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Abstract: This study aimed to investigate whether the anti-tumor effect of gemcitabine (GEM) in
non-small-cell lung cancer (NSCLC) treatment was affected by Danggui Buxue decoction (DBD),
and explore the potential mechanisms. The combined use of GEM and DBD showed an enhanced
tumor growth inhibition effect in a murine Lewis lung carcinoma (LLC) model. LC-MS/MS results
showed that the pharmacokinetic behaviors of a GEM active metabolite, gemcitabine triphosphate
(dFdCTP), were found to be altered remarkably in the peripheral blood mononuclear cells (PBMC) of
DBD co-administration rats. In addition, after co-administration of DBD with GEM, Western Blot
and qPCR results confirmed that the expression of deoxycytidine kinase (dCK) in tumor tissues of
LLC-bearing mice were markedly increased. DBD co-administration also reversed the upregulation of
P-glycoprotein (P-gp) in tumor tissues induced by GEM. Moreover, DBD could notably up-regulate the
IL-12p70 and GM-CSF expression in mice serum, suggesting potential immunomodulatory activities
in tumor-bearing mice. Meanwhile, DBD inhibited the P-gp efflux activity in A549 cells. Therefore,
the regulation of dCK and P-gp played important roles in the alternation of GEM pharmacokinetics
and the enhancement of the anti-tumor effect of GEM. DBD being a potential dCK promoter could
work as an adjuvant agent to boost the anticancer effect of GEM.
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1. Introduction

Lung cancer is the leading cause of cancer death all over the world. There were an estimated
2,093,876 new cases and 1,761,007 deaths all over the world in 2018 [1]. Non-small-cell lung cancer
(NSCLC), which has a more variable behavior, accounts for about 85% of lung cancers. Only 18% of
the patients suffering from lung cancer are expected to live five years after diagnosis [2].

Chemotherapy is currently the most effective remedy for NSCLC. However, despite the improved
outcomes for NSCLC patients by various chemotherapeutic drugs, the growing drug resistance and
severe side effects have been a major reason for the failure of chemotherapy [3].

Gemcitabine (GEM), a nucleoside analog also known as 2′,2′-Difluorodeoxycytidine (dFdC), is
one of the most commonly used chemotherapeutic drugs in the treatment of NSCLC [4]. As a pro-drug,
GEM has to enter the tumor cell to become active, and a major part of GEM is converted into the
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inactive metabolite 2′,2′-difluorodeoxyuridine (dFdU) by the deamination effect of cytidine deaminase
(CDA). The cellular uptake of GEM is largely mediated by human equilibrative nucleoside transporter
(hENT) and human concentrative nucleoside transporters (hCNT) [5,6]. Two active metabolites of
GEM, gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate (dFdCTP), play an essential
role against cancer [7]. dFdCDP blocks the nucleoside reductase, and therefore reduces the level of
deoxynucleotide in cancer cells. During DNA replication, dFdCTP replaces one of the nucleosides to
arrest the cell proliferation, resulting in apoptosis [8]. However, the growing chemo-resistance and
side effects have restricted the clinical application of GEM [9]. Although several resistance mechanisms
are involved in GEM metabolism, deoxycytidine kinase (dCK) is of particular interest because it is the
rate-limiting enzyme in the phosphorylation process from dFdC to dFdCDP and dFdCTP [8].

Based on these issues caused by chemotherapies, some studies tried to apply traditional herbal
medicines to the treatment of cancers [10–12]. According to these studies, some traditional herbal
medicines were found to have the ability to increase the efficacy and reduce the side effects of
chemotherapeutic drugs. Herbal remedies such as garlic, green tea, ginger, or noni juice were often
reported in herb–drug combination therapy with pyrimidine analogues such as fluorouracil and
gemcitabine, and platinum compounds such as carboplatin and oxaliplatin [13]. According to the
literature, the pharmacokinetic interactions between traditional herb medicine and drugs are mainly
caused by regulation of metabolic enzymes and drug transporters [14], especially for the efflux
transporter P-gp. P-gp is a well-known obstacle of effective chemotherapy, and classic multidrug
resistance is associated with the overexpression of P-gp, resulting in an increased efflux of chemotherapy
drugs [15], and recent research has indicated that down-regulation of P-gp expression could increase
gemcitabine sensitivity [16–18].

