For both clusters, power
at medium threat level was different from the high-threat level
(one-tailed t tests, p 
 0.05) but not from the low-threat level
(p � 0.10), indicating a nonlinearity in the threat level–power
relation. However, in a one-way ANOVA, the quadratic term for
threat level was not significant (p � 0.10), indicating that this

nonlinearity may be a chance variation.
When comparing the significant clusters
to a contralateral region (cluster mask
flipped about the midline), we found a
significantly greater influence of threat in
one hemisphere than in the other. To
avoid any bias induced by the cluster-
defining contrast, we then extracted
power from the anatomical region-of-
interest and averaged separately for each
hemisphere. Again, we observed a hemi-
sphere � threat level interaction for both
contrasts (mid-hippocampus: F(1,44) �
4.04, p � 0.024; posterior hippocampus:
F(1,44) � 5.55, p � 0.007; Figure 3C). This
suggests that the threat–power relation-
ship is truly lateralized. Next, we ex-
panded our field of view and analyzed
power across the entire brain. No other
brain region expressed a power relation with
threat level, potential loss, or their interac-
tion, even without correction for multiple
comparisons.

Hippocampal power and movement
Next, we split our analysis into trials on
which the players approached and trials
where they made no movement. Across the
brain, we did not find a difference between
approach and avoidance trials, neither at
trial start nor at token appearance. Because
the number of trials is unbalanced for the
combinations of approach–avoidance and

threat levels, we extracted power from the significant clusters on a
trial-by-trial basis, and analyzed these data in a hierarchical linear
mixed-effects model. This analysis replicated the impact of threat
level (p 
 0.01 for both clusters) but revealed no effect of approach–
avoidance. Next, we included approach latency into a model on trials
on which participants approached the token. Approach latency did
not relate to power in the mid-hippocampus, but it significantly
related to power in the posterior hippocampus (F(1, 6894) � 6.5, p �
0.01). However, the effect of threat level was still significant in this
analysis (p 
 0.05 in both clusters). Together, this suggests that the
threat level–power relation is not better explained by approach–
avoidance or by approach latency.

Threat level and potential loss
To more directly compare the effects of threat level and token
loss, we computed AIC as approximation to the evidence for a
model including only threat level, or only potential loss. This
analysis was done in the entire anatomical region-of-interest to

Table 2. MEG findings

Hemisphere x y z Cluster size, mm 3 Overlap with ROI mask, mm 3 Peak z value

Token appearance: high threat � low threat
Mid-hippocampus

R 20 �24 �16 6256 1088 3.60
Posterior hippocampus/thalamus

L �12 �30 4 3504 464 4.18
Token appearance, PLI with respect to averaged sources in mid-hippocampus cluster: high threat � low threat

Medial frontal gyrus (BA 10)
Bilateral �2 60 0 744 3.40

Results are cluster-level corrected for familywise error within the anatomically defined region-of-interest (bilateral hippocampus or bilateral mPFC) at p 
 0.05 (cluster defining threshold of p 
 0.001). Coordinates and peak z values refer
to overall peak of the unmasked cluster.

Figure 3. Estimated source power relates to threat level. A, Right-hemispheric cluster for which estimated power increases with
threat level (yellow) within an anatomically defined region-of-interest (bilateral hippocampus, light blue), visualized on a tem-
plate brain image ( p 
 0.05 FWE). B, Left-hemispheric cluster extending into the tip of the posterior hippocampus for which
estimated power decreased with threat level (green). No voxel outside these two clusters showed such relationship at a voxel
selection threshold of p 
 0.001. C, Mean normalized power in the hippocampus region-of-interest, for three different threat
levels, shown as condition mean corrected for hemisphere mean across conditions, and SE of difference from participant/hemi-
sphere mean. Power to threat level relation was more pronounced in right than left hemisphere. D, Mean theta power averaged
within the hippocampus region-of-interest for threat level and potential loss. Data are shown as condition mean and SE of
difference from participant mean.
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avoid any bias induced by the cluster-
defining contrast (Fig. 3D). Across the
bilateral hippocampus, threat level ex-
plained more variance than potential loss
in power averaged across voxels, and in
50% of individual voxels, whereas poten-
tial loss explained more variance in 2% of
voxels. This suggests theta power in the
hippocampus is more closely related to
threat level than to token loss, as expected
from the initial analysis.

