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A diatomic elastic metamaterial 
for tunable asymmetric wave 
transmission in multiple frequency 
bands
Bing Li, Sagr Alamri & K. T. Tan   

Unidirectional/asymmetric transmission of acoustic/elastic waves has recently been realized by linear 
structures. Research related to unidirectionality of wave propagation has received intense attention due 
to potentially transformative and unique wave control applications. However, asymmetric transmission 
performance in existing devices usually occurs only in a narrow frequency band, and the asymmetric 
frequencies are always within ultrasound range (above 20 kHz). In this work, we design and propose a 
linear diatomic elastic metamaterial using dual-resonator concept to obtain large asymmetric elastic 
wave transmission in multiple low frequency bands. All of these frequency bands can be theoretically 
predicted to realize one-way wave propagation along different directions of transmission. The 
mechanisms of multiple asymmetric transmission bands are theoretically investigated and numerically 
verified by both analytical lattice and continuum models. Dynamic responses of the proposed system 
in the broadband asymmetric transmission bands are explored and analyzed in time and frequency 
domains. The effect of damping on the asymmetric wave transmission is further discussed. Excellent 
agreements between theoretical results and numerical verification are obtained.

Inspired by the remarkable development and extensive application of electrical diode, much effort has been 
devoted to challenge the one-way propagation of other forms of energy fluxes, such as electromagnetic/optical 
field1–3, thermal flux4–6 and solitary wave7. Recently, the unidirectional/asymmetric transmission of acoustic/
elastic waves has been realized8, 9, and related research10–25 has become a hot topic by virtue of its various potential 
applications, such as enhancing medical ultrasound imaging, developing acoustic one-way diode and creating 
directional de-noise devices.

The pioneer devices of unidirectional/asymmetric acoustic transmission were achieved by utilizing nonlin-
earity8–12. Based on the frequency conversion induced by nonlinear mediums and the filter effect of bandgap 
phononic crystals, the acoustic time-reversal symmetry is broken, resulting in nonreciprocal wave propagation. 
Considering the signal distortion by the frequency shift, the poor efficiency of nonlinear conversion and the 
bulky volume of nonlinear devices, a series of attempts have been made to design linear structures of asymmetric 
acoustic transmission. One category of linear acoustic rectifiers is the biasing-based linear device13–15. Without 
requiring frequency conversion, a nonreciprocal circulator filled with circulating fluid was presented13. The cir-
culating fluid plays the role of an odd-vector biasing, which breaks the acoustic reciprocity by splitting the circu-
lator’s azimuthal resonant modes. To overcome the application challenge in small wavelengths, this approach of 
fluid-motion-induced biasing was further replaced by an angular-momentum-induced biasing14, 15. These biased 
linear devices can realize asymmetric wave transmission without distorting the wave frequency, but external 
energy is needed.

Different from nonreciprocal acoustic diodes mentioned above, the other category of one-way device is the 
linear grating structure26–32. Asymmetric wave transmission is generally induced by the specific interactions 
between incident waves and these passive devices, such as wave diffraction26–29, Bragg scattering30, 31, mode con-
version30, 32 and wave refraction20, 21 etc. It is worth noting that in all of these passive linear structures, the acous-
tic reciprocity principle still holds and asymmetric transmission only occurs under specific directions or wave 
modes. The enhancement performance of asymmetric acoustic transmission has been demonstrated, however, 
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the output signals induced by wave diffraction or refraction are usually difficult to be adjusted and focused due to 
their split directions and disordered patterns. In addition, because of the inherent wavelength limitation in Bragg 
scattering and wave diffraction, the asymmetric frequency is always within ultrasound range (above 20 kHz). 
It is not easy to obtain asymmetric transmission at low frequency range (especially below 1 kHz) by using the 
small-sized grating structures. Recently, based on surficial localized vibrational modes, a linear diatomic met-
amaterial with large asymmetric wave transmission is realized23. Due to the unique local resonance of meta-
materials33–41, an extra low asymmetric transmission frequency band, below 1 kHz, can be easily achieved. The 
asymmetric wave transmission in the passive system can be theoretically predicted and mathematically con-
trolled, without relying on frequency conversion, wave diffraction or external energy.

