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Partial wave spectroscopy (PWS) enables quantification of the statistical properties of cell structures at the nanoscale, which has
been used to identify patients harboring premalignant tumors by interrogating easily accessible sites distant from location of the
lesion. Due to its high sensitivity, cells that are well preserved need to be selected from the smear images for further analysis. To date,
such cell selection has been done manually. This is time-consuming, is labor-intensive, is vulnerable to bias, and has considerable
inter- and intraoperator variability. In this study, we developed a classification scheme to identify and remove the corrupted cells
or debris that are of no diagnostic value from raw smear images. The slide of smear sample is digitized by acquiring and stitching
low-magnification transmission. Objects are then extracted from these images through segmentation algorithms. A training-set is
created bymanually classifying objects as suitable or unsuitable. A feature-set is created by quantifying a large number of features for
each object.The training-set and feature-set are used to train a selection algorithm using Support VectorMachine (SVM) classifiers.
We show that the selection algorithm achieves an error rate of 93% with a sensitivity of 95%.

1. Introduction

Lung cancer remains the leading cause of cancer mortality
in the United States, resulting in more deaths than breast,
prostate, and colorectal cancers combined. In 2015, about
158,000 Americans are expected to die from lung cancer,
accounting for 27% of all cancer deaths. Even though it can
be effectively managed by surgery at an early stage, most
patients do not show noticeable symptoms until the disease
is at an incurable stage. As a result, over half of people
with lung cancer die within one year of being diagnosed,
and the five-year survival rate (17.8%) is lower than many
other leading cancers [1]. Smokers comprises about 90%
of lung cancer patients [2], which makes early screening
an effective tool for prevention. However, past attempts to
screen for lung cancer, such as sputum cytology and chest
X-ray, have failed to provide clinically satisfactory results for
population screening due to suboptimal efficacy, equivocal
survival benefit, and numerous false positives affecting cost-
effectiveness [3]. Therefore, an accurate, minimally intrusive
prescreening method is urgently needed. It has been shown

that the environmental and genetic pathogenic factors that
cause neoplastic lesions in the lung will affect the entire
respiratory and digestive tract mucosa, which is known as
field carcinogenesis [4]. In particular, the buccal epithelium
represents an attractive target for field effect detection of lung
carcinogenesis [5].

Recently, a novel optical approach called nanocytology
based on partial wave spectroscopic (PWS) microscopy has
been developed, which can quantify statistical properties of
cellular structures at the nanoscale [6–8]. PWS is much more
sensitive than traditionalwide-fieldmicroscopic examination
and is capable of detecting malignancies even before any
visiblemorphological changes [9]. PWSmicroscopy has been
shown to improve the accuracy of early screening for a num-
ber of different types of cancer [10–13]. In the PWS system,
low-spatially coherent light illuminates the sample and the
backscattered photons are collected.The spectral fluctuations
in the backscattering spectra are analyzed for measurement
of nanostructures inside the sample. This enables the quan-
tification of the statistical properties of the spatial refractive
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Figure 1: Examples of unwanted objects encountered in prepared samples. (a) Debris-covered cells; (b) folded cells; (c) overlapping cells.

index variations at any length scale, including those well
below the diffraction limit. The statistical parameter called
“disorder strength” can be determined from this analysis
and used as a diagnostic biomarker for cancer. An image
of the distribution of disorder strength is generated and
from these two-dimensional (2D) images several statistical
parameters, such as mean disorder strength, can be extracted
for diagnosis.

Since the PWS signal is very sensitive, in order to obtain
accurate and precise results it is critical to select a subset
of suitable cells from the raw images. The suitable cells are
defined as cells that are isolated, not folded, and not covered
with debris. Some common artifacts are shown in Figure 1.

In conventional cytology,many automated smear analysis
methods have been developed. Such automated analysis
consists of segmentation of structures inside the cell and
classification using features computed from the segmented
region of interest. The early work in segmentation used
grayscale thresholding [14], but recentlymore complexmeth-
ods have been developed [15–17]. Features can be derived
from these segmented regions of interest and used to train
classifiers for diagnosis. Many approaches to the automated
analysis of features have been developed [18–23].