Danggui buxue decoction (DBD), a traditional Chinese medicinal decoction which consists of
Radix Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao (RA) and Radix Angelica sinensis (Oliv.)
Diels (RAS) at a ratio of 5:1, which was first described in Neiwaishang Bianhuo Lun by Li Dongyuan
in China, has been widely used in traditional Chinese medicine due to its extraordinary immune
regulation and hematopoietic effect [19]. Clinical studies validated that DBD could elevate the immune
function of an organism and improve the quality of life in NSCLC patients [20]. According to literature,
an astragalus-based herbal formula showed potential to increase the effectiveness of platinum-based
chemotherapy when combined with chemotherapy in NSCLC treatment [21]. Astragaloside IV, an
active compound in astragalus, was found to be able to enhance cisplatin chemo-sensitivity in NSCLC
cells through inhibition of CD276 [22]. However, little information is available about the combination
effect of DBD and GEM. Meanwhile, the underlying mechanisms of the immunoregulation effects of
DBD remain largely unknown.

In the present study, we compared the pharmacokinetic profiles of intravenous administrated
GEM with or without oral co-administration of DBD in rat plasma and peripheral blood mononuclear
cells (PBMC). In addition, by utilizing a Lewis lung carcinoma (LLC) murine model, we evaluated
the anti-tumor effect of GEM altered by a combination administration of DBD and determined the
mRNA and protein expression level of dCK and P-gp in tumor tissue of LLC model mice. The findings
obtained from these results are expected to provide scientific basis for clarifying the mechanisms of
action and combination of DBD in the treatment of NSCLC by GEM.

2. Results

2.1. Determination of the Combination Effect of DBD and GEM

To evaluate whether the tumor growth inhibition effects of GEM were enhanced by
co-administration of DBD, an LLC mouse model was established by subcutaneous injection of
LLC cells into the right flank of each C57BL/6 mouse. After co-administration of DBD and GEM, the
weights (Figure 1B), behaviors, diets, and mental states of the mice showed no obvious abnormalities.
The tumor volumes in the GEM group and GEM + DBD group were significantly decreased, compared
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with the control group (Figure 1A). Moreover, DBD combined with GEM treatment significantly
reduced tumor volume compared with the GEM group, from day 6 to day 12. Meanwhile, DBD
treatment exhibited no significant effect on tumor volume compared with the control group, and the
body weights of all four groups showed no significant change.
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Figure 1. Tumor volume (A) and body weight (B) of Lewis lung carcinoma (LLC) tumor-bearing mice
during 12 days of treatment. Data were expressed as mean ± SEM (n = 10). * p < 0.05, Gemcitabine
(GEM) + Danggui Buxue decoction (DBD) versus GEM. ** p < 0.01, GEM + DBD versus GEM. Mice
were administrated vehicle alone (saline), GEM alone (100 mg/kg i.p., once a week), DBD alone (1.8 g/kg
i.g., each day), or a combination of GEM and DBD (same as the relevant single drug group).

2.2. In Vivo Plasma Comparative Pharmacokinetics

The validated LC-MS/MS method was successfully applied to the comparative pharmacokinetics
study of dFdC and dFdU in rat plasma. The mean plasma concentration-time curves are shown in
Figure 2. The major pharmacokinetic parameters are presented in Table 1. The pharmacokinetic
parameters of dFdC and dFdU showed no significant difference between the GEM and GEM +

DBD group.
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Figure 2. Concentration-time profiles of dFdC (A) and dFdU (B) in rat plasma after administration of
GEM and DBD. Data were expressed as mean ± SD (n = 10). Rats in the GEM group received a tail
vein bolus intravenous administration of 50 mg/kg gemcitabine. In the GEM + DBD group, DBD was
co-administered at the dose of 3.6 g/kg by intra gavage administration, whereas the GEM group was
treated with saline.
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Table 1. Pharmacokinetic parameters of dFdC and dFdU in rat plasma after single administration of
GEM and GEM + DBD. Data are shown as mean ± SD (n = 10).

Parameters
dFdC dFdU

GEM GEM + DBD GEM GEM + DBD

Cmax (µg/mL) 11.60 ± 2.66 13.61 ± 1.64 0.34 ± 0.07 0.31 ± 0.05
Tmax (h) 0.32 ± 0.29 0.11 ± 0.14 4.00 ± 0 4.00 ± 0
t1/2 (h) 3.61 ± 0.59 3.38 ± 0.28 17.73 ± 3.85 16.89 ± 4.66

AUC0–t (µg·min/mL) 2868 ± 835 2814 ± 387 300.2 ± 47.2 258.5 ± 77.9
AUC0–∞ (µg·min/mL) 2914 ± 866 2850 ± 397 526.7 ± 66.1 491.3 ± 50.1