However, asymmetric wave transmission in these structures is always confined to only one frequency band, 
which undeniably affect further development and application in broadband situations. In addition, little work 
has been reported on the quantitative control and mathematical tailoring of various unidirectional transmis-
sion bands. In this paper, we propose a linear diatomic acoustic/elastic metamaterial with dual resonator to 
realize large asymmetric wave transmission in multiple low frequency bands. Remarkably, these asymmetric 
transmission bands (ATBs) belong to different propagation directions, which are bi-directional tunable. The 
mechanisms of multiple ATBs are theoretically and mathematically investigated by an analytical mass-in-mass 
system. Numerical verifications are comprehensively conducted using lattice models and continuum rod models. 
Transient wave responses in multiple low frequency ATBs are analyzed and evaluated in time and frequency 
domains. Considering that damping is an intrinsic property of materials, we further investigate the asymmetric 
wave transmission in a dissipative diatomic system.

Results
Design and equivalent models.  The schematic design of the proposed structure is illustrated in Fig. 1(a). 
The elastic metamaterial consists of several periodical unit cells. Each unit cell is made up of three parts: outer 
shell, soft coat and inner cores. The outer shell and inner cores are made of relative “hard” materials, such as 

Figure 1.  (a) Schematic of the diatomic elastic metamaterial with dual-resonator. (b) Continuum unit cell and 
its equivalent mass-in-mass and mass-spring models. (c) Directions L and R in an N-periodic diatomic lattice 
system with effective “masses”.
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metallic materials, and the soft coat is made of relative “soft” materials, such as rubber. As shown in Fig. 1(b), 
each unit cell includes two inner cores with different mass. Each inner core contains one hollow cylinder and an 
additional cylinder inside the hollow one, which is named as a dual-resonator core. The resonators are connected 
with each other by the soft materials, and the inner cores are connected with the outer shell also by the soft coat. 
The outside surface of the outer shell is fixed.

The proposed diatomic unit cell can be analytically described by a mass-in-mass model as illustrated in 
Fig. 1(b). For the dual-resonator cores, the two outside hollow cylinders can be represented by two outer “masses” 
with different mass of m1 and m2. The two additional solid cylinders inside the hollow cylinders can be enacted by 
two inner “masses” with mass of m11 and m22, respectively. The part with soft material connecting adjacent inner 
cores can be described by a spring with a stiffness of k1. The soft coat connecting the outer shell and different inner 
cores can be enacted by two different springs with stiffnesses of k2 and k3. Two additional springs with stiffnesses 
of k22 and k33 are introduced to describe the soft connections between the inner and outer resonators. The heavy 
outer shell can be approximately considered as a fixed “ground”.

For an infinite lattice system consisting of the mass-in-mass model as shown in Fig. 1(b), the equations of 
motion for the jth unit cell can be written as
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where αu j( ) (α = 1, 2, 3 and 4) are the displacements of mass m1, m2, m11 and m22 in the jth unit cell of the lattice, 
respectively. For harmonic wave propagation, the displacement for the (j + n)th unit cell is given as

=α α
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where Bα is the amplitude of the displacement, κ is the wavenumber, l is the distance between two adjacent unit 
cells and ω is the angular frequency33. We can obtain the dispersion relations of the proposed system by substitut-
ing Eq. (2) into Eq. (1) and setting the determinant equal to zero as
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This mass-in-mass system can be further represented by a simple diatomic mass-spring system (see Fig. 1(b)) 
with stiffness k1 and two effective mass m e

1  and m e
2 . Compared with the dispersion relation of a monoatomic lat-

tice system, the two effective mass in the equivalent mass-spring model can be derived as
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In consideration of a finite diatomic lattice system with N unit cells (see Fig. 1(c)), we specify two opposite prop-
agation directions. If the wave emitted from the left side first excites the m e