Although techniques for automated smear analysis exist,
there are several factors which led to the current study
being undertaken. First, the cell selection criteria for PWS
microscopy is unique and different from conventional cytol-
ogy. In conventional cytology, a single cell is needed for
analysis, but the cell needs not be isolated from neighboring
cells.This is because the diagnosis in the cytology depends on
the morphology of the cells, for example, nucleus/cytoplasm
ratio [24]. As a result, even if the cell is embedded in a
cell cluster, as long as the shape of a single cell can be
identified, it can be used for diagnosis. However, this is not
the case for PWS microscopy. In PWS, isolated cells are
required so that accurate and useful statistical information
can be identified and analyzed. Second, in real practice, many
cells and nucleus are corrupted by different artifacts, such
as debris and distorted cells, but the previously developed
segmentation algorithms for cytology fail to address these
practical problems since they are intrinsically created to avoid

picking up unwanted objects. As a result, there will in most
cases be much debris among the segmented “nucleus” and
“cells.” If such unwanted cells are subject to analysis, it
will provide unreliable results and cause great difficulties in
designing a systemwith low false positive rates.Third, to date
cell selection for PWS system has been a manual process.
The selections are subjective and depend on the experience
of each operator. As a result, the selection results are subject
to bias and imprecise due to these biases. The remedy is
to automate the cell selection process by using quantitative
morphological features.

There are a large variety of different classificationmethods
that have been developed and found applications in different
scientific fields [25–29]. Among these algorithms, Support
VectorMachines (SVM) are well-known for their high gener-
alization ability in solving linear and nonlinear classification
problems and have shown a high classification performance
on many applications [30–35]. Therefore, an SVM is used as
the classification algorithm in the present study.

In this study, an automated cell selection method has
been developed for the PWS system to select suitable cells
from buccal smear samples. A set of features are extracted
from cells, and the training dataset for classifiers is formed
by extracting these features from 1000 cells that are manually
labeled by an experienced operator. The trained classifier is
found to be able to effectively remove unsuitable objects from
raw buccal smears.

2. Materials and Methods

2.1. Imaging System. The PWS system is built on a commer-
cial Nikon microscope (Eclipse Ni-E). The data used in this
study is taken under the transmission illumination mode,
which is independent of the PWS signal acquisition. Since
Kohler illumination is used in the system the illumination
on the sample plane is uniform. Transmission images are
taken by a CCD (ORCA-Flash2.8, Hamamatsu) using a 10x
objective lens (CFI Plan Fluor DLL 10x, NA 0.3). The whole
slide is imaged by automatically scanning the sample stage.
These images are then tiled together to form a complete image
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Table 1: Description of features used for classifier development.

Type of feature Number of features
Size and shape: describing the shape of
the object 8

Histogram features: describing the grey
scale distribution 11

Color: describing the staining color of the
sample 9

Texture features 1: describing the general
characteristics of grey scale texture 35

Texture features 2: describing textures
based on Fourier transform and models 30

Topology: describing the surface
morphology 7

of the slide, herein called a slide-map. The cells on the slide-
map will be analyzed using the classifiers developed in this
study and only those classified as suitable cells will be further
analyzed for diagnosis.

2.2. Classification Technique. The automated algorithm for
selection of suitable cells was benchmarked against manual
cell selection by experienced operators. The definition of
a suitable cell is subjective and formed by experimental
experience. Automated cell selection involves numerically
representing morphology markers that distinguish suitable
and unsuitable cells for further cytological analysis. These
markers were used as input features to a classifier that
provides a statistical score determining the probability of suit-
ability. Features were defined to represent the morphological
characteristics known to experienced operators which are
used to distinguish suitable cells. The quality of a cell may be
described by many characteristics, including isolation, size,
shape, color, roughness, and folding. A total of 100 features
were computed for raw cell images in the study. The set of
features used in the study is summarized in Table 1.

