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A Plastid-Localized 
Pentatricopeptide Repeat Protein 
is Required for Both Pollen 
Development and Plant Growth in 
Rice
Yu-Jun Liu1,2, Xuejiao Liu1, Hao Chen1, Peng Zheng1, Wenyi Wang1, Liangchao Wang1,  
Jianhua Zhang2 & Jumin Tu1

Several mitochondrial-targeted pentatricopeptide repeat (PPR) proteins involved in pollen 
development have been reported to be fertility restorer (Rf) proteins. However, the roles of plastid-
localized PPR proteins in plant male reproduction are poorly defined. Here, we described a plastid-
localized PPR-SMR protein, OsPPR676, which is required for plant growth and pollen development in 
rice. In this study, OsPPR676 was confirmed to be an interacted protein with Osj10gBTF3, β-subunit 
of nascent polypeptide-associated complex (β-NAC), by bimolecular fluorescence complementation 
assays, indicating that both proteins are probably involved in the same regulatory pathway of pollen 
development. Compared with other chloroplast-rich tissues, OsPPR676 was only weakly expressed 
in anther, but in the Mei and YM stages of pollen development, its expression was relatively strong 
in the tapetum. Disruption of OsPPR676 resulted in growth retardation of plants and partial sterility 
of pollens. Phenotypic analysis of different osppr676 mutant lines implied that the SMR domain was 
not essential for the function of OsPPR676. We further demonstrated that OsPPR676 is essential 
for production of plastid atpB subunit, and then plays crucial roles in biosynthesis of fatty acids, 
carbohydrates, and other organic matters via affecting activity of ATP synthase.

Rice is not only an important monocot model for biological studies, but also a crop of global economic and agro-
nomic significance. It is estimated that the world rice production of 2015 was approximately 490.1 million metric 
tons (FAOstat, 2016; http://faostat.fao.org/), and this forms the staple food for more than half of the world’s popu-
lation1. Over the past 30 years, the importance of hybrid rice has clearly been demonstrated with yield increases of 
approximately 20% over that of inbred rice2. Controlling the process of male reproduction is critical for selective 
breeding, the release of genetically modified (GM) pollen, and the commercial development of hybrid lines.

Rice male sterility is frequently caused by environmental effects or genetic mutation, leading to defective 
anther development and pollen fertility. The study of the genes involved in pollen development has principally 
focused on model plants Arabidopsis and more recently on rice3, 4. Cytoplasmic male sterility (CMS), a condition 
under which a plant is unable to produce functional pollen, is widespread among higher plants. A specific set of 
nuclear genes called restorer-of-fertility (Rf) genes, which primarily belong to the pentatricopeptide repeat (PPR) 
family, are required for the development of a functional male gametophyte in plants with S (sterile) type cyto-
plasm. In majority of cases, Rf-related PPR proteins can restore CMS phenotype by reducing the accumulation 
of CMS-associated RNAs and/or proteins. For example, RF1A and RF1B are both targeted to mitochondria and 
can restore rice male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation 
(RF1B) of dicistronic B-atp6/orf79 mRNA5. Another PPR protein RF5 interacts directly with a Gly-rich protein 
GRP162 to form a subunit of restorer fertility complex (RFC), binding to CMS-associated transcripts atp6/orfH79 
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to restore rice fertility6. With the difference from RF5, RF6 works with OsHXK6 in mitochondria to stimulate 
the processing of transcript atp6-orfH79, leading to normal pollen development and fertility restoration7. Other 
Rf genes encoding PPR proteins include PPR592 in petunia (Petunia hybrida), Rf1k in Kosena rapeseed, Rfo in 
radish (Raphanus sativus), and PPR13 in sorghum (Sorghum bicolor)8–12.

All these Rf proteins are mitochondrial-targeted. In this study, we first report a plastid-localized PPR-SMR 
protein OsPPR676 required for both pollen development and plant growth in rice. As a small subgroup in the 
P-type PPR subfamily, PPR-SMR proteins are characterized by a PPR tract followed by a carboxy-terminal 
small MutS-related (SMR) domain13. All reported studies to date that investigated the function of PPR-SMR 
proteins have focused on Arabidopsis and maize. GUN1 is a central regulator of plastid retrograde signalling, 
where the developmental and functional state of the plastid controls the expression of nuclear gene-encoding 
plastid-localized proteins14. pTAC2 associates with the plastid-encoded RNA polymerase (PEP) and is required 
for its activity15, but the basis for this effect is unknown. The svr7 mutant in Arabidopsis was identified during a 
screen for suppressors of var2 variegation16. SVR7 is involved in the translational activation of the atpB/E and 
rbcL transcripts, resulting in a specific reduction in the accumulation of ATP synthase subunits A, B, E, and F17. 
ATP4, the maize orthologue of SVR7, is also required for the translation of the atpB open reading frame (ORF) 
and for the accumulation of specific processed transcript isoforms from the atpF, psaJ and rpl14 loci18. Other two 
PPR-SMR proteins, PPR53 in maize, and SOT1, its orthologue in Arabidopsis, are required for maturation of the 
23S-4.5 S rRNA dicistron and play essential roles in the biogenesis of the photosynthetic apparatus by promoting 
the expression of the chloroplast ndhA and rrn23 genes19, 20.