1  end, the direction is denoted by L. In 
contrast, the other direction is denoted by R. For direction L, the following relations can be readily deduced:
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where Uq and Vq are the displacements of m e
1  and m e

2  in the qth unit cell. For direction R, one can obtain:
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According to Eqs (5) and (6), the displacement transmission coefficient between the two adjacent inner unit cells 
for directions L and R, Tq

L and Tq
R, can be written respectively as
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For direction L, the motion equations for the end unit cell (the Nth unit cell), UN  and VN , can be obtained as
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For direction R, the motion equations for the end unit cell (UN  and VN) can be expressed as
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Then, for direction L, the displacement transmission coefficient of the Nth unit cell, TN
L , can be derived based on 

Eq. (8) as
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For direction R, according to Eq. (9), a similar displacement transmission coefficient of the Nth unit cell, TN
R, can 

be obtained as
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Using the transmission equations of the inner and end unit cells, the displacement transmission coefficients of the 
entire system for the two opposite directions, TL and TR, can be expressed respectively as
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Multiple asymmetric transmission bands.  For the proposed continuum unit cell with dual-resonator 
(see Fig. 1(b)), the materials used for the outer shell and soft coat are aluminum and rubber, respectively. The 
outer and inner resonators in the inner cores are made of aluminum and lead, respectively. The material prop-
erties of all continuum unit cells used in this research are listed in Table 1. The values of the effective “masses” in 
the mass-in-mass model can be calculated readily by the relevant densities ρα and volumes Vα as mα = ραVα. The 
approximate values of the effective spring stiffnesses can be estimated by the relevant Young’s modulus Es and 
shear modulus Gs of the soft material as
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where Aα and lsα are relevant cross sections and lengths of different sections of the soft connection, νs is the 
Poisson’s ratio of the soft material. By virtue of the complex deformation of soft connections between the adjacent 
unit cells, it is difficult to ensure the accurate Aα values. Alternatively, more accurate effective spring stiffness 
are obtained here according to finite element analysis (FEA)23. Based on the materials properties, the effective 
mass and spring stiffness are calculated as m1 = 1.143 × 10−2 kg, m2 = 0.572 × 10−2 kg, m11 = 1.505 × 10−2 kg, 

Material

H1 H2 H3 H4 S1

Aluminum Lead Al alloy Steel Rubber

Young’s modulus (GPa) 70 16 45 210 0.78 × 10−3

Density (kg/m3) 2770 11340 1800 7850 1200

Poisson’s ratio 0.33 0.45 0.32 0.29 0.47

Table 1.  Material properties in continuum rod models.
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m22 = 0.452 × 10−2 kg, k1 = 3.695 × 105 N/m, k2 = 1.785 × 105 N/m, k3 = 0.870 × 105 N/m, k22 = 2.792 × 105 N/m 
and k33 = 2.792 × 105 N/m.

According to the effective parameters and the Eqs (4), (7) and (10)–(12), the theoretical transmission coef-
ficients along directions L and R for the proposed structure with 6 unit cells are calculated and displayed in 
Fig. 2(a). To compare with the theoretical results, a lattice system consisting of 6 mass-in-mass unit cells is built 
by FEA. A time harmonic displacement at a sweep frequency range is input at one end of the lattice system, while 
the displacement at the other end is captured as an output. The numerical frequency response functions (FRFs) of 
the finite mass-in-mass lattice system along the two opposite directions are compared with the theoretical results 
and shown in Fig. 2(a). It is exhibited that the numerical results agree very well with the theoretical transmission 
coefficients.