2.3. Sample Preparations. The sample preparation follows
the liquid-based cytology method [38–40]. Buccal cells were
brushed from the patient’s cheek and rinsed in the vial of
collection fluid. After the samples are transferred to the lab,
the samples are deposited onto a glass slide. The cells on
the slide are then fixed in 95% ethanol, rinsed in water, and
then stained using the commonly used Papanicolaou staining
protocol (contains hematoxylin and CytoStain). Finally, the
slides are dipped in ethanol of different concentrations and
dried for imaging.

2.4. Slide-Map Images. The whole slide-mapping images are
imaged using a low-magnification (10x) objective lens under
transmission illumination. This is accomplished using an
algorithm that rapidly collects many low-resolution images
and tiles them together to create a full image of the slide.
A user defines the bounds of the region to be mapped
by specifying the positions of two diagonal corners. The
algorithm then calculates the number of images required to

map the entire region specified based on a pixels-to-micron
conversion factor specific to the objective and imaging sensor
used. The region is then raster scanned, and an image is
acquired at each 𝑥 and𝑦 position in order tomake a complete
image of the region without gaps or overlaps. Then all the
images are tiled together to form a complete image of the
entire region. Figure 2 shows an example of a slide-map.

2.5. Training and Testing Database. Manual cell selection
was performed by experienced operators using homemade
software.A slide-mapmay contain fluctuations inmean lumi-
nance, which can interfere with subsequent segmentation.
Hence the slide-map is first corrected for uneven illumination
by using a blank background image. The objects in the slide-
map are segmented from the background. Since stain is taken
up by the cell, typically there is a sharp gradient that separates
the background grey level from that of the rim of the cells.
Each tile was 1024 × 1280 pixels in size and was reduced to
half resolution scale using bicubic interpolation to reduce
computation time without dramatically compromising the
image quality. 𝐻-minima and 𝐻-maxima transforms were
used with a fixed threshold to flatten low contrast pixels.
Sobel and log edge detectors were used to generate an edge
image. Finally, morphological operations were used to fill in
the image and clean it up, resulting in a clean binary mask
localizing mid- to high-contrast objects. Each object inside
the slide-map is presented to the operator one at a time. The
operator then labels the detected objects as either suitable
or unsuitable. The selection results are stored in a file that
has the boundary coordinates and suitability of the objects.
Thesemanually selected objects were used as the training and
testing data for the classifier.The training database consists of
1000 objects and the testing database has 360 objects, half of
which are suitable cells. All the features except those for color
are calculated from grayscale images, which are obtained by
taking the average of the three channels in the raw slide-map.

2.6. Classifier Development. Figure 3 shows the steps taken to
develop the classifier for the automated cell selection. Dataset
preparation along with the ground truth preparation has
been explained in the last section. After generating all the
proposed features, the next step is to select the best subset of
features for the classification. In this study, feature selection
is independent of classifier.

2.7. Feature Selection. The feature selection step consists of
a search strategy and evaluation function. In the search
strategy step, subsets of features from the original feature-
set are generated. An evaluation function is used to compare
the performance of these selected feature subsets. Inter-
class distance measures are usually chosen as an evaluation
function. The most widely used interclass measures, such
as Bhattacharyya distance, all assume that the data follows
a known distribution. However, most of the features in
the study have complex or unknown statistical properties.
Nonparametric feature selection assures no prior assump-
tions were made regarding the statistical distribution that
characterize the features. For this reason, a nonparametric
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Figure 2: (a) An example of a slide-map, the red rectangle enclosed region is shown in (b); (b) a tile from the slide-map. There are four
objects detected in (b), in which objects 1 and 2 are considered suitable cells and objects 3 and 4 are overlapped cells and considered unsuitable
(objects).
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Figure 3: Steps for cell selection classifier development.

separability measure is used here to evaluate the generated
feature subsets. A modified Fisher’s criterion is employed in
the study [41]. The improvement over Fisher’s criteria is due
to putting weights on every sample to compute the weighted
means and defining new nonparametric between-class and
within-class scattermatrices. Since in this study there are only
two classes, the nonparametric between-class scattermatrix is
defined as
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The nonparametric within-class scatter matrix is defined as
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The performance of the feature subsets is then compared by
using the evaluation criteria:
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Search of the feature-set was done in an independent way
for the classifier using an increasing number of features
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in a stepwise fashion [42]. For each step, the best feature
that satisfies the evaluation function is included into the
current feature-set. The algorithm also verifies the possibility
of improvement of the evaluation function if one feature is
excluded. The step is repeated until the desired number of
features is reached.