To further characterize the PPR-SMR protein subgroup and elucidate the function of the SMR domain, we 
characterized OsPPR676, the rice orthologue of ATP4 and SVR7. In the previous study of a basal transcription 
factor 3-like gene Osj10gBTF321, OsPPR676 was identified as a candidate protein that interacts with Osj10gBTF3. 
Repression of Osj10gBTF3 caused significant plant miniaturization and pollen abortion21. In contrast to the 
mutant phenotypes of other plastid PPR-SMRs, which predominantly showed different levels of plant growth 
retardation and pale leaves14–16, 18, osppr676 mutants showed not only growth retardation, but also pollen semist-
erility. The phenotype is similar with Osj10gBTF3 RNAi lines. Phenotypic analysis revealed that the SMR domain 
is not essential for OsPPR676 function. The results of anther RNA in situ hybridization indicated that OsPPR676 
transcripts are principally expressed in the tapetum, and the total soluble lipids of osppr676 anthers were greatly 
reduced compared to the WT plants. Overall, this work characterized a rice PPR-SMR protein for the first time, 
and unravelled a probable new mechanism of male sterility in plants.

Results
OsPPR676 encodes a plastid-localized PPR-SMR protein.  To study the function of OsPPR676,we 
analyzed OsPPR676 sequence, indicating that the OsPPR676 is the orthologue of maize ATP4 and Arabidopsis 
SVR7. Motif prediction by the algorithm TPRpred (http://tprpred.tuebingen.mpg.de/tprpred) showed that 
OsPPR676 contains 10 PPR motifs and has a C-terminal small MutS-related (SMR) domain, classifying this pro-
tein as a member of the PPR-SMR protein subgroup (Fig. 1a).

Figure 1.  OsPPR676 is a plastid-localized PPR-SMR protein. (a) The OsPPR676 protein contains 10 PPR 
motifs and a SMR domain at the C-terminus. Locations of mutation sites for 3 studied alleles marked with 
triangles. (b) to (e) OsPPR676:GFP and a mitochondrial marker F1-ATPase-γ:RFP co-transient expression 
in rice protoplast. (f) to (i) OsPPR676: GFP transient expression in tobacco epidermis cells. The tobacco leaf 
samples and protoplast were used to view GFP signals respectively. Fluorescence signals from OsPPR676-GFP 
(green) and F1-ATPase- γ:RFP (red) were detected by confocal microscopy.

http://tprpred.tuebingen.mpg.de/tprpred
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To experimentally determine the subcellular localization of OsPPR676, we fused full-length OsPPR676 with 
green fluorescent protein (GFP) and transiently expressed the construct in tobacco epidermis cells. Confocal 
laser scanning microscopy analysis of the transformed tobacco cells showed co-localization of the GFP signal 
of OsPPR676-GFP with the chlorophyll autofluorescence in the plastids (Fig. 1h). Previously, F1-ATPase-γ: 
RFP was shown to target to the mitochondria22. The OsPPR676-GFP construct and the mitochondrial marker 
F1-ATPase- γ: RFP were also transiently co-expressed in rice protoplasts, which showed that the GFP signal of 
OsPPR676-GFP was not localized to the mitochondria (Fig. 1d). Together, these results indicate that OsPPR676 
encodes a plastid-localized PPR-SMR protein, as the conclusion made for its maize, Arabidopsis and radish ort-
hologues previously16, 18, 23.

OsPPR676 interacts with Osj10gBTF3.  To confirm the interaction between OsPPR676 and Osj10gBTF3, 
the full-length cDNAs of OsPPR676 and Osj10gBTF3 were cloned in binary pBiFC vectors containing the 
amino-terminal fragment of the eYFP fluorescent protein or carboxy-terminal fragment of the eCFP fluorescent 
protein (eYFPN and eCFPC, respectively)24 to perform bimolecular fluorescence complementation (BiFC) assays. 
All constructs were transformed into Agrobacterium tumefaciens. Different combinations of these constructs were 
mixed at an OD600 1:1 ratio and injected into 2–3-week-old tobacco epidermal cells. Positive cytosol BiFC interac-
tion signals between YFPN-OsPPR676 and OsBTF3-CFPC were detected with confocal fluorescence microscopy 
(Fig. 2). Meanwhile, the combinations between YFPN-OsPPR676 and empty pBiFC-CFPC or YFPN- pBiFC and 
empty OsBTF3-CFPC were used as negative controls for the BiFC assay. None of these combinations showed 
green fluorescence signals in tobacco epidermal cells. These results suggest that OsPPR676 and Osj10gBTF3 
directly interact in the cytosol and probably involve in the same regulatory pathway of pollen development.

Expression of OsPPR676.  The expression of OsPPR676 was analyzed by qRT-PCR. The results indicated 
that the OsPPR676 transcripts were present in various vegetative and reproductive organs, including root, stem, 
leaf, sheath, anther, pistil, lemma, palea and seven different developmental stages of spikelet (Fig. 3a). Relatively 
high mRNA expression was observed in the leaf, sheath, lemma and palea, which all are green tissues rich in 
chloroplasts. Weak expression was detected in the root and anther, which are not green tissues or rich in plastids. 
Considering the fact that OsPPR676 is a plastid-localized protein, these results hence suggest that OsPPR676 
may be expressed in all types of plastids, including the chloroplasts from green tissues and the leucoplasts and 

Figure 2.  Bimolecular fluorescence complementation (BiFC) analysis of OsPPR676 and Osj10gBTF3. YFPN-
OsPPR676, OsPPR676 fused with N-terminal of YFP; Osj10gBTF3 -CFPC, Osj10gBTF3 fused with C terminal 
of CFP. CFPC is modified from C-terminal of YFP in order to enhance fluorescence signal. As controls, 
combinations with the YFPN-OsPPR676 and the empty vector pBiFC-CFPC or Osj10gBTF3 -CFPC and the 
empty vector YFPN-pBiFC were included.
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chromoplasts from non-green tissues. In addition, the OsPPR676 function may not be limited to anther develop-
ment. Rather, it may also have functions in other vegetative tissues during plant growth and development.