As depicted in Fig. 2(a), there are four passbands for both directions L and R. The main differences for the two 
opposite directions occur at the frequency range between two adjacent passbands. For direction R, a bandgap 
with very low transmission coefficient (dip regions shaded by yellow) is obtained between the 1st and 2nd pass-
bands, also between the 3rd and 4th passbands. The wave propagation is significantly attenuated and blocked at 
these bandgap frequencies. However, for the other direction L, there is an interesting peak at either bandgap of R 
direction (see yellow regions in Fig. 2(a)). The transmission coefficients around the two peaks are almost the same 
as that in passbands. This means that wave can propagate along the direction L around these peak frequencies, but 
prohibited along the direction R. On the contrary, at another frequency range between the 2nd and 3rd passbands 
(regions shaded by green), there is a transmission peak for direction R, but a bandgap for direction L. It is indi-
cated that the wave can propagate along the direction R around this peak frequency, but will be significantly atten-
uated along the direction L. The distinct asymmetric wave transmission shows up in these interesting frequency 
bands, which are defined as ATBs. More interestingly, these ATBs belong to different wave propagation directions 
(1st and 3rd ATBs for direction L, 2nd ATB for direction R). This implies that asymmetric wave propagation can 
be realized along each direction without requiring any change to the structure, which is extremely beneficial for 
passive wave control. To quantitatively investigate the asymmetric transmission, an asymmetric contrast ratio 
of the transmission coefficient along direction L to direction R, δ = TL/TR, is introduced. The theoretical and 
numerical asymmetric contrast ratios in the three ATBs for mass-in-mass models are calculated and displayed 
in Fig. 2(b), (c) and (d), respectively. Excellent agreements between numerical and theoretical results show that 
large bidirectional asymmetric wave transmissions (δ ≈ 104) in multiple frequency domains are realized in the 
proposed diatomic elastic metamaterials.

Figure 2.  (a) Transmission coefficient-frequency profiles obtained by theoretical analysis and FEA. The profiles 
of asymmetric contrast ratio obtained in the (b) 1st, (c) 2nd and (d) 3rd ATBs in the mass-in-mass model.
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In addition to the mass-in-mass lattice system, a more realistic continuum rod model is further built by a 
commercial FEA software, COMSOL MULTIPHYSICS. The 2D axisymmetric model of the continuum unit cell 
is depicted in the insert of Fig. 3(c). Based on the Bloch-Floquet theory, the numerical dispersion relations for an 
infinite continuum rod is obtained and illustrated in Fig. 3(a). The theoretical dispersion relations are calculated 
by Eq. (3) and also shown in Fig. 3(a), which agree well with the numerical simulation. For a finite continuum rod 
consisting of 6 unit cells, the numerical FRFs for directions L and R are plotted in Fig. 3(b) and (c), respectively. 
Four main passbands exhibited in FRFs agree well with those shown in dispersion spectrums and mass-in-mass 
model. The theoretical start and end frequencies of these passbands can be calculated by substituting ql = 0 or 
π into Eq. (3) as (388.8, 585.6) Hz for 1st passband, (862.1, 1031.8) Hz for 2nd passband, (1434.1, 1668.6) Hz for 
3rd passband and (2327.6, 2580.4) Hz for 4th passband. Several resonance modes at the boundary frequencies are 
captured and visualized in Fig. 3(a), which verify that the bandgaps in the proposed metamaterial are induced by 
local resonances of various parts of the continuum rod structure.

Comparing the FRFs for the two opposite directions, we can arrive at the same agreement that there exists 
three ATBs with different wave propagation directions for both the analytical lattice system and continuum model 
(see shaded regions in Figs 2(a) and 3(b),(c)). Large asymmetric contrast ratios, δ of around 104, for the contin-
uum model in the three ATBs are further displayed in Fig. 3(d),(e) and (f).

Transient responses in time and frequency domain.  Dynamic response of the proposed structure 
under a harmonic wave excitation is further analyzed and discussed in this section. For a rod consisting of 6 
continuum unit cells, the von Mises stress contours captured at different asymmetric peak frequencies (839.8 Hz, 
1381.6 Hz and 2068.8 Hz, see Fig. 3(b) and (c)) are presented in Fig. 4(a),(b) and (c), respectively. It is observed 
from Fig. 4(a) and (c) that in the 1st and 3rd ATBs, significant wave transmission at the output end is obtained 
when wave propagates from L direction. However, when wave propagates from R direction, wave transmission 
is blocked around the input end and the transmitted wave is extremely weak. On the contrary, Fig. 4(b) shows 
that in the 2nd ATB, the wave propagation direction is reverse. Large wave is observed at the output end when 