Time-frequency decomposition
To decompose the threat level–power re-
lation, we split the beamformer into fre-
quency bands. A threat level � frequency
band ANOVA replicated the impact of
threat level (p 
 0.05 for both clusters)
and showed that power was unequally dis-
tributed across frequency bands, as ex-
pected from their definition (p 
 0.05 for
both clusters). Notably, we found a threat-
level � frequency interaction (mid-hip-
pocampus: F(8,176) � 3.32; p � 0.001;
posterior hippocampus: F(8,176) � 2.29; p � 0.024), suggesting that
the threat level–power relation was not equally distributed among
frequency bands. For the mid-hippocampus cluster, post hoc t tests
revealed a significant (p 
 0.05) impact of threat level on power in
the beta, gamma, and high-gamma band. For the posterior hip-
pocampus cluster, we found an impact of threat level on the theta
and gamma bands.

We then extracted the estimated time course of all sources within
the significant clusters, and computed a time-frequency decompo-
sition. Statistical contrasts were corrected for multiple comparisons
using a cluster-level permutation test. In the mid-hippocampus clus-
ter, an impact of threat level was particularly pronounced �25 Hz and
after �450 ms (Fig. 4A). Cluster-level tests on averages across time,
or frequencies, revealed that the effect of threat level was particularly
pronounced at frequencies between 23 and 150 Hz, and for all time
points between 297 and 900 ms. For the posterior hippocampus
cluster, this analysis revealed no clusters of interest.

Theta modulation of gamma power
For the remaining analyses, we focused on the mid-hippocampus
cluster, which is spatially close to, and shows the same threat–power
relation as, the ventral hippocampus subregion for which previous
rodent work has revealed oscillatory coupling. Extracted gamma
power from this cluster appeared to be modulated by lower frequen-
cies (Fig. 4A), reminiscent of a theta phase–gamma power coupling
observed in rodent anxiety models (Stujenske et al., 2014). To ana-
lyze this modulation, we averaged gamma (30–80 Hz) power for
each point in time, and analyzed spectral modulation (1–30 Hz) of
this gamma power envelope for each trial. Averaged within fre-
quency bands, this analysis revealed overall stronger modulation of
gamma power envelope in theta/alpha than in beta band (main ef-
fect frequency: F(2,44) � 11.46, p 
 0.001, post hoc test theta � beta
band: t(22) � 3.65, p � 0.001; alpha � beta band: t(22) � 3.70, p �
0.001). Furthermore, gamma envelope appeared to be particularly
more modulated at theta/alpha than at beta frequencies when threat
level was high (interaction threat level � frequency: F(2,44) � 4.94,
p � 0.012, post hoc test theta � beta band: t(22) � 2.29, p � 0.032;
alpha � beta band: t(22) � 2.30, p � 0.030). Strikingly, when first
averaging gamma envelope within conditions and then doing the

spectral decomposition, we found the same pattern of results. This
suggests theta/alpha modulation of gamma power is time-locked to
token presentation.

Theta synchronization between mPFC and hippocampus
Finally, based on previous findings that hippocampal and mPFC
theta oscillations synchronize more strongly when threat is higher,
we computed the PLI between the maximum source in the mid-
hippocampus cluster, and all other sources in the brain, and ana-
lyzed the resulting PLI images. We found an mPFC area for which
PLI increased with higher threat level (p 
 0.05; cluster-level cor-
rected for familywise error within anatomically defined mPFC; Fig.
5A,B; Table 2). This result appeared to reflect phase coupling and
was not driven by differences in mean phase angle between the two
conditions. There was no impact of potential loss on PLI.

Discussion
Neural oscillations in hippocampus, and hippocampus–mPFC theta
synchronization is often observed in rodent approach–avoidance
conflict tests of anxiety. In the present study, we investigated occur-
rence and synchronization of hippocampal oscillations in humans to

Figure 4. Time frequency decomposition of extracted source activity from mid-hippocampus cluster. A, Power difference (high
vs low threat) averaged across time points, and for the entire time-frequency window, shown as condition difference normalized
by SE of that difference over participants. Significant clusters from a cluster-level permutation test are outlined in black. Time
course of power, averaged over all frequencies, is shown in absolute units for the three threat levels. B, Power increase per
additional token, averaged across time points, and for the entire time-frequency window, shown as regression slope normalized by
the SE of that regression slope over participants. Time course of power, averaged over all frequencies, is shown in absolute units for
the six potential losses.

Figure 5. Phase coupling of mid-hippocampus cluster with mPFC. A, At token appearance,
PLI between mid-hippocampus and mPFC increases with threat level. Significant cluster (yel-
low, region BA10) overlayed on a template brain image ( p 
 0.05, cluster level corrected for
familywise error in a mPFC mask as defined in the AAL toolbox). B, Mean PLI value in the
significant cluster for three different threat levels, corrected for medium threat level. PLI is
shown as condition mean/SE of difference from participant mean.
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elucidate their possible role in behavioral control during approach–
avoidance conflict.