2.8. Classifier Training. After the selection of optimal feature-
sets, the data is used for classifier training. Since the data
is not linearly separable and features are heterogeneous,
Support Vector Machine (SVM) is used for the classification.
It has been shown in several studies that classification by an
SVM is better in performance and tolerant to irrelevant and
interdependent features than other nonparametric classifiers
[43–45]. Gaussian radial basis function is used in this study.
Penalty factor and scale factor are optimized by 10-fold cross-
validation [46].

2.9. Performance Evaluation. We selected classification tech-
niques to reduce overspecialization to training data [46].
Overspecialization occurs when the classifier fits around
training datasets in ways that do not reflect the true charac-
teristics of the feature distributions. In this study, the training
results are checked for overtraining using the leave-out-
one method of cross-validation [47]. A receiver operating
characteristic ROC curve and sensitivities are calculated
to evaluate the performance of the classifiers. Confidence
intervals are calculated using the bootstrap method [48].

3. Results

Figure 4 shows the performance (error rate) of the trained
classifier versus number of features tested on the whole
training (red) and testing (blue) datasets. The classification
error is defined as the number of incorrectly classified cells
divided by the total number of cells. The trend of Figure 4
shows that an asymptotic error rate is achieved for the current
classifier using seven features. Cross-validation is used to
verify that the classifiers are not overtrained. Observations
are made of the differences between the error rate using
training data and that using testing data versus the number
of features used for classification. Overtraining is indicated
if this difference systematically increases with an increasing
number of features. It can be seen that no systematic increase
appears for the classifiers, indicating that the classifiers are
not overtrained.

Table 2 shows the top ranked features used for the
classifiers. These features represent different aspects of the
cells: shape (eccentricity, solidity); histogram features (vari-
ance, kurtosis); textures (entropy, energy, and variance of
Gabor-filtered image). All these features are calculated from
grayscale images that are obtained by taking the average of
three color channels in the raw data. These features also
agree with the empirical definition of suitable and unsuitable
objects. The suitable cells usually are round and have a
smooth texture, while the folded, overlapping cells or debris
tends to have more irregular shapes and more variation in
intensity distribution across the cells.

Number of features

M
isc

la
ss

ifi
ed

 (%
)

6

8

10

12

14

16

18
Percentage of misclassification for training and testing data

Testing data
Training data

1 2 3 4 5 6 7

Figure 4: Error rate of classifier on training and testing dataset.
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Figure 5: Sensitivity versus number of features. Error bar represents
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Table 3 shows a comparison of calculated features
between a suitable and an unsuitable cell. The unsuitable
cells usually have an odd shape, so they typically have high
eccentricity and low solidity. Similarly, the suitable cells
are usually smooth while the unsuitable cells have coarser
texture, which are indicated by other textural features.

Figure 5 shows the sensitivity of the classifiers versus
number of features.We can see that the asymptotic sensitivity
reaches about 95%.

A receiver operating characteristic (ROC) curve is a
metric that illustrates the performance of classifiers [49, 50].
In an ROC curve, the true positive rate is plotted versus the
false positive rate. ROC curve is calculated for the classifier
to evaluate its effectiveness in distinguishing the two classes.
Figure 6 shows the ROC curves for the trained classifier using
1–3 features. In the Figures 6(a)–6(c), blue curves represent
themean value of the ROC curve, while red and yellow curves
represent the 5% and 95% confidence interval. As the number
of introduced features increases, the curves bow more to
the left of the diagonal line, which indicates the increased
accuracy of the classifier.