Figure 3.  (a) Theoretical and numerical dispersion relations of the infinite periodic rod. Numerical FRFs for 
(b) directions L and (c) R for a finite continuum rod consisting of 6 unit cells. Insert in (c) shows the periodic 
unit cell of continuum rod. The profiles of asymmetric contrast ratio obtained in the (d) 1st, (e) 2nd and (f) 3rd 
ATBs in the finite continuum rod model.
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wave propagates along direction R, but attenuated significantly along direction L, which agrees very well with the 
theoretical and numerical transmission coefficient profiles (see Figs 2 and 3).

To investigate the transient response in time domain, three prescribed displacements with different peak fre-
quencies (839.8 Hz, 1381.6 Hz and 2068.8 Hz) are input to a continuum rod consisting of 100 unit cells. Under dif-
ferent excitation frequencies, the displacement-time profiles recorded at the 6th unit cell away from different input 
ends are compared in Fig. 4(d),(e) and (f), respectively. For the same propagation distance, in the 1st and 3rd ATBs, 
elastic wave transmission along direction L is significantly larger than that along direction R; while in the 2nd ATB, 
the transmitted waves from direction R is much larger than that from direction L. It is further demonstrated that 
asymmetric wave transmission in multiple frequency bands can be achieved in the proposed structure, and the 
one-way transmission is bilaterally controllable.

To analyze the frequency content of the response signals, a continuous wavelet transformation (CWT) is 
conducted to process the output displacements due to its local and self-adaptive time-frequency properties42. By 
virtue of the high time resolution, a Gabor wavelet is selected in this research as the mother wavelet function. The 
comparisons of the multi-frequency CWT results of the output signals under different excitation frequencies are 
illustrated in Fig. 5(a),(b) and (c). It is clear that for each ATB, the main frequency ranges of the output signals 
are all around the excitation frequencies. This implies that no frequency conversion occurs in the asymmetric 

Figure 4.  Snapshots of von Mises stress contours captured at the peak frequencies in the (a) 1st, (b) 2nd and (c) 
3rd ATBs for the structure consisting of 6 unit cells. Displacement-time profiles recorded at the 6th unit cell away 
from the different input ends under the excitation frequencies of (d) 839.8 Hz, (e) 1381.6 Hz and (f) 2068.8 Hz.
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wave transmission of the proposed structure, and the output signal is not distorted. It is also obvious that in the 
1st and 3rd ATBs, the wave transmission along L direction (see Fig. 5(a1) and (c1)) is far greater than that along R 
direction (see Fig. 5(a2) and (c2)). In the 2nd ATB, the output signal from the direction R (see Fig. 5(b2)) is much 
stronger than that from the direction L (see Fig. 5(b1)). Large bidirectional asymmetric wave transmission in 
multiple frequency bands is verified in both time and frequency domains.

Tunable asymmetric transmission.  Based on above sections, there is a peak transmission coefficient in 
each ATB for all cases, which leads to the asymmetric transmission. The peak frequencies can be mathematically 
expounded and controlled by the displacement transmission equations. It is noted from Eqs (10) and (11) that the 
main difference of the displacement transmission coefficients along the two directions is the transmission equa-
tion at the Nth unit cell, i.e. TN

L  and TN
R. TN

L  and TN
R will be infinite at several unique frequencies, at which their 

denominators become zero. According to Eqs (10) and (11), we can obtain that for direction L, TN
L  becomes 

infinite at the peak frequencies of ωL1, ωL2, ωL3 and ωL4, where

ω ω ω ω= . Η = . Η = . Η = . Η, ,522 6 z, 823 6 z 1545 2 z 2146 4 z (14)L L L L1 2 3 4

For direction R, TN
R becomes infinite at the peak frequencies of ωR1, ωR2, ωR3 and ωR4, where