2.3. In Vivo Peripheral Blood Mononuclear Cells (PBMC) Comparative Pharmacokinetics

The previously mentioned LC-MS/MS method [23] was successfully applied to the comparative
pharmacokinetics study of dFdCMP, dFdCDP, and dFdCTP in rat PBMC. However, only the dFdCTP
level was higher than the detection limit, while dFdCMP and dFdCDP levels were lower than the
lower limit of quantification (LLOQ) of 0.21 ng/mL and 0.32 ng/mL, respectively. The mean plasma
concentration-time curves are shown in Figure 3. The major pharmacokinetic parameters are presented
in Table 2. The significant difference of Tmax (p < 0.001) may be attributed to the metabolism acceleration
of dFdCTP from dFdC. No significant difference of t1/2 was found between the GEM and the GEM +

DBD groups, which gave us a clue that DBD may not affect the elimination of dFdCTP. The maximum
dFdCTP concentration (Cmax) in the GEM + DBD group was found to be 3.80 ± 0.79 ng/mg protein,
which was significantly higher (about 1.85-fold) than that of the GEM group (p < 0.001). The AUC0–t of
dFdCTP was found to be 1266 ± 145 ng·min/mg, which was increased by 1.59-fold as compared to the
GEM group (p < 0.001).
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Figure 3. Concentration-time profiles of dFdCTP in rats peripheral blood mononuclear cells (PBMC)
after administration of GEM and DBD (with partially enlarged view on the right). Data were expressed
as mean ± SD (n = 10). Rats in the GEM group received a tail vein bolus intravenous administration of
50 mg/kg gemcitabine. In the GEM + DBD group, DBD was co-administered at the dose of 3.6 g/kg by
intra gavage administration, whereas the GEM group was treated with saline.
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Table 2. Pharmacokinetic parameters of dFdCTP in rat PBMC after single administration of GEM and
GEM + DBD. Data are shown as mean ± SD (n = 10), *** p < 0.001 compared with the GEM group.

Parameters
dFdCTP

GEM GEM + DBD

Cmax (ng/mg protein) 2.05 ± 0.43 3.80 ± 0.79 ***
Tmax (h) 2.40 ± 0.60 1.09 ± 0.39 ***
t1/2 (h) 7.57 ± 2.24 6.96 ± 2.89

AUC0–t (ng·min/mg protein) 798 ± 251 1266 ± 145 ***
AUC0–∞ (ng·min/mg protein) 998 ± 244 1415 ± 176 ***

2.4. Protein Expression of dCK and P-gp in Lewis Lung Carcinoma (LLC)-bearing Mice Tumor Tissue

Western blot analysis was performed and the relative expressions of P-gp and dCK in mice tumor
tissue are shown in Figure 4A. It was found that after 12 days of DBD plus GEM treatment, the dCK
level was significantly increased as compared with that of GEM group (Figure 4B). The P-gp expression
level was obviously higher in the GEM group than in the control (Con) group, and the combination
administration of DBD canceled the up-regulation effect (Figure 4C).
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Figure 4. Expression of P-gp and dCK protein (A,B,D), and mRNA (C,E) level in tumor tissue of LLC
tumor-bearing mice. Data were expressed as mean ± SEM (n = 10) * p < 0.05, GEM + DBD versus
GEM. ** p < 0.01, GEM + DBD versus GEM. ## p < 0.01, GEM versus control (Con). ### p < 0.001, GEM
versus Con.

2.5. mRNA Expression of dCK and P-gp in Lewis Lung Carcinoma (LLC)-bearing Mice Tumor Tissue

P-gp and dCK mRNA expression in tumors was evaluated by real-time quantitative polymerase
chain reaction (qPCR). As seen in Figure 4D,E, the level of dCK in the GEM + DBD group was
significantly higher than that in the GEM group. While the level of P-gp in the GEM group was
found to be up-regulated compared with that in the control group, which could be reversed by the
combination administration of DBD (Figure 4B,C).
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2.6. Immune Regulatory Effect of DBD on LLC-Bearing Mice

The thymus and spleen indices can reflect the immune function and indicate the immune regulatory
effect of DBD. As shown in Figure 5D,E, the spleen index of the GEM group mice decreased significantly
when compared with the control group, and there was no significant difference between GEM and GEM
+ DBD mice in spleen and thymus indexes. To investigate cytokine level in LLC-bearing mice plasma,
protein expression levels of IL-2, IL-12p70, and granulocyte-macrophage colony-stimulating factor
(GM-CSF) were assessed by ELISA. IL-2 level between the GEM + DBD group and the GEM group
were of no statistical significance (Figure 5A), while IL-12p70 and GM-CSF levels were significantly
higher in the combination group (Figure 5B,C).Molecules 2019, 24, x 6 of 14 
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Figure 5. Immune regulatory effect of DBD on LLC-bearing mice. ELISA results showing IL-2 (A),
IL-12 (B) and GM-CSF (C) expression in LLC tumor-bearing mice serum. (D) Spleen indexes and (E)
Thymus indexes of tumor-bearing mice. Data were expressed as mean ± SEM (n = 4 for A, B, and
C. n = 10 for D and E). * p < 0.05, GEM + DBD versus GEM. ** p < 0.01, GEM + DBD versus GEM.
### p < 0.001, GEM versus Con.