To more precisely determine the spatial and temporal patterns of OsPPR676 expression during anther devel-
opment, we performed RNA in situ hybridization with WT floral sections. At the early sporogenous cell (SC) 
stage and the microspore mother cell (MMC) stage, no OsPPR676 expression was detected (Fig. 3b and c). Strong 
expression of OsPPR676 was detected in the tapetum cells in the meiosis (Mei) stage and young microspore (YM) 
stage anthers (Fig. 3d and e), but it was greatly reduced in the vacuolated pollen (VP) stage along with tapetum 
degradation (Fig. 3f). These results demonstrate that OsPPR676 is indeed expressed in the tapetum, which infers 
that it most likely acts directly on anther development.

osppr676 mutants generated by CRISPR/Cas9 system on a Nipponbare background.  To further 
study the function of OsPPR676, we generated mutants by the CRISPR/cas9 system. We designed three different tar-
get sequences, SG638, SG640 and SG641 of OsPPR676 to construct sgRNA-CRISPR/Cas9 expression vectors. Each 
of these sgRNA-CRISPR/Cas9 constructs was transformed independently into rice calluses derived from mature 
seeds of Nipponbare. The obtained T0 plants were analyzed to detect mutations in the targeted sequence regions. 
Each target site had several similar mutant lines generated by different base mutations (Table S2). The total mutation 
rate for all three target sites reached 62.8% and homozygous mutants were found in the T0 plants of all three targets, 
accounting for approximately 20% of the plants examined (Table 1). All homozygous mutants segregated from T1 
plants were shown in Table S2 (containing T0 homozygous plants), and the subsequent reliable phenotypic analysis 
and functional studies of protein motifs were carried out on the basis of these multiple diverse mutants.

Previous studies in mice and zebrafish indicated a low off-target effect of CRISPR/Cas9-induced mutagenesis25, 26.  
Similarly in plants, deep sequencing of CRISPR/Cas-modified whole-genome did not detect any off-targets in 
Arabidopsis and detected only one off-target mutation case in rice27, 28. In our study, each sgRNA-CRISPR/Cas9 
construct (containing one specific target sequence) was transformed independently, resulting in multiple diverse 
homozygous mutants in each target site in T1 generation (shown in Table S2, including T0 homozygous). These 
homozygous mutants were used for phenotypic analysis and all lines mutated in the same target sequence shared 
the same phenotypes.

Figure 3.  OsPPR676 expression pattern. (a) Expression analysis of OsPPR676 using qRT-PCR. RNA was 
extracted from spikelets of SC stage, MMC stage, Mei stage, VP stage, PM stage, MP stage, respectively. Error 
bars refer to SD of three biological repeats. (b) to (f) In situ hybridization assays of OsPPR676 in the anthers 
of the WT at SC stage (b), MMC stage (c), Mei stage (d), YM stage (e), and VP stage (f). (g) to (k) Negative 
controls with sense probe in anthers at SC stage (g), MMC stage (h), Mei stage (i), YM stage (j), and VP stage 
(k). SC, sporogenous cell; MMC, microspore mother cell; Mei, meiosis; VP, vacuolated pollen; YM, young 
microspore; PM, pollen mitosis; MP, mature pollen.

http://S2
http://S2
http://S2
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In order to detect whether CRISPR/Cas9-mediated gene editing process produced any off-target event, we 
analyzed possible off-target sites corresponding to each target site predicted by software CRISPR-P (http://cbi.
hzau.edu.cn/crispr/) via PCR product sequencing. The results reveal that there is definitely no any off-target 
mutation detected in these predicted off-target sites for all examined mutant lines (Table S3) as previous report27. 
Therefore, the possibility of off-target event for the CRISPR/Cas9-induced mutants of this study did not exist.