ω ω ω ω= . Η = . Η = . Η = . Η, , ,475 2 z 967 8 z 1374 2 z 2390 3 z (15)R R R R1 2 3 4

It is depicted in Figs 2 and 3 that for direction L, the frequencies ωL1 and ωL3 belong to the passbands ((388.8, 
585.6) Hz and (1431.4, 1668.6) Hz), but the frequencies ωL2 and ωL4 are within the bandgaps ((585.6, 862.1) Hz 
and (1668.6, 2327.6) Hz). For direction R, only ωR3 is within the bandgaps ((1031.8, 1434.1) Hz), the other three 
peak frequencies belong to the passbands. There is no effect on the transmission characteristics when the peak 
frequencies fall outside the bandgaps. But when the peak frequencies are within the bandgaps (ωL2, ωL4 and ωR3), 
asymmetric wave transmission occurs (see Figs 2 and 3).

Figure 5.  Multi-frequency CWT results of the displacements obtained at the 6th unit cell far from different 
input ends under the peak excitation frequencies in the (a) 1st, (b) 2nd and (c) 3rd ATBs.
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Considering the coupling between the end and inner unit cells (see Eq. (7)), the effect of the total number of 
unit cells on the three asymmetric peak frequencies is further illustrated in Fig. 6(a),(b) and (c), respectively. It is 
obtained that the peak frequencies are exactly equal to ωL2, ωR3 or ωL4, when there is only one unit cell. The peak 
frequencies slightly decrease with increase in the number of unit cells, but converge when there are more than 
three unit cells. The effect of unit cell number on the asymmetric peak frequencies is thus considered negligible, 
since it will not change the ATBs.

Therefore, the bidirectional ATBs can be theoretically predicted and mathematically controlled. The theoreti-
cal frequency ranges of the passbands and bandgaps can be calculated by the equation of dispersion relations, Eq. 
(3). The peak frequencies can be estimated by Eqs (10) and (11). We can design the sizes and choose the materials 
of the unit cell to guide the peak frequencies to fall outside or within the passbands, thereby tailoring the one-way 
transmission bands. Two other designs of continuum unit cells, as depicted in the insert of Fig. 6(d) and (e), are 
supplemented to verify the reliability of the tunable asymmetric transmission. Various ATBs are obtained in the 
relevant transmission coefficient profiles. Theoretical analysis agrees very well with numerical verification for 
each case. The tunable properties and tailoring of various ATBs could pose significant potential in further devel-
opment and application of transformative unidirectional devices.

Discussion
In this work, multiple tunable ATBs in the proposed finite structure have been comprehensively investigated 
and verified by analytical model and numerical simulation. In physics, we can use a concept of surficial localized 
vibrational mode to discuss the unique phenomena, which is initially found in semiconductor superlattices43, 44. 
For a finite or semi-infinite superlattice, within the bandgaps, several localized vibrational modes can be induced 
at the free surface or a defect layer due to the resonance interaction of incident pulse and the inhomogeneity. By 
changing the stacking sequence of two kinds of materials, the surficial localized modes will occur or disappear. 
But in an infinite superlattice, it is not applicable. When we compare the asymmetric peak frequencies with the 
surficial localized modes, we can find several similar characteristics. As shown in Figs 2 and 3, various peak fre-
quencies in FRFs denote various vibration modes. For a continuum rod consisting of infinite unit cell proposed 
in this research, no singularity shows up within the bandgaps (see Fig. 3(a)). However, in the finite periodical 
structure, several vibration modes captured at the end surfaces have a shift to the bandgaps, leading to asymmet-
ric transmission (see Fig. 3(b) and (c)). Although the bandgap mechanisms for the proposed metamaterials and 
the semiconductor superlattice are totally different, the peak frequencies around the end unit cells or free surfaces 
are analogous.