2.7. P-gp Efflux Activity Measurement by Rh 123 Accumulation Assay

The intracellular accumulation of Rh 123 in A549 cells was measured by flow cytometry. Verapamil
(50 µM) was used as a positive control. As shown in Figure 6A, DBD treatment significantly inhibited
the efflux activity of P-gp at the concentration of 2 and 4 mg/mL.

2.8. Protein Expression of P-gp in DBD Treated A549 Cells

Western blot analysis was performed and the relative expression of P-gp in A549 cells is shown in
Figure 6B, C. It was found that after 48 h of 2 mg/mL or 4 mg/mL DBD treatment, the P-gp level was
significantly decreased compared with that of the Control group.

2.9. mRNA Expression of hENT1 and hCNT1 in DBD Treated A549 Cells

Cellular uptake of GEM is largely mediated by ENTs and CNTs. The presence of nucleoside
transport activity is considered a prerequisite for cell growth inhibition and clinical efficacy of GEM.
To further investigate whether the ENTs and CNTs are regulated by DBD, mRNA expression of hENT1
and hCNT1 in A549 cells was evaluated by real-time qPCR.
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Figure 6. Effect of DBD on P-gp efflux activity and protein expression in A549 Cells. (A) The intracellular
mean fluorescence intensity associated with Rh 123 was determined by flow cytometry. Verapamil
(50 µM) was used as a positive control. (B and C) The protein expression of P-gp in A549 cells. Data
were expressed as mean ± SD of five independent experiments. * p < 0.05, DBD 2mg/mL versus Con. **
p < 0.01, DBD 4mg/mL versus Con. *** p < 0.001, DBD 4mg/mL versus Con. ### p < 0.001, Verapamil
versus Con.

As seen in Figure 7, after being treated with various concentrations of DBD, the level of hCNT1
and hENT1 showed no significant difference between the control group and the DBD group in A549
cells, indicating that DBD has no influence on the mRNA expression of hENT1 and hCNT1.
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3. Discussion

According to the therapeutic guideline for NSCLC, gemcitabine-based chemotherapy is the
current standard treatment for advanced NSCLC [24]. However, the chemotherapy often results in side
effects and chemo-resistance [3]. In order to improve the overall survival and life quality of NSCLC
patients, novel strategies are needed to enhance the chemo-sensitivity of GEM. The combination of
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some traditional Chinese medicines with chemotherapeutic drugs were found to have the ability to
increase the efficacy and reduce the side effects of the chemotherapy [10–12].

In this study, a transplanted model was established by grafting LLC cells in C57BL/6J mice to test
the combination effects of GEM and DBD. According to the result, co-administration of 1.8 g/kg DBD
considerably augmented the anti-tumor effect of GEM in LLC tumor-bearing mice, and DBD alone
presented no therapeutic effect on LLC-transplanted tumor.

To further evaluate the therapeutic effect of GEM combined with DBD, we investigated the
pharmacokinetics process in vivo after the combination administration of GEM and DBD. According
to the results, the Cmax, Tmax, T1/2, and AUC0–t of dFdC and dFdU showed no significant difference
between the GEM-treated group and the GEM + DBD-treated group, suggesting that DBT might
not be able to regulate the activity of cytidine deaminase (CDA). Pharmacokinetic interactions of
GEM and DBD were observed by a significant increase in Cmax and AUC0–t of dFdCTP, indicating
that co-administration of DBD might have increased the active metabolite level of GEM in rats. The
heightened dFdCTP level could be an explanation for the enhanced anti-tumor effect of GEM by
DBD co-administration.

According to the literature, the pharmacokinetic interactions between traditional Chinese medicine
and drugs are mainly caused by the regulation of metabolic enzymes and drug transporters [14],
especially for the efflux transporter P-gp. It is known that GEM is a pro-drug and has to be
phosphorylated by dCK within the tumor cells to become active [8]. Therefore, the pharmacokinetics
results obtained in this study indicated that DBD could possibly increase the level of dFdCTP by
regulating the activity of P-gp and dCK.