As a first result, we show that hippocampal power is linearly
predicted by learned threat probability, but not by explicitly sig-
naled threat magnitude, two prominent aversive features in this
approach–avoidance conflict test. The locations of the significant
medial temporal lobe (MTL) clusters were consistent with mid-
hippocampus (positive relation to threat probability) and poste-
rior tip of hippocampus (negative relation to threat probability).
Crucially and extending previous studies, this finding cannot be
explained by behavioral responses, i.e., the initiation and latency
of virtual movements. Although in the rodent model, theta and
gamma oscillations have been linked to aversive and safe features
of a situation (Likhtik et al., 2014; Stujenske et al., 2014), our
results are more specific and restrict the relevant aversive features
to threat probability. Because threat probability is learned in our
task, and threat magnitude is explicitly signaled to participants on
each trial, this may suggest that a possible function of hippocam-
pus in this task is restricted to situations involving retrieval of
threat memories. This result resonates with results from more
experiments that more specifically address threat memory,
namely fear conditioning. Here, amygdala–mPFC synchroniza-
tion appears to signal threat memory (Likhtik et al., 2014). It has
been further shown that optogenetic inhibition of basolateral
amygdala projection terminals in the animals’ ventral hippocam-
pus disrupts anxiety-like behaviors, suggesting that hippocam-
pus may be interacting with amygdala to receive threat related
memories (Felix-Ortiz et al., 2013). Interestingly, in our dataset,
hippocampal responses are only seen when a token appeared to
create behavioral conflict, but not at the trial start when all fea-
tures of the situation were already signaled. This may indicate
that the hippocampus is specifically involved in monitoring be-
havioral conflict, including a retrieval of threat memory (Oehrn
et al., 2015; Ito and Lee, 2016).

We can rule out that our results relate to conflict alone because
threat magnitude and threat probability both share a relation
with conflict, but only probability relates to hippocampal power.
Also, by removing most spatial features from the paradigm used
in the current study, we are able to firmly rule out that the treat
probability– hippocampal power relation is related to an impact
of spatial navigation. As a limitation, whereas the location of the
significant MTL cluster is consistent with the mid-hippocampus,
more precise MEG methods may be required to corroborate the
exact location within the MTL. Furthermore, the cluster was not
significant in a whole-brain analysis. Although we had strong a
priori reasons to focus on the hippocampus as region-of-interest,
replication with high-precision MEG (Troebinger et al., 2014a,b)
could possibly strengthen this finding.

Interestingly, the threat level–power relationship was most pro-
nounced in the gamma band. Hippocampal gamma oscillations are
often coupled to theta phase (Lisman and Jensen, 2013), as also
shown with MEG (Poch et al., 2011). However, there is a sparsity of
rodent literature on this coupling in approach–avoidance conflict. It
appears that rodent amygdala gamma power is coupled to either
local or mPFC theta rhythms, depending on threat (Stujenske et al.,
2014). However, amygdala gamma power in this previous study
showed a negative relation to threat, and may thus be distinct from
the gamma power effects we observe here. Crucially, we find stron-
ger theta modulation of hippocampal gamma power when threat is
higher, suggesting theta–gamma coupling.

Finally, we identify a positive relation of hippocampal–mPFC
coupling with threat level, i.e., hippocampal and mPFC rhythms
appear more synchronized when threat is higher. This is in keep-

ing with rodent findings (Adhikari et al., 2010; Padilla-Coreano
et al., 2016), which we crucially extend by demonstrating the lack
of a relation between potential loss and hippocampus–mPFC
coupling. This may indicate that this coupling is intricately linked
to a situation in which threat memories are retrieved. A difference
in our report from findings using optogenetic manipulations in
rodents (Padilla-Coreano et al., 2016) is that we did not assess
directionality of this coupling. Interestingly, the location of
mPFC coupling with hippocampus in BA10 reflects an area
found to synchronize with hippocampus during value-based
decision-making (Guitart-Masip et al., 2013).