Figure 6.  Effect of the unit cell number on the asymmetric peak frequencies in the (a) 1st, (b) 2nd and (c) 3rd 
ATBs. Theoretical and numerical transmission coefficient-frequency profiles for a finite continuum rod built by 
the unit cell with (d) one ATB and (e) two ATBs.
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In mechanisms, the different surficial vibrational modes along directions L and R originate from the asymmet-
ric boundary conditions of the two end unit cells. To illustrate this point, we further build a finite symmetric lat-
tice model, as shown in Fig. 7(a), which consists of (N + 1) unit cells of m e

1  and N unit cells of m e
2 . The end unit 

cells for two opposite directions are both m e
1 . The transmission coefficient between the two adjacent inner unit 

cells in this symmetric system can be calculated as

ω ω
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The motion equations for the two end unit cells along directions L and R should be same and can be written as

ω

ω

− = +

− =








+

+

k m V k U U

k m U k V

(2 ) ( )

( ) (17)

e
N N N

e
N N

1 2
2

1 1

1 1
2

1 1

Then the displacement transmission coefficients of the end unit cells are derived as

Figure 7.  (a) Symmetric diatomic lattice model and (b) relevant theoretical and numerical transmission 
coefficient-frequency profiles along directions L and R. (c) Dissipative diatomic lattice system. (d) Effect of 
damping on ATBs in the dissipative lattice and (e) continuum models.
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The displacement transmission coefficients of the entire symmetric system are further obtained as
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For a symmetric structure with 7 unit cells of m e
1  and 6 unit cells of m e

2 , the theoretical transmission coeffi-
cients along directions L and R are calculated and displayed in Fig. 7(b). The relevant numerical verifications 
obtained by both the mass-in-mass and continuum models are compared. It is illustrated that excellent agree-
ments between numerical and theoretical results are obtained and there are no ATBs in the symmetric systems. 
It’s totally symmetric between the transmission characteristics along directions L and R.

In addition, because damping is always an intrinsic property of materials, we further discuss the effect of 
damping on the ATBs, which should be potentially important for experimental testing. A dissipative diatomic 
model is proposed and depicted in Fig. 7(c), where three different damping elements are introduced. c1, c2 and c3 
are the damping coefficients introduced alongside the spring stiffness of k1, k2 and k3, respectively. For this dissi-
pative lattice system, the effective mass m e

1  and m e
2  for the diatomic unit cells can be derived respectively as

ω ω ω ω
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According to the motion equations, the following relations can be obtained for direction L,

ω ω ω

ω ω ω

− − = − + = ... −

− − = − + = ... −








−

+

( )
( )

k m i c U k i c V V q N

k m i c V k i c U U q N

(2 2 ) ( ) , 1, 2, , 1

(2 2 ) ( ) , 0, 1, 2, , 1 (21)

e
q q q

e
q q q

1 1
2

1 1 1 1

1 2
2

1 1 1 1

Similarly, for direction R, we have
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On basis of Eqs (21) and (22), the displacement transmission coefficient between the two adjacent inner unit 
cells for directions L and R can be calculated respectively as

ω

ω ω ω ω ω

ω

ω ω ω ω ω

=
−

− − − − − − +

= ... −

=
−

− − − − − − +

= ... −











+

+

( )

( )

T k i c
k m i c k m i c k i c T

q

N

T k i c
k m i c k m i c k i c T

q

N

( )
(2 2 )(2 2 ) ( ) 2

,

1, 2, , 1
( )

(2 2 )(2 2 ) ( ) 2
,

1, 2, , 1 (23)

q
L

e e
q
L

q
R

e e
q
R

1 1
2

1 1
2

1 1 2
2

1 1 1
2

1

1 1
2

1 1
2

1 1 2
2

1 1 1
2

1

For direction L, the motion equations for the end unit cell in this dissipative system are written as
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For direction R,
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The displacement transmission coefficient of the Nth unit cell along different directions can be obtained as
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According to Eqs (12), (20), (23) and (26), the theoretical displacement transmission coefficients along direc-
tions L and R (Td