Phenotypic analysis of the CRISPR/Cas9-generated mutants and RNAi lines.  All osppr676 
mutants were created by the CRISPR/Cas9 system in Nipponbare background (osppr676-1, osppr676-2, osppr676-3 
and similar lines). The truncated protein structures of osppr676-1, osppr676-2, osppr676-3 were shown in Fig. S2. 
All these mutant alleles displayed different levels of growth retardation and partial pollen sterile phenotypes. In the 
osppr676-1 allele, one base insertion in the 3rd PPR motif results in a frame shift and creates a stop codon in the 
395th amino acid (8th PPR motif). Osppr676-1 and all similar lines mutated in the same target sequence showed 
significant growth retardation, slightly pale green but viable seedlings (Fig. 4a), and partial sterile pollen pheno-
types (Fig. 4g). In the osppr676-2 allele, a two-base deletion induces a frame shift, resulting in changes of amino 
acids in the 9th PPR motif, and creates a stop codon at the 483th amino acid (10th PPR motif). This allele and sim-
ilar lines showed a milder phenotype, but still significant growth retardation (Fig. 4b) and partial pollen sterility 
(Fig. 4h) compared with the WT. This partial pollen sterile phenotype of osppr676-1 and osppr676-2 is similar to 
previously reported pss1 and oshub129, 30. In the osppr676-3 allele, one base deletion results in a frame shift, and 
the translation is terminated by a stop codon in the 580th amino acid. However, osppr676-3 and WT plants were 
phenotypically indistinguishable with regard to plant growth and pollen fertility (Fig. 4c and i). Compared with 
the WT, osppr676-1 and osppr676-2 had significantly shorter leaf and panicle, but no any change for osppr676-3 
(Fig. 4d and e). The different phenotypes are attributed to mutations in different motifs, the functions of which will 
be discussed later.

To further characterize the pollen differences between the WT and the osppr676-1 mutant, we examined the 
pollen grains using scanning electron microscopy. Mature WT pollen grains were plump, but only approximately 
half of the mutant pollen grains had a plump shape similar to the WT pollen, while the other half had a severe 
shrunken phenotype (Fig. 4k).

To more precisely determine the timing of the anther developmental defects in osppr676 mutants, we observed 
their anther sections at different developmental stages under light microscopy (Fig. 5 and Fig. S3). The WT anther 
sections were used as control. The results revealed that there were no significant differences between WT and 
osppr676-1 before the vacuolated pollen stage (Fig. 5). Once the anther developed to the vacuolated pollen stage, 
tapetal cells degenerated and produced abundant electron-dense Ubisch bodies. The microspores displayed vac-
uoles and had a round shape in WT anthers (Fig. 5d). However, in osppr676-1 anthers, only approximately half of 
the microspores had a normal round shape, similar to the WT, while the rest of the microspores were shrunken 
and irregularly shaped (Fig. 5h). These results are consistent with the pollen staining (Fig. 4g) and SEM data 
(Fig. 4k), indicating that osppr676-1 has partial pollen sterility. For osppr676-2 and osppr676-3, no significant 
differences were observed comparing with WT during all examined anther developmental stages (Fig. S3).

OsPPR676 RNAi and over-expression (OE) transgenic rice lines were also generated. As expected, the pollen 
fertility was declined in both RNAi line15 and 19, which resulted in reduction of their seed-setting rates from 
84% of WT to ~47% and ~68%, respectively (Fig. 6). However, the low seed-setting rate did not appear on the 
transgenic OE lines (Fig. 6; Table S4). Therefore, all above results consistently indicate that OsPPR676 determines 
the fertility of pollen in a large extent.

Translation of atpB mRNA is disrupted in the mutants.  The question here is how does OsPPR676 
determine the fertility of pollen in a large extent? It is known that atpB in the chloroplast encodes an impor-
tant β-subunit of ATP synthase for production of ATP, which is essential for the synthesis of most cell organic 
components, including fatty acids. In maize, the PPR-SMR protein ATP4 is essential for the translation of this 
chloroplast atpB18. To test whether the rice orthologue OsPPR676 has the similar function with the maize ATP4, 
we performed western blot analysis with an AtpB antibody to detect AtpB in WT and osppr676 mutants. The 
results revealed that the subunit AtpB production of the chloroplast ATP synthase was significant reduction in 
mutant osppr676-1 and osppr676-2 (Fig. 7a). A small quantity of AtpB production can be detected at low levels 
in the osppr676-2 line, in contrast with undetectable AtpB in the osppr676-1 line. This is in congruence with the 
results of ATP synthase activity(Fig. 7b) and the intermediate phenotype observed (Fig. 4). We also have already 
checked the RNA editing status of atpB and mRNA accumulation of the atpB, and we found that they all had no 
detectable alternation in osppr676 mutants (Fig. S4). These results thereby indicate that the rice pentatricopeptide 
repeat-SMR protein OsPPR676 similar to the maize orthologue ATP4 protein is also essential for the translation 
of rice chloroplast atpB subunit.

Target Guide RNA No. of plants examined No. of plants with mutations
Mutation rate 
(%)

homozygous mutations

Number %

SG638 SgRNA1 21 11 52.4 3 14.3

SG640 SgRNA2 18 13 72.2 4 22.2

SG641 SgRNA3 31 20 64.5 7 22.6

total 70 44 62.8 14 20

Table 1.  Percentage of T0 plants found with OsPPR676 mutations in the target sequences.

http://cbi.hzau.edu.cn/crispr/
http://cbi.hzau.edu.cn/crispr/
http://S3
http://S2
http://S3
http://S3
http://S4
http://S4
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ATP synthase activity is significantly declined in the leaf tissue of the osppr676 mutants.  
Considering the fact that the AtpB is a subunit of the ATP synthase, reducing or losing the production of this 
subunit will most likely affect the activity of the holoenzyme. To test this hypothesis, we assayed ATP synthase 
activity in WT and osppr676 mutants. The results indicated that the ATP synthase activity in all detected lines 
was gradually declined during the assay (Fig. 7b). osppr676-1 and osppr676-2 mutants all show lower activity than 
WT at different degrees and time points. For instance, ATP synthase activity of osppr676-1, who has the most 
serious phenotype with the single base insertion mutation in the 3rd PPR, is almost three folds lower than that of 
WT at 30 sec (Fig. 7b). Furthermore, during the whole process of reaction time extended from 0.5 to 11 min, this 
reduction is still kept (Fig. 7b). These results hence confirm that the OsPPR676 is really essential for the synthesis 
of rice AtpB subunit and thus the activity of ATP synthase.

