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Abstract: Due to rise in infrastructure development and demand for seawater and sea sand concrete,
fiber-reinforced polymer (FRP) rebars are widely used in the construction industry. Flexural strength
is an important component of reinforced concrete structural design. Therefore, this research focuses
on estimating the flexural capacity of FRP-reinforced concrete beams using novel artificial intelligence
(AI) decision tree (DT) and gradient boosting tree (GBT) approaches. For this purpose, six input
parameters, namely the area of bottom flexural reinforcement, depth of the beam, width of the beam,
concrete compressive strength, the elastic modulus of FRP rebar, and the tensile strength of rebar at
failure, are considered to predict the moment bearing capacity of the beam under bending loads. The
models were trained using 60% of the database and were validated first-hand on the remaining 40%
database employing the correlation coefficient (R), error indices namely, mean absolute error, root
mean square error (MAE, RMSE) and slope of the regression line between observed and predicted
results. The developed models were further validated using sensitivity and parametric analysis.
Both models revealed comparable performance; however, based on the comparison of the slope
of the validation data (0.83 for GBT model against 0.75 for the DT model) and higher R for the
validation phase in case of the GBT model in comparison to the DT, the GBT model can be considered
more accurate and robust. The sensitivity analysis yielded depth of the beam as the most influential
parameter in contributing flexural strength of the beam, followed by the area of flexural reinforcement.
The developed GBT model surpasses the existing gene expression programming (GEP) model in
terms of accuracy; however, the current American Concrete Institute (ACI) model equations are more
reliable than AI models in predicting the flexural strength of FRP-reinforced concrete beams.

Keywords: FRP; flexural strength; AI; ensemble models; decision tree; gradient boosting tree

1. Introduction

Cement-based materials and concrete are widely used worldwide due to their low
porosity and high mechanical strength, taking additional advantage of reinforced steel bars
in reinforced concrete (RC) structures without modifying the cementitious properties of
the matrix [1]. Various structural facilities such as dams, bridges and nuclear powerplants
are constructed from RC due to its high durability and protective nature of concrete for
the rebars [2]. Despite the good durability of RC structures, steel bars are susceptible to
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corrosion [3]; an electrochemical process involving cathodic reduction of oxygen and anodic
dissolution of iron in the presence of concrete pore solution acting as an electrolyte [4];
consequently leading to the failure of RC structures [5]. The corrosion mechanism encom-
passes the infiltration of chloride ions in the porous concrete into the rebar surface under an
aggressive environment, degrading the protective layer formed on the steel surface. After
steel corrosion, cracks appear on the surface of concrete due to resulting precipitates and
the generation of tensile stresses [6]. This leads to frequent maintenance of RC structures,
drastically impacting the economy in general [7,8].

The rapid increase in the population of the world poses a huge demand for the
development of infrastructure; thus, the production of concrete is considerably increased [9].
The use of fresh water and river sand poses a negative impact on drinking water and river
ecosystems. Besides, the coastal infrastructure demands direct use of seawater and sea
sand in the concrete to avoid wasting time and money [10]. Concrete made of seawater and
sea sand is highly aggressive due to its high alkalinity and chloride ions [11]. The use of
conventional steel reinforcement is hindered in such a situation. Fiber-reinforced polymers
(FRP) bars offer suitable applications instead of steel reinforcement due to their corrosion
resistance [12–15]. FRP rebars provide several advantages such as high strength to weight
ratio, low density, ease of handling, and corrosion resistance; therefore they have been used
as internal reinforcement in concrete structures [16,17].

Several types of FRPs rebars, namely carbon FRPs, glass FRPs, aramid FRPs, and
basalt FRPs are used as an alternative to conventional steel. Over the past three decades,
numerous experimental works have been undertaken to assess the durability of FRPs [18–24].
The durability of FRPs in normal concrete is very satisfactory; however, its durability in
harsh alkaline concrete environments is still debatable [15]. The design of flexural members
such as beams and columns are key parameters to structural integrity. American Concrete
Institute (ACI) 440.1 R-15 recommends basic formulations for the design of beams on
the basis of mechanics [25]. However, Murad et al. [26] found that the flexural strength
achieved from FRP reinforced concrete beams has some deviations from experimental
test results. Gene expression programming (GEP), a modern Artificial intelligence (AI)
technique based on genetic algorithms, can accurately predict the flexural strength of FRPs.

In the modern era, Finite Element Analysis [27–29] and AI techniques are widely
used for solutions of problems in civil engineering, owing to their high accuracy and
efficiency [30–38]. Awoyera et al. [39] employed an Artificial Neural Network (ANN) and
GEP for estimating compressive, split tensile and flexural strength of geo-polymer concrete.
A reliable accuracy of low error indices and high correlation was achieved in predicting
strength characteristics of geo-polymer concrete. Wang, X.-Y. [40] successfully estimated the
flexural strength of pozzolana and limestone blended concrete deploying ANN and GEP.
Ahmad et al. [41] investigated decision tree (DT), ANN and gradient boost (GB) to predict
the compressive strength of concrete at high temperature. Aslam et al. [37] employed GEP
for the compressive strength of concrete containing Rice Husk Ash (HRA). The strength
prediction of FRP-reinforced concrete has been investigated by several researchers using
advanced AI techniques. Congro et al. [42] developed an ANN model for estimating the
flexural strength of fiber reinforced concrete under bending loads. Lee, S. and C. Lee [43]
investigated the ANN model to estimate the shear strength of FRP flexural members
without stirrups and found that the ANN model can more accurately estimate the shear
strength of FRP reinforced concrete beams compared to existing equations. The application
of various AI techniques for predicting the strength characterization of FRP-reinforced and
retrofitted concrete can be found in previous research [44–47].