To further investigate the expression levels of P-gp and dCK in LLC tumor-bearing mice after the
combination administration of GEM and DBD, our western blot and RT-PCT results confirmed the
up-regulation of dCK and down-regulation of P-gp in the tumor tissue of the GEM + DBD group mice,
while DBD treatment did not alter the expression of hCNTs and hENTs in A549 cells. Moreover, our
rhodamine 123 accumulation result indicated the potential inhibition effect of DBD on P-gp activity.

Studies from decades ago manifested the increased sensitivity to gemcitabine in P-gp
overexpression cells [25,26]. To the contrary, recent research indicated that down-regulation of
P-gp expression could increase gemcitabine sensitivity [16–18]. Based on the fact that dCK could
convert GEM into dFdCTP and P-gp could play a critical role in the acquired resistance of cancer to
GEM, we believe that the co-administration of DBD alters the GEM metabolism by regulating the
expression and activity of dCK and P-gp, which could be a reasonable explanation for the significantly
heightened Cmax and AUC0–t of dFdCTP in pharmacokinetic results.

Moreover, DBD treatment increased IL-12p70 and GM-CSF expression in mice plasma, illustrating
the immune regulatory effect of DBD, while IL-12p70 and GM-CSF were recently reported to be
involved in tumor immunotherapy [27,28].

Summarizing these results and perspectives, it could be deduced that the active metabolite of
GEM, dFdCTP, was notably increased under the co-administration of DBD, where the up-regulated
dCK and down-regulated P-gp could be convincing reasons for this. According to the reports, in vitro
models have shown cross-resistance between cladribine, gemcitabine, fludarabine, and cytarabine with
reduced dCK activity as the underlying determinant of resistance [29,30], which indicated the potential
sensitization effect of DBD on other nucleoside analogues. On the other hand, the immunoregulation
effect of DBD could be a reason for the increased anti-tumor effect of GEM + DBD mice when compared
with the GEM group. The present data showed for the first time that DBD interacted with the
metabolism of GEM. DBD increased dCK mRNA and protein expression in tumor-bearing mice, which
may affect its enzymatic activity and its role as a potential marker of drug sensitivity in the clinical
setting, indicating the potential clinical benefits of combination usage of DBD with GEM and other
nucleoside analogues for the treatment of NSCLC.
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4. Materials and Methods

4.1. Reagents and Materials

HPLC grade methanol and acetonitrile were purchased from Tedia Company Inc. (Fairfield, OH,
USA). Analytical grade formic acid, ammonium acetate, and DMSO were obtained from Nanjing
Chemical Reagent Co., Ltd. (Nanjing, China). The chemical reference substance of dFdU was purchased
from Toronto Research Chemicals (Toronto, ON, Canada). dFdC hydrochloride was obtained from
JARI (Lianyungang, China). dFdCMP, dFdCDP, and dFdCTP were obtained from SUNDIA (Shanghai,
China). Tetrahydrouridine (THU) and dCK antibody were from Santa Cruz (sc-393099, Dallas, TX,
USA). Dulbecco’s Modified Eagle Medium (DMEM) was purchased from Gibco (Grand Island, NY,
USA). Fetal bovine serum (FBS) was purchased from Biological Industries (Kibbutz Beit-Haemek,
Israel). P-gp antibody was purchased from Cell Signaling Technology (catalog number 13978, Danvers,
MA, USA). Rhodamine 123 was purchased from Sigma-Aldrich (St. Louis, MO, USA). Verapamil
hydrochloride was purchased from Aladdin (Shanghai, China). β-actin antibody and all secondary
antibodies were purchased from SAB (catalog number 49294, L3012-2 and L3032-2, College Park,
MD, USA).

4.2. Preparation and Determination of DBD

RA and RAS were procured from a local traditional Chinese medicine store in Nanjing. All our
traditional Chinese medicine materials were authenticated by Dr. Yin Zhiqi at China Pharmaceutical
University. Briefly, 50 g of RA and 10 g RAS all in fine powder form were weighted. RAS was put in a
Soxhlet extractor, and refluxed ten times with 150 mL ethanol, the ethanol extract containing most of
the essential oil of RAS was collected for later use. The RAS dreg was put together with RA, immersed
in water, and decocted twice at boiling temperature for 2 h each with 480 mL of water. Then the water
solutions were combined and concentrated with vacuum rotary evaporation using a 75 ◦C water bath
to a volume of about 180 mL, then mixed with ethanol in a volume ratio of 180:540. The mixture was
left to stand for 12 h, then the supernatant was collected and concentrated until all the ethanol and
most of the water were evaporated. The residual was then freeze-dried to yield the solid extract about
18 g (extraction yield about 30% w/w on anhydrous basis with the water content about 2.3%). The
residual was then dissolved in 60 mL distilled water and mixed with the RAS ethanol extraction, and
then the ethanol was evaporated with gentle vacuum rotary evaporation using 25 ◦C water bath to
make the DBD containing extractants of 0.3 g/mL.