Generation of fatty acids and starch is altered in anther and pollen of osppr676 mutants.  Fatty 
acids and starch are two important components required for normal plant growth and pollen development31, which 

Figure 4.  Phenotypes of the osppr676 alleles. (a,b) and (c) Phenotype comparison of the WT, osppr676-1, 
osppr676-2 and osppr676-3 mutant plants. (d) and (e) Panicle length and leaf length comparison of the WT, 
osppr676-1, osppr676-2 and osppr676-3 mutants. (f), (g), (h), and (i) Pollen grain from the WT (f), osppr676-1 
(g), osppr676-2 (h), and osppr676-3 (i) respectively, stained with iodine potassium iodide solution. Bars = 100 
um. (j) and (k) A higher magnification SEM image of a single pollen grain from WT (j) and osppr676-1 (k), 
respectively.

Figure 5.  Comparison of cross sections of anthers from WT and osppr676-1 mutants. The WT anther is shown 
in (a,b,c), and (d) and the osppr676-1 mutant anther in (e,f,g), and (h). (a) and (e) The MMC (microspore 
mother cell) stage. (b) and (f) The late meiosis stage. (c) and (g) The young microspore stage. (d) and (h) The 
vacuolated pollen stage. Bars = 20 um.
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synthesized in the plastids in an ATP-dependent process31–33. To determine whether generation of the fatty acid 
components was altered in the osppr676 mutants, we analysed the composition of total soluble lipids from WT and 
osppr676 anthers using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ioniza-
tion detection (GC-FID)34. The results showed that the total soluble lipids in osppr676-1 and osppr676-2 anthers were 
greatly reduced compared to WT. We detected a concentration of 22.377 μg/mg soluble fatty acids in WT anthers 
but only 9.541 μg/mg and 13.057 μg/mg in osppr676-1 and osppr676-2 (Table S5), respectively, which corresponds to 
a 57.36% and 41.65% reduction, respectively, compared to WT (Fig. 8a). Although the major fatty acid components 
were still detected in mutant anthers, almost all components from C12 acid to C26 acid were significantly reduced 
(Fig. 8b). A detailed description of the altered fatty acid components is shown in Table S5. The altered synthesis of 
starch component can be seen from Fig. 4g,h, which have 20% to 45% of the iodine-stained pollen grains filling with 
no or very little starch. All above results suggest that OsPPR676 involves in the biosynthesis of both fatty acids and 
starch, which are important components required for normal plant growth and pollen development.

Discussion
The plastid-localized OsPPR676 is essential for plant growth and pollen development in rice.  
OsPPR676 is the ortholog of ATP4 and SVR7 and has a similar function for production of AtpB subunit (Fig. 7), 
but the phenotypic expression of these three genes after mutation is partially different. The atp4, which was 

Figure 6.  Phenotypes of the transgenic OsPPR676 RNAi and over expression lines. (a) to (d) Comparison of 
WT panicle (a), OsPPR676 RNAi line15 (b) and line19 panicle (c), and OsPPR676 over expression line (d) at the 
harvest stage.

Figure 7.  Absence of AtpB subunit production and reduction of ATP synthase activity in rice osppr676 
mutants. (a) Western blot analysis with AtpB antibody on total proteins from the osppr676-1 and osppr676-2 
mutants and WT seedlings (Up panel) and Coomassie Blue staining of the loading amount of samples (Down 
panel). Full-length gel and blot with original contrast are displayed in Fig. S6. (b) ATP synthase activity 
measured in the WT, osppr676-1 and osppr676-2.

http://S5
http://S5
http://S6
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screened from the collection of nonphotosynthetic maize mutant, exhibits pale-green phenotypes and the 
homozygous dies after three weeks of growth on soil18. The mutations of SVR7 account only for slightly pale green 
and developmentally retarded but viable and fertile plants17, 35. By contrast, the CRISPR/cas9-induced mutants 
osppr676-1 and osppr676-2 created in this study display viable, developmentally retarded and partially sterile 
plants (Figs 4 and 5h). These phenotypic variations were attributed to the differences in the accumulation of ATP 
synthase subunits as suggested by Zoschkel et al. (2013) previously. As long as accumulation of one or more ATP 
synthase subunits is reduced, the activity of ATP synthase and ATP yield will be depressed. This will affect ATP-
dependent biosynthesis of fatty acids, carbohydrates, and other organic matters, finally impacting on plant growth 
and pollen development. Following such a consideration, we measured ATP synthase activity of WT and osppr676 
mutants. The data revealed it was indeed remarkably reduced in two severe mutants osppr676-1 and osppr676-2 
(Fig. 7b). We further analyzed composition of total soluble lipids in the anthers of these osppr676 mutants. The 
results, as expected, confirmed the great reduction of total soluble lipids in osppr676-1 and osppr676-2 as com-
pared with that in WT (Fig. 8). In addition, the retarded growth of the plants (Fig. 4a,b) and appearance of the 
sterile pollens with faint iodine-staining (Fig. 4g,h) also indicates the significant reduction of the total dry matter 
including carbohydrates, proteins, and lipids that were synthesized in these mutant plants.