In a different human approach–avoidance test involving spa-
tial navigation (“stay and play” game), we have previously shown
that hippocampal blood oxygenation measured by functional
magnetic resonance imaging relates to threat level (Bach et al.,
2014), just like hippocampal oscillatory power in the current
study. The power effect in the current study was broadly limited
to gamma band (24 –150 Hz), and oscillations in this frequency
range show a robust relationship with BOLD responses (Boor-
man et al., 2015; Hutchison et al., 2015; Scheeringa et al., 2016),
rendering the two findings rather consistent. Interestingly, other
fMRI studies on anxiety-like behavior in approach–avoidance
conflict have also suggested an encoding of conflict per se and/or
action tendencies in multivariate patterns of hippocampal BOLD
signal (O’Neil et al., 2015; Loh et al., 2017). Control analyses of
our data revealed that such features were not represented in hip-
pocampal power, or hippocampal–mPFC coupling in our task.
Interestingly, both of these latter studies addressed a slightly dif-
ferent situation, in which a decision is being abstractly commu-
nicated to the computer via button press, whereas the motor
execution of that button press has no impact on outcome. Our
initial stay and play task (Bach et al., 2014), as in most rodent
anxiety tests, required specific motor behaviors. Although largely
removing the element of spatial navigation in our current task,
motor execution is still crucial and has a major impact on out-
comes: if players move later they are less likely to obtain the
token; if the return to the safe place later they are more likely to
get caught. This task demand may rely on partly distinct neural
control than the more abstract demands in (O’Neil et al., 2015;
Loh et al., 2017), which share some analogy with specific operant
rodent tests (Geller and Seifter, 1960; Vogel et al., 1971). Indeed,
using similar operant conflict tests, a more recent rodent and (human
andnonhuman)primateliteraturehasnotimplicatedthehippocampus
in approach–avoidance decision-making at all, and rather highlighted
contributions of anterior cingulate, and of striosomes in the basal
ganglia (Amemori and Graybiel, 2012; Amemori et al., 2015; Aup-
perle et al., 2015; Friedman et al., 2015). However, as a limitation to
this distinction, a role of the anterior cingulate rather than hip-
pocampus has also been highlighted in an approach–avoidance task
with naturalistic continuous responses (Gonen et al., 2016). Recon-
ciling spatial, mnemonic, conflict processing, and behavioral control
functions of the hippocampus may therefore require more elabo-
rated experimental scenarios (Ito and Lee, 2016).

To summarize, we used a virtual computer game simulating
biologically relevant approach–avoidance conflict in humans, to
investigate functional role of hippocampal oscillations. We show
that hippocampal power linearly relates to learned threat proba-
bility in a location consistent with the right mid-hippocampus.
This is not paralleled by threat magnitude and cannot be ex-
plained by virtual movement, action tendencies, or conflict per
se. This result mainly appears to stem from the gamma band,
which shows stronger theta modulation when threat is higher.
Finally, theta oscillations in this location are more synchronized
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with mPFC at higher threat probability. Thus it appears that the
role of hippocampal oscillations and their synchronization with
mPFC in approach–avoidance situations is restricted to the re-
trieval of threat memory. This resonates with recent attempts to
elucidate the role of brain synchronization in defensive behavior.
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N (2012) Movement-related theta rhythm in humans: coordinating
self-directed hippocampal learning. PLoS Biol 10:e1001267. CrossRef
Medline

Kaplan R, Bush D, Bonnefond M, Bandettini PA, Barnes GR, Doeller CF,
Burgess N (2014) Medial prefrontal theta phase coupling during spatial
memory retrieval. Hippocampus 24:656 – 665. CrossRef Medline

Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB
(2002) Reduced fear expression after lesions of the ventral hippocampus.
Proc Natl Acad Sci U S A 99:10825–10830. CrossRef Medline

Korn CW, Vunder J, Miro J, Fuentemilla L, Hurlemann R, Bach DR (2017)
Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-
sensitive approach avoidance conflict test. Biol Psychiatry. Advance online
publication, February 10, 2017. doi: 10.1016/j.biopsych.2017.01.018.
Medline

Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA (2014) Pre-
frontal entrainment of amygdala activity signals safety in learned fear and
innate anxiety. Nat Neurosci 17:106 –113. CrossRef Medline

Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77:
1002–1016. CrossRef Medline

Loh E, Kurth-Nelson Z, Berron D, Dayan P, Duzel E, Dolan R, Guitart-Masip
M (2017) Parsing the role of the hippocampus in approach-avoidance
conflict. Cereb Cortex 27:201–215. CrossRef Medline

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and
MEG-data. J Neurosci Methods 164:177–190. CrossRef Medline

Oehrn CR, Baumann C, Fell J, Lee H, Kessler H, Habel U, Hanslmayr S,
Axmacher N (2015) Human hippocampal dynamics during response
conflict. Curr Biol 25:2307–2313. CrossRef Medline

O’Neil EB, Newsome RN, Li IH, Thavabalasingam S, Ito R, Lee AC (2015)
Examining the role of the human hippocampus in approach–avoidance de-
cision making using a novel conflict paradigm and multivariate functional
magnetic resonance imaging. J Neurosci 35:15039–15049. CrossRef Medline

Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD,
Garcia-Garcia AL, Spellman TJ, Gordon JA (2016) Direct ventral
hippocampal-prefrontal input is required for anxiety-related neural ac-
tivity and behavior. Neuron 89:857– 866. CrossRef Medline

Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic
causal models. Neuroimage 22:1157–1172. CrossRef Medline

Poch C, Fuentemilla L, Barnes GR, Düzel E (2011) Hippocampal theta-
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