The decoction product of DBD used for the study was analyzed by a validated reversed phase
HPLC system (Thermo Dionex Ultimate 3000 HPLC system, Thermo Fisher Scientific, Waltham, MA,
USA) using a GL Sciences InertSustain C18 column (4.6 × 250 mm, 5 µm). The following gradient
system was employed: mobile phase A (5% methanol containing 0.1% formic acid) and mobile phase B
(50:50 methanol: acetonitrile), 10% (v/v) B at 0 min; 80% B at 60 min; 10% B at 61 min; 10% B at 68 min.
The injection volume was 20 µL. The flow rate was 1 mL/min and ultraviolet detection was performed
at 320 nm with a DAD-3000 (RS) diode array UV/VIS detector (Thermo Fisher Scientific, MA, USA).
A representative HPLC chromatogram of DBD is displayed in Figure S1. As shown in Table S1, the
0.3 g/mL (w/v, dry weight/water) DBD contained Z-Ligustilide (333.1 µg/mL), ferulic acid (57.8 µg/mL),
ononin (75.9 µg/mL), coniferyl ferulate (2.5 µg/mL), and calycosin-7-O-β-d-glucoside (131.1 µg/mL).

4.3. Cell Culture

A549 cell line was obtained from American Type Culture Collection (ATCC). Lewis lung carcinoma
(LLC) cell line was obtained from Cell Bank, Shanghai Institutes for Biological Sciences of Chinese
Academy of Sciences (Shanghai, China). Cells were maintained in DMEM supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 ◦C with a humidified 5% CO2 incubator.
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4.4. LLC Tumor Model

Male C57BL/6 mice (ethic approval number: 201904001) within 6-weeks-old were obtained
from Shanghai SIPPR-Bk Lab Animal Co., Ltd. Each mouse was injected subcutaneously with LLC
cells (2 × 106 in 100 µL of PBS) in the right flank near the hind limb, as previously described [31].
When the subcutaneous tumors were approximately 0.3 × 0.3 cm2 (two perpendicular diameters) in
size, mice were randomized into four groups. Mice were administrated vehicle alone (0.9% saline),
GEM alone (100 mg/kg i.p., once a week), DBD alone (1.8 g/kg i.g., each day), or a combination of
GEM and DBD (same as the relevant single drug group). The body weights of mice and the two
perpendicular diameters (A and B) of tumors were recorded every day. The tumor volumes (V) were
estimated according to the formula V = A × B2/2, as published previously [32]. After 12 days the mice
were sacrificed.

4.5. Western-Blot Analysis

LLC tumor-bearing mice tumor tissue (50 mg) protein samples were obtained from a supernatant
of homogenized and centrifuged tissue lysate. A549 cells were collected and protein samples were
obtained from RIPA lysis buffer lysate. The samples were then separated on a 10% SDS polyacrylamide
gel electrophoresis and transferred onto PVDF membranes. The membranes were blocked with 5%
defatted milk in TBST for 1 h and incubated with primary antibodies of P-gp (1/1000), dCK (1/100), and
β-actin (1/1000) at 4 ◦C overnight. The membranes were rinsed with TBST thrice and incubated with
1/2000 diluted secondary antibodies (HRP-goat anti-rabbit or HRP-goat anti-mouse) for 1 h at room
temperature. The density of bands was visualized and determined by chemiluminescence. β-actin
was used as an internal control for protein loading.

4.6. Quantitative Polymerase Chain Reaction (qPCR)

Total RNA from tumor tissue of LLC-bearing mice or A549 cells were isolated using the TRIzol
extraction method. Each sample contained 0.5 µg of cDNA in 10 µL of Takara TB Green quantitative
PCR (qPCR) Master Mix (Kusatsu, Japan). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
were detected and were used as endogenous controls. The PCR conditions were as follows: denatured
at 95 ◦C for 30 s, amplified for 40 cycles with 95 ◦C for 15 s and 60 ◦C for 1 min per cycle. Melting
curves were performed to investigate the specificity of the PCR reaction. Data were analyzed according
to the 2−∆∆Ct method, and the relative amount of each studied mRNA was normalized to the level of
the target genes in the normal tissues. The primer sequences were shown in Table 3.