Lipids play crucial roles in successful pollen development31. Fatty acids and carotenoids are the major compo-
nents of pollen coat, which are deposited from outside of the pollen, as they are synthesized and secreted by the 
tapetum36. By far, several genes involved in synthesis and transport of these tapetal lipids have been confirmed 
essential for pollen fertility, such as Wax-deficient anther 1(WDA1)37, Defective pollen wall (DPW)38, CYP704B239, 
and Fax140. Furthermore, polar lipids involve in the form of densely packed membranes, and neutral lipids such 
as triacylglycerols (TAG) involve in the form of lipid droplets41, 42. Starch also accumulates as internal substances 
of pollen during development. Mutation of the genes that are responsible for the synthesis and transport of these 
internal lipids and carbohydrates also results in defects of male reproduction, such as mutant gpat943, iput44, 
hmg245, smt246, csa47, and mia48. Datta et al.32 found that two proteins, hexose transporter and plasma membrane 
H-ATPase, involving in starch biosynthesis, altered patterns of expression during pollen maturation process and 
determined pollen sterility. All these reports provide the supporting evidences that OsPPR676 plays crucial role 
in the ATP-dependent biosynthesis of organic matter such as lipids, proteins, and carbohydrates via regulating 
production of AtpB subunit of ATP synthase, thus affecting plant growth and pollen development in rice.

The SMR domain is not essential and PPR motifs are important for OsPPR676 protein func-
tion.  To study the functions of the OsPPR676 motifs, we designed three different target sequences of the 
CRISPR/Cas9 mutation system, resulting in different mutant lines with a disruption in different regions of the 
3′-domain of OsPPR676. In the osppr676-3 allele, the mutation produces a truncated OsPPR676 protein with a 
disrupted SMR domain (Fig. S2). Several PPR-SMR proteins have been analysed experimentally thus far15, 17–20, 49,  
but the function of the SMR domain in PPR proteins is still unknown. In this study, osppr676-3 and WT plants 
were phenotypically indistinguishable with regard to plant growth and pollen fertility (Fig. 4c,i), which indicates 
that the SMR domain is not essential for OsPPR676 function. The SMR domain was originally identified as the 
C-terminal region of bacterial MutS2 proteins19. Although the SMR domain is believed to function in transcrip-
tion and to have DNA-binding activity, there is little experimental data on its contribution to PPR-SMR function. 
In higher plants, PPR-SMRs are a very small subgroup of PPR proteins, with only 8 members in Arabidopsis13. 
Most reported molecular functions of the SMR domain are from bacteria and mammals50–53. The only excep-
tion is GUN1 from Arabidopsis, but all gun1 mutants showed wild type-like phenotypes under normal growth 

Figure 8.  Analysis of anther soluble lipids in the WT, osppr676-1, and osppr676-2. (a) Total soluble lipids 
amount per mg dry weight anther in the WT (black bars) and osppr676-1(gray bars) and osppr676-2 (white 
bars). Error bars indicate SD (n = 5). (b) Soluble lipids constituents, amount per mg dry weight anther in 
the WT (black bars) and osppr676-1(gray bars) and osppr676-2 (white bars). Error bars indicate SD (n = 5). 
Compound names are abbreviated as follows: C12 acid, lauric acid; C14 acid, tetradecanoic acid; C16 acid, 
hexadecanoic acid; C18 (0/1)) acid, octadecanoic acid and oleic acid; C18 (2/3) acid, linoleic acid and linolenic 
acid; C20 acids, Eicosanoic acid; C20 (1/2) acid, paullinic acid and eicosadienoic acid; C22 acid, docosanoic 
acid; C24 acid: tetracosanoic acid; C26 acid, hexacosanoic acid. All acids were analyzed as methyl esters.
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conditions54. Although the present findings provide a foundation for hypotheses concerning the functions of the 
SMR domain in PPR-SMR proteins, an alternative possibility is that, as an ancient domain, the function of the 
SMR domain has been degraded in plant PPR-SMRs during evolution.

The last two PPR motifs and the SMR domain are destroyed in the osppr676-2 allele mutant (Fig. S2). Phenotypic 
analysis indicated that the osppr676-2 mutants showed a milder phenotype than osppr676-1, but still significant 
growth retardation (Fig. 4b) and partial pollen sterility (Fig. 4h) compared with the WT. These results indicated 
that the last two PPR motifs are important for OsPPR676 function. The truncated version of OsPPR676 may also 
be produced in the osppr676-1 mutant, which has an amino acid change from 3rd PPR motif, and the last three PPR 
motifs and the SMR domain are completely lost (Fig. S2). The osppr676-1 mutant has a much more serious defective 
phenotype, showing very weak growth with shorter and fewer spikelets than WT plants, and its pollen sterility is 
also more severe than osppr676-2 (Fig. 4a and g). These results indicate that the major functions of OsPPR676 are 
destroyed in osppr676-1, and the third to eighth PPR motifs play essential roles in OsPPR676 function.