The area under the ROC curve (AUC) (the 𝑐-statistic)
can be used to quantitatively measure the performance of the
classifiers [51]. It represents the probability that the classifier
will rank a randomly chosen positive instance higher than
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Table 2: Top ranked features for the classifier.

Features Definition Note

Eccentricity √1 −

𝑏
2

𝑎
2

𝑎, 𝑏: semimajor and semiminor axes

Solidity
𝐴

𝐻

𝐴: area of the shape region;𝐻: convex
hull area of the shape

Normalized kurtosis
𝐸 (𝑥 − 𝜇)

4

𝜎
4

𝜇: mean of 𝑥; 𝜎: standard deviation of 𝑥

Normalized variance
𝜎
2

𝜇
2

—

Entropy −∑(𝑝 ∗ log(𝑝)) 𝑝: counts from intensity histogram

Energy 𝐸 = ∑

𝑖

∑

𝑗

(𝑀 (𝑖, 𝑗))
2

𝑀 is the sum of the concurrence matrices
with offset of 5 pixels in eight

neighborhoods [36]

Variance of image filtered
with Gabor filter [37] exp(−

((𝑥
2
/𝜎𝑥) + (𝑦

2
/𝜎𝑦))

2

) cos (2𝜋𝜇 (𝑥 cos 𝜃 + 𝑦 sin 𝜃)) 𝜃: the orientation of the filter, averaged
over 4 directions

Table 3

Features Values

Eccentricity 0.6378 0.8905
Solidity 0.9532 0.9025
Normalized variance 0.01523 0.1294
Normalized kurtosis 4.495 2.026
Entropy 6.472 7.504
Energy 0.07223 0.007897
Variance of image filtered with Gabor filter 0.0002908 0.0003888

a randomly chosen negative instance. Figure 7 shows AUC
values for the classifiers using different numbers of features.
The asymptotic value for AUC is about 0.98, which indicates
that the classifier is effective in distinguishing the two classes
of objects.

4. Discussion

In conventional cytological practice, screening, and diagno-
sis are based on observing the morphological changes of
cells when they are transformed into malignant cells. For
example, the cell nucleus becomes larger and the cytoplasm
becomes relatively smaller so that the nuclear cytoplasm
ratio changes. The texture of the chromatin is also an
important factor, since the chromatin distribution in the

nucleus becomes coarser and irregularly distributed. How-
ever, it is often already too late for patients when these
morphological changes start to appear. As stated previously,
over half of people with lung cancer die within one year of
being diagnosed, because the samples from most patients
do not show noticeable abnormalities until it is already at
an incurable stage. If abnormalities can be detected before
the noticeable morphological changes, then many patients
can be saved by surgical intervention at an early stage.
PWS microscopy detects the nanoscale statistical properties
inside cells and has been shown to distinguish abnormal cells
even before the morphological features used in conventional
cytology begin to appear. PWS analysis utilizes the concept
of field carcinogenesis, which states that the genetic and
epigenetic alterations in early cancer stage occur not only
at the neoplastic focus but also more diffusely throughout
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Figure 6: ROC curve for classifiers using 1 (a), 2 (b), and 3 (c) features.
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the affected organ. For example, PWS has been shown to
be able to screen for lung cancer by assessing the check
cells based on genetic and epigenetic data that suggests that

buccal epithelial cells are altered in lung field carcinogenesis.
These buccal cell samples already possess alterations at the
molecular level but appear normal according to conventional
cytological standards. Therefore, the cell selection criteria
used in conventional cytology cannot be applied in PWS
analysis, and the previously publishedmethods that are based
on these criteria cannot be used in PWS analysis either.
One major difference is that PWS requires single isolated
cells while in conventional cytology only a single cell is
needed, even if it is inside a clump of cells. Clinical studies
have been conducted to compare the performance of PWS
microscopy using cells with optimal characteristics (isolated)
and suboptimal characteristics (overlapping). Effect size is
calculated to quantify the performance, which is defined
as difference in means over the square root of the sum
of the variances. It quantifies the difference between the
controls and cancers while taking into account the standard
deviations. It turns out that the effect size for analysis using
suitable cells (isolated, smooth) is 108.5% while it is only
62% for analysis using unsuitable cells. As a result, while the
previously published cell selection methods put much effort
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Table 4: Commonly used SVM kernel functions.