Table 3. Primer sets for quantitative RT-PCR.

Gene Forward Primer (5′→3′) Reverse Primer (5′→3′) Product Length (bp)

Mdr1 GTGGGGGACAGAAACAGAGA GAACGGTAGACAAGCGATGAG 183
dCK GGACTCTGAAAACCAGCTTTGATT CCAGGCTTTCGTGTTTGTCTTTA 93

GAPDH-mouse CAAGGCTGTGGGCAAGGTCA AGGTGGAAGAGTGGGAGTTGCTG 242
GAPDH-human ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC 101

hENT1 TCTCCAACTCTCAGCCCACCAA CCTGCGATGCTGGACTTGACCT 151
hCNT1 CATTACTGATCCGGCCCTACTT TGGCGTAACCTCCGGTCAT 75

4.7. Enzyme-Linked Immunosorbent Assay (ELISA)

The serum IL-2, IL-12p70, and GM-CSF expression of LLC tumor-bearing mice were detected by
mouse IL-2, IL-12p70, and GM-CSF ELISA kit (Cat No. EM002-96, EM006-96 and EM020-96, Excell,
China) following the manufacturer’s instruction. Briefly, the blood was centrifuged at 3000 rpm for 5
min. Serum was separated and serum cytokine concentrations were determined in duplicate.
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4.8. Rhodamine 123 (Rh 123) Accumulation Analysis

The intracellular accumulation of Rh 123 in A549 cells was measured by flow cytometry as
previously described [33]. First, the cells were plated onto 6-well plates at a density of 105/well and
were then incubated with DBD or verapamil for 48 h. Then cells were exposed to Rh 123 (5 µM) at 37
◦C for 1 h. After treatment, cells were trypsinized and collected, washed thrice with ice-cold PBS, and
analyzed by FACS (BD Biosciences).

4.9. Pharmacokinetic Study in Rats

For the plasma pharmacokinetic study, 20 Sprague-Dawley (SD) rats (10 males and 10 females)
were obtained from Shanghai SIPPR-Bk Lab Animal Co., Ltd. Rats were maintained under
specific-pathogen-free conditions in a unidirectional airflow room at 20–24 ◦C and relative humidity of
30-70% with a 12 h light/dark cycle. Rats were given filtered tap water and commercial rat chow ad
libitum and allowed to acclimate to the facilities and environment for 3 days before use. Rats were
randomly divided into a GEM group and a GEM combined with DBD (GEM + DBD) group. Rats in
the GEM group received a tail vein bolus intravenous administration of 50 mg/kg gemcitabine. In the
GEM + DMD group, DBD was co-administered at the dose of 3.6 g/kg by intra gavage administration,
whereas the GEM group was treated with saline. Blood samples (about 0.2 mL) were obtained from
the postorbital venous plexus before the dose (0 h) and at 2, 5, 10, 15, 30 min, 1, 4, 12, and 24 h after
administration. Blood was collected in heparinized tubes spiked with tetrahydrouridine (25 µg/mL) to
inhibit CDA activity. The blood samples were immediately centrifuged at 3000 rpm for 5 min to obtain
plasma. All the plasma samples were stored at −80 ◦C until analysis.

For the PBMC pharmacokinetic study, 200 SD rats, equal number of males and females, were
randomly and equally divided into 10 GEM groups and 10 GEM + DBD groups, each for one time
point. The administration of GEM and DBD to each group were in the same way as the plasma
pharmacokinetic study. About 4 mL blood was obtained from every rat in each group through the
postorbital venous plexus before the dose (0 h) and at 5, 10, 30 min, 1, 2, 4, 8, 12, and 24 h after the
administration. Peripheral blood mononuclear cells (PBMCs) were separated using Histopaque®-1083
density gradient (Sigma). 100 µL PBMCs were separated, and a volume of 20 µL of the cell suspension
of PBMCs was removed for the analysis of protein concentrations using the BCA Protein Assay Kit
(P0010, Beyotime, Shanghai, China). The amount of protein was determined for all suspensions of
PBMCs and used for the calculation of dFdCTP concentration in nanogram per milligram of protein.
The remaining cell suspension was processed following a previously described sample preparation
method [23].

4.10. LC-MS/MS Based Bioanalytical Assays

Validated bioanalytical assays were used to measure dFdC and its metabolites in various biological
samples of rats. The LC-MS/MS system consisted of a Thermo Dionex Ultimate 3000 HPLC system
(Thermo Fisher Scientific, MA, USA) with a quaternary gradient pump, a column oven, and an
autosampler, coupled to a TSQ Quantum Ultra AM triple quadrupole mass spectrometer (Thermo
Fisher Scientific, MA, USA) with an electrospray ion source.