Therefore, the SMR domain of OsPPR676 is not critical for the function in the Nipponbare background, but PPR 
motifs can not be destroyed for normal protein functions. In addition, different target sequences can be selected 
according to the purposes of the study using the CRISPR/Cas9 mutation system to generate multiple mutants 
(Table S2). Reliable phenotypic analysis and functional studies of motifs could be supported by many diverse 
mutants. Thus, the CRISPR/Cas9 mutation system is a useful tool to study the role of different protein motifs.

OsPPR676 and Osj10gBTF3 are likely involved in the same male reproduction regulation path-
way.  In our previous study, the candidate protein OsPPR676 was shown to interact with Osj10gBTF321. The 
interaction of these two proteins was confirmed by bimolecular fluorescence complementation (BiFC) assays in 
this study (Fig. 2). BTF3 encodes the β-subunit of the nascent polypeptide-associated complex (NAC), which not 
only plays a role in the nucleus, influencing the transcription levels of some genes55–57, but is also involved in the 
targeting and translocation of nascent polypeptides58–60. Repression of Osj10gBTF3 causes significant plant min-
iaturization and pollen abortion21, which are similar to the phenotype of osppr676-1, although phenotype severity 
is different. Therefore, we hypothesize that Osj10gBTF3 probably participates in OsPPR676 transportation to the 
plastids. Although Osj10gBTF3 and OsPPR676 are not localized in the same organelle, they most probably inter-
act in the cytoplasm during the transportation of OsPPR676 from cytoplasm, where it is produced, to plastids. 
Consequently, OsPPR676 and Osj10gBTF3 may be involved in the same male reproduction regulatory pathway. 
Further studies are still needed to confirm this hypothesis.

Materials and Methods
Plant materials and growth conditions.  The osppr676 mutants were generated by the CRISPR/Cas9 
mutation system on the Nipponbare background (Oryza sativa L. ssp. japonica). The sgRNA-CRISPR/Cas9 plant 
expression vectors were constructed (Fig. S1), and rice transformation was performed as previously described61. 
PCR was carried out to amplify the genomic regions surrounding the CRISPR target sites using specific primers 
(Table S1) to confirm the mutants. The confirmed T0 mutants were initially cultivated in the growth chamber and 
then transplanted into paddy field to grow to mature.

Pollen fertility examination.  To analyse pollen viability, pollen sampled from the spikelets of the WT and 
mutant plants just before flowering was stained with 1% (w/v) iodine and potassium iodide (I2–KI) solution62. 
Three biological replicates were used. The stained pollen grains were visualized, and images were recorded using 
a Leica DMIRB fluorescence microscope.

Generation of OsPPR676 over-expression and RNAi lines.  To construct the over-expression vec-
tor, the OsPPR676 cDNA fragment was PCR amplified with primers OsPPR676-OE-F and OsPPR676-OE-R 
(Table S1), and ligated into the binary vector pCAMBIA1300 to produce the over-expression construct pCAM-
BIA1300-35S::OsPPR676::NOS. For the RNAi vector construction, the PCR products amplified from cDNA using 
the primers OsPPR676-KpnI and OsPPR676-BamHI, OsPPR676-SpeI and OsPPR676-SacI (Table S1) were 
digested with two pairs of restriction enzymes: KpnI/BamHI and SpeI/SacI, respectively. The different digested 
fragments were then ligated into the binary vector pTCK303. Both vectors were introduced into the wild-type 
cultivar Nipponbare using Agrobacterium-mediated transformation. Transformation was performed as previ-
ously described61.

Scanning electron microscopy analysis.  Fresh WT (Nipponbare) and osppr676-1 mutant pollen grains 
were air dried for approximately 30 minutes before viewing on a Hitachi S-4700 scanning electron microscope at 
an accelerating voltage of 5 kV.

Light microscopy of cytological sections.  The developing stages of anthers were classified according to 
spikelet length and anther morphology63, and anthers, leave and stems were then collected and fixed in a solution 
containing 50% ethanol, 5% glacial acetic acid, and 3.7% formaldehyde for 24 h at 4 °C and were dehydrated using 
an ethanol series (50%, 70%, 85%, 95%, and 100% ethanol). After clearing with xylene and paraffin wax infiltra-
tion, the sample was embedded and sectioned at 6 to 10 µm thickness under a Leica 2035 Biocut. The sections 
were stained with haematoxylin and 0.5% eosin for anthers or 0.5% toluidine blue for leave and stems. Images 
were captured using a Nikon Eclipse 80i microscope.

Analysis of anther total soluble lipids.  Soluble lipids of the anthers were analysed as described pre-
viously37–39. To extract soluble fatty acids, 10 mg of freeze-dried anther materials were extracted with 1 mL of 
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chloroform/methanol (1:1 [v/v]). They were first incubated at 50 °C for 30 min and then overnight with constant 
shaking at room temperature. This extraction was repeated three times to ensure that no soluble lipids were left in 
the anther samples. The combined lipid extracts were then evaporated under a gentle stream of nitrogen gas until 
they reached a final volume of 100 μL. All soluble lipid samples were transesterified in 1 mL of 1 N methanolic 
HCl for 2 h at 80 °C. After the addition of 2 mL of saturated NaCl/water and 20 μg of dotriacontane (Fluka) as an 
internal standard, the transesterified soluble lipids were subsequently extracted three times with 1 mL of hexane. 
The organic phases were combined, the solvent evaporated, and the remaining sample derivatized as described 
above. GC-MS and GC-FID analyses were performed as described by Franke et al.34. The results of soluble lipid 
analysis were related to dry weights of the anthers.