L and Td
R) for a dissipative lattice system with 6 unit cells are evaluated and compared in Fig. 7(d). 
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The mass and spring stiffness utilized in this dissipative system are m1 = 0.030 kg, m2 = 0.015 kg, k1 = 2.0 × 105 N/m, 
k2 = 1.5 × 105 N/m and k3 = 1.0 × 105 N/m. The damping coefficients of c1, c2 and c3 are all taken as c. Three differ-
ent values (0.2 Ns/m, 1.0 Ns/m and 3.0 Ns/m) are selected respectively for c to investigate the effect of damping on 
the asymmetric wave transmission. The corresponding numerical verifications obtained by the mass-in-mass 
model are displayed in Fig. 7(d), which agree very well with the analytical model. Three different Rayleigh damp-
ing coefficients (β = 1.0 × 10−6, 0.5 × 10−5 and 1.0 × 10−5) are applied to soft material (S1) in the dissipative con-
tinuum model (see the insert of Fig. 7(e)), respectively. The numerical transmission coefficients along direction L 
and R obtained by the dissipative continuum model are shown in Fig. 7(e). The other material properties for the 
continuum model are listed in Table 1. It is clearly observed from both lattice and continuum models that the 
ATBs in the proposed dissipative diatomic metamaterials still exist even when the damping coefficient is relative 
high. Therefore, we believe that it is feasible to perform experimental verifications on the asymmetric wave trans-
mission in the near future. We can adjust the electro-dynamic shaker to generate the input excitation, and use the 
scanning laser Doppler vibrometer to capture the output displacement at a sweep frequency range, then calculate 
the transmission coefficients. It is expected that experimental testing agrees well with theoretical and numerical 
results.

To conclude, we have designed a linear diatomic elastic metamaterial with dual-resonator to realize large 
asymmetric elastic wave transmission in multiple low frequency bands. We have presented systematic theoretical 
analysis and numerical verification to investigate the one-way transmission in the proposed structure. Excellent 
agreements between theoretical results and numerical simulations are obtained. Asymmetric transmission shows 
up within multiple very low frequency domains, which is induced by the asymmetric boundary condition and 
the self-coupling of dual resonators, without relying on frequency conversion or external energy. This inevitably 
preserves the incident wave frequency and propagation direction. Remarkably, the multiple ATBs are revealed to 
belong to different propagation directions, which can be theoretically predicted and mathematically tailored to 
realize one-way transmission along various designed routes. In addition, it is verified that the unique asymmetric 
transmissions still exist in the proposed dissipative diatomic system, which provides theoretical support for fur-
ther experimental verifications. This easy bandgap tunability and bidirectional tailorability could pose tremen-
dous beneficial potential for acoustic/elastic wave rectifiers and transmission control.

Methods
Finite element models.  All the numerical continuum rod models presented in this article were built by 
a commercial FEA software, COMSOL MULTIPHYSICS. 2D axisymmetric model in solid mechanics module 
was utilized to investigate the dynamic responses of the proposed structure. The numerical dispersion relations 
shown in Fig. 3(a) were computed using eigenfrequency and parameter sweep study in one unit cell. The peri-
odic condition of Floquet periodicity was applied to the boundaries of the unit cell. We conducted the frequency 
domain study to obtain the FRFs of the finite diatomic metamaterials and plotted in Figs 3 and 7. The displace-
ment transmission coefficients along different directions were calculated at a sweep frequency range. The tran-
sient responses illustrated in Fig. 4(d),(e) and (f) were calculated using the time dependent study. The excitation 
signals are prescribed harmonic displacements with the amplitude 2 × 10−4 m and different peak frequencies. To 
avoid the wave reflection from the end edges, 100 unit cells were built for the transient responses. The sampling 
frequency is 104 Hz.

Continuous wavelet transformation.  For a square-integrable signal f (t), the CWT definition in time and 
frequency domains is described, respectively, as
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where a and b are the scale and translation factors, i and ω are the imaginary number and circular frequency, 
respectively. The mother wavelet function in CWT is described by ψ(t), which should satisfy
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We used a Gabor wavelet as the mother wavelet function in this research because of its high time resolution42, 
which is expressed as
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