For the sample preparation, an aliquot of 50 µL plasma sample in 2 mL Eppendorf tube was
spiked with 50 µL of IS solution and 50 µL of methanol, or of the corresponding standard solutions
when preparing calibration and QC samples. Then 100 µL methanol was added and the samples were
vortex-mixed for 3 min. The supernatant was taken into a new Eppendorf tube after centrifuging at
16,000× g for 10 min and evaporated to dryness under vacuum at room temperature. The residual was
reconstituted with 0.2 mL of the mobile phase and centrifuged at 16,000× g for 5 min. The supernatant
obtained was then injected for the LC-MS/MS analysis.

For dFdC and dFdU in rat Plasma, the separation was achieved on a GL Sciences Inertsil C8
column (4.6 × 150 mm, 5 µm) at 35 ◦C. The following gradient system was employed: mobile phase A
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(5% methanol) and mobile phase B (20% methanol), 0% (v/v) B at 0–1.5 min; 80% B at 2 min; 80% B at
5.5 min; 0% B at 5.7 min; 0% B at 7 min; The flow rate was 1.0 mL/min. The injection volume was 20 µL.
The MS/MS conditions were optimized as follows: the spray voltage was set at 4 kV with the capillary
temperature at 350 ◦C. Nitrogen was used as sheath (40 kPa) and auxiliary (5 kPa) gases. The mass
spectrometry measurement was performed in the positive ion mode with precursor–product ion pairs
for selected-reaction-monitoring of dFdC, dFdU and internal standard lamivudine at m/z 264→112,
m/z 265→113 and m/z 230→112. The collision energy was 14 eV for dFdC, 13 eV for dFdU and 12 eV
for lamivudine.

The LC-MS/MS method was validated on accuracy, precision, recovery, selectivity, linearity,
matrix effect, and stability of dFdC and dFdU. All the calibration curves showed good linearity with
correlation coefficients better than 0.9905 (Figure S2 and Table S2). As shown in Table S3, the intra-day
and inter-day accuracy, precision, matrix effect and extraction recovery were validated under the limit
of 15%. It showed no endogenous interference with the measurement of dFdC and dFdU in selectivity
validation (Figure S4). The analytes in plasma were stable under the following conditions: 12 h at room
temperature, a period of 2 weeks of storage at −80 ◦C, 24 h in the autosampler (4 ◦C) and 3 freeze-thaw
cycles at −80 ◦C (Table S4).

For dFdCMP, dFdCDP, and dFdCTP in rat PBMC, the separation was achieved on a HyperCarb
column 2.1 × 100 mm with 5 µm particles size (Thermo Fisher Scientific) using a previously described
LC-MS/MS method [23]. The calibration curves showed good linearity with correlation coefficients
better than 0.9985 (Figure S3). Representative MRM chromatograms were shown in Figure S5. The
mass spectrometry measurement was performed in the positive ion mode with precursor–product ion
pairs for selected-reaction-monitoring of dFdCMP, dFdCDP, dFdCTP and internal standard lamivudine
at m/z 344→246, m/z 424→326, m/z 504→326 and m/z 230→112. The collision energy was 15 eV for
dFdCMP, 12 eV for dFdCDP, 18 eV for dFdCTP, and 12 eV for lamivudine.

4.11. Statistical Analysis

Pharmacokinetic parameters were calculated by WinNonlin 6.2 (Pharsight, St. Louis, MO, USA).
Unless otherwise noted, statistical differences/significance were determined using two-tailed Student’s
t-test (two groups) or one-way ANOVA with post-hoc Bonferroni/Dunnett’s test (three or more groups).
When the p value is less than 0.05, statistical differences were considered significant.

Supplementary Materials: The following are available online. Figure S1: HPLC chromatogram of determination
of Danggui Buxue decotion, Figure S2: Linear regression data of dFdC and dFdU in rat plasma, Figure S3: Linear
regression data of dFdCTP in rat PBMC, Figure S4: Representative MRM chromatograms of dFdC and dFdU in rat
plasma, Figure S5: Representative MRM chromatograms of dFdCMP, dFdCDP and dFdCTP in rat PBMC, Table
S1: Concentration of active ingredients in DBD, Table S2: Linear regression data and lower limit of quantitation
(LLOQ) of dFdC and dFdU in rat plasma, Table S3: Summary of precision, accuracy, recovery and matrix effect of
dFdC and dFdU in rat plasma, Table S4: Stability of dFdC and dFdU in rat plasma under different conditions.
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