Subcellular localization of the OsPPR676 protein.  To generate a translational protein fusion between 
the OsPPR676 signal peptide and GFP, full-length OsPPR676 was amplified by PCR from WT rice (Nipponbare) 
and cloned into pENTR/D-TOPO (Invitrogen, USA). The fusion was introduced into the binary vector pGWB5 
(a gift from Tsuyoshi Nakagawa, Shimane University) by GATEWAY site-specific recombination (Invitrogen). 
The binary construct contains a cauliflower mosaic virus 35 S promoter that allows constitutive expression of 
the full-length OsPPR676: GFP fusion. Then, these constructs were transformed into Agrobacterium tumefa-
ciens strain EHA105. Using established protocols64, the EHA105 strain harbouring the OsPPR676: GFP fusion 
expression plasmid was infiltrated into Nicotiana tabacum leaves to transiently express the fusion protein.

In addition, rice protoplasts were isolated from etiolated stems of 9-day-old Zhong Hua11 grown at 28 °C in 
a dark chamber. The pGWB5-OsPPR676: GFP plasmid and the mitochondrial marker F1-ATPase- γ:RFP were 
co-transformed into rice protoplasts by polyethylene glycol–mediated transformation as previously described65. 
The infiltrated Nicotiana tabacum leaves and rice protoplasts were used for GFP and MitoTracker red signal 
detection by an Olympus FluoView FV1000 confocal microscope.

RNA in situ hybridization.  To generate gene-specific and control sense RNA probes, we amplified the 
gene-specific region of the OsPPR676 cDNA fragment using primers listed in Table S1, which was then cloned 
into the pGEM-T vector (Promega). The clone was digested with SalI and transcribed in vitro under the T7 and 
SP6 promoters by RNA polymerase using a DIG RNA labelling kit (Roche). In situ hybridization was performed 
as previously described66, 67.

qRT-PCR analysis.  Total RNA was isolated using TRIzol reagent from rice tissues, including the root, stem, 
leaf, sheath, anther, pistil, palea, lemma, and anther at different stages according to spikelet length and anther mor-
phology63. Approximately 1 μg of RNA per sample was treated by genomic DNA eraser (TaKaRa) and then used to 
synthesize cDNA with the PrimeScript RT reagent kit. Two microlitres of cDNA was used as a template for RT-PCR. 
All the primers for RT-PCR are listed in Table S1. Real-time quantitative PCR was performed with a LightCycler 480 
(Roche). Amplification was conducted using the following protocol: 95 °C for 30 s, 40 cycles of 95 °C for 5 s, and 60 °C 
for 30 s. ACTIN was used as an internal control. Each experiment was repeated three times, each with three replicates.

Bimolecular fluorescence complementation assays.  By applying Gateway technology, the full-length 
cDNAs of OsPPR676 and Osj10gBTF3 were cloned in binary pBiFC vectors containing the amino-terminal frag-
ment of the eYFP fluorescent protein or carboxy-terminal fragment of the eCFP fluorescent protein (eYFPN 
and eCFPC, respectively)24. CFPC is modified from YFPC to enhance the fluorescence signal in BiFC assays. All 
constructs were transformed into EHA105. Different combinations of these constructs were mixed at a 1:1 OD600 
ratio and injected into 3–4-week-old tobacco epidermal cells. After 36 hours, fluorescence signals were observed 
under a confocal fluorescence microscope.

Western-Blot Analysis.  Total leaf proteins of wild-type, osppr676-1 and osppr676-2 plants were extracted 
as described previously68, and then subjected to SDS-PAGE on 12% gels. The quantification was confirmed by 
Coomassie Blue staining of the six different samples. For western-blot analysis, proteins on gels were electro-
phoretically transferred to a polyvinylidene difluoride membrane and blocked with a blocking buffer (3% bovine 
serum albumin in phosphatebuffered saline [PBS] buffer [20 mM Tris-Cl, pH 7.5, and 150 mM NaCl]). After wash-
ing with PBS buffer, the membrane was incubated with a polyclonalantibody against AtpB (1:2,000 dilution) in 
the blocking buffer for 10 h 4 °C. After washing with PBS buffer and then incubating for 1 h with goat anti-rabbit 
IgG-conjugated alkaline phosphatase (1:2,000 dilution). The antibody was obtained from Agrisera (AtpB).

Measurement of ATP synthase activity.  The protein were prepared from 200 mg fresh leaf sample and 
measured by continuous NADH-coupled enzyme assay kit (Genmed 50250.5, Shanghai, China). The measurement 
was typically performed at 28 °C with 0.05 ml sample protein in 0.95 ml volume of the ATP synthase reaction buffer 
supplemented with a regeneration system (3 mM PEP, 20 U/ml PK), 20 U/ml LDH and NADH. Absorbance data 
are collected at A340 using a SPECTRAmax 250 microplate spectrophotometer equipped with SOFTmax PRO 
software (Molecular Devices). Each line of WT and osppr676 mutants was measured with three biological replicates.

Data availability.  Sequence data from this article for the cDNA and genomic DNA of OsPPR676 and 
Osj10gBTF3 can be found in the GenBank/EMBL/Gramene data libraries under accession numbers LOC_
Os03g1167 0 and LOC_Os10g34180 respectively.
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