Kernel transform Expression
Linear ⟨𝑥
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Figure 8: Error rates of classifiers with linear, polynomial, and
Gaussian kernels.

into segmenting single cell from cell clumps, we focus on
finding isolated cells that are not folded, are not overlapped
by neighboring cells, are not covered with debris, and have
smooth appearance. These qualitative descriptions of criteria
are quantitatively identified in this study. Since the samples in
PWS analysis are either normal cells or cells at early stage that
have not shown the noticeablemorphological changes, all the
samples uses the same cell selection procedure.

In SVM methods, kernel functions are used to map the
input data vector into higher dimensional spaces. In the new
space, the mapped feature vectors can be linearly separable
or have improved separability. Some commonly used kernel
functions are shown in Table 4, in which ⟨𝑥𝑖, 𝑥𝑗⟩ represents
the inner product for two feature vectors and ‖𝑥𝑖 − 𝑥𝑗‖ is the
Euclidean distance between them.

The performance of an SVMclassifier is dependent on the
choice of kernel function. In order to find the best kernel for
the current application, three classifiers using different kernel
functions are trained by the same training data and compared
by testing it on the same testing dataset. During training, the
best set of parameters for each kernel function is searched
by applying a 4-fold cross-validation method. Figure 8 shows
the classification accuracy results for all three kernels. It can
be seen that the SVM classifier using radial basis function
provides the best results; thus aGaussian radial basis function
is chosen for this study.

The classification accuracy of the classifier used in this
study is also compared with that of two other common
methods, 𝑘 nearest neighbor (𝑘NN) and Random Forest
(RF). The 𝑘NN method calculates the Euclidean distance
between the unknown sample’s feature vector with other
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Figure 9: Error rates of classifiers using 𝑘NN, RF, and SVMmethod.

feature vectors in the training dataset and predicts the class
of the unknown sample by analyzing a certain number
(𝑘) of the nearest neighbors [52]. RF is an ensemble-based
learning algorithm which predicts the class of a new sample
by averaging predictions of a set of tree-based classifiers [53].
Each classifier in RF is constructed by using a subset of
randomly selected data points from the original dataset. For
𝑘NN, the number of neighbors used is set to 3. For RF, the
size of the random subsets at a node is set to the square root
of the number of features in the data.The accuracy for these 3
classifiers is shown in Figure 9. The SVM classifier with RBF
kernel has the smallest classification error for our application.

It has been shown that considerably high classification
accuracy can be achieved for our cell selection system by
using SVMclassifiers withGaussian kernel. Further improve-
ments in classification performances may be achieved by
applying ensemble techniques to combine different individ-
ual classifiers [54]. The RF classifier is one example that
combines a set of decision trees in order to improve the
classification accuracy of a single decision tree. Different
families of classifiers can also be combined to increase
performance [55, 56]. In the future, different combination
methods and diversification methods will be explored to
generate new ensemble classifiers and the method will be
evaluated in clinical trials.

5. Conclusions

In this study, we presented a method for classifying detected
objects on raw buccal smear images into suitable and
unsuitable objects. Using this method, cells that are folded,
overlapped, damaged, or obscured by debris can be excluded
from further analysis. The trained classifiers show good
performance in distinguishing the two classes. This method
provides a prescreening for automated cytological analysis
based on nanocytology (PWS microscopy). The method
was tested on buccal cytology but can easily be extended
for evaluation of other types of cytological samples. This
automated technique may prove to be a valuable method
of cell selection, with particular relevance to translation in
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the clinic where clinical trials of PWS microscopy in lung
cancer patients are due to begin shortly.
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