Decision tree (DT) and Gradient boosting tree (GBT) are modern operational tech-
niques used for regression and classification problems [48]. These techniques develop
a tree-like structure in decision making, splitting the data into root node, branch nodes
and several lead nodes [49]. Kermain et al. [50] found the GEP model better in predicting
dam air demand than GBT and Random Forest (RF). Similarly, Song et al. [51] also found
GEP had better accuracy than ANN and DT in predicting compressive strength of fly
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ash containing concrete. On the other side, Kamari et al. [52] developed GEP, ANN and
DT models for characterizing CO2-brine solution interfacial tension and found DT more
promising compared to GEP and ANN. Ahmad et al. [41] found the GBT model to be more
accurate model than the DT or ANN model while investigating the compressive strength
of concrete at high temperatures. Similarly, Huat et al. [53] proved GBT a more promising
techniques in estimating pile friction-bearing capacity than RF and DT models.

In conclusion, empirical equations are available for the calculation of the flexural
capacity of FRP-reinforced beams. Murad et al. [26] investigated the capability of the GEP
model and inferred that the developed model is capable of estimating the flexural capacity
more accurately. After critically evaluating the results of the GEP model (Section 3.4), it
was concluded that Murad et al. [26] based their evaluation on correlation coefficient (R)
only; however, error analysis showed that the empirical model was better compared to the
developed GEP model. Moreover, the authors opine that the superiority of the AI technique
is not specific, however, strongly depends on the nature (non-linearity) of the problem.
One AI technique may perform better for a particular problem, whereas; some other model
may surpass it in accuracy for a different situation. In continuation of previous research
by Murad et al. [26] for developing a GEP tree-based model for flexural strength of an
FRP-reinforced concrete beam, it is desirable to evaluate the performance of other models
such as DT and GBT in solving a similar problem. Therefore, this research concentrates on
developing novel DT and GBT models for estimating the flexural capacity of FRP reinforced
concrete beams and comparing the capabilities of empirical relations and AI solution in
terms of correlations and error analysis.

2. Methodolgy
2.1. Experimental Database

The experimental database was collected from various experimental studies listed in
Table 1. It can be seen that flexural strength is considered a function of six input parameters,
namely; width of beam (W), depth of beam (D), compressive strength of concrete (fc′), area
of flexural reinforcement (As), Elastic modulus of FRP rebar (EM), and the tensile strength
of rebar at failure (Tf) as expressed in Equation (1).

M = f
(

W, D, f ′c , As. EM, Tf

)
(1)

where, M is flexural capacity. The role of these input parameters in contributing to-
wards bending capacity is evident from the well-known ACI formulations expressed as
Equation (2) through (6). The distribution histogram and descriptive statistics of the
variables used in the study are shown in Figure 1 and Table 2. The histograms show
that the majority of specimens (almost 80%) tested in different experimental studies com-
prises a width range of 130–205 mm, depth range of 152–302 mm, fc′ of 24–54 MPa, As of
57–657 mm2, EM of 35,630–51,260 MPa, and Tf of 552–1152 MPa (Table 2). The standard
deviation values reflected from Table 2 shows that the models are developed from a broader
range of variable values.

Table 1. Details of input and output parameters used in development of the model.

Flexural
Capacity
(kN-m)
Target

Varaible

Number of
Specimens

Input Parameters

Depth
(mm)

Width
(mm)

Compressive
Strength
(fc
′) MPa

Flexural Rein-
forcemnet
(As) mm2

Elastic Modulus
(EM) MPa

Tensile Strength
Rebar at Failure

(Tf) MPa
References

20–30 8 180 130 46–97 238–475 38,000 773 [54]
39–41 4 240 200 35–36 508 43,370 885 [55]
71–90 12 300 200 39–41 254–1013 40,000–122,000 617–1988 [56]
49–66 6 300 180 35 253–507 40,000 695 [57]
81–198 9 300–550 200 43–52 573 42,000–49,000 641–689 [58]
80–182 3 300–550 43 573 600 45,000 600 [59]
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Table 1. Cont.

Flexural
Capacity
(kN-m)
Target

Varaible

Number of
Specimens

Input Parameters

Depth
(mm)

Width
(mm)

Compressive
Strength
(fc
′) MPa

Flexural Rein-
forcemnet
(As) mm2

Elastic Modulus
(EM) MPa

Tensile Strength
Rebar at Failure

(Tf) MPa
References

6–17 14 200–300 150 28–50 57–113 38,000 650 [60]
11–17 12 152–203 191–381 28 80–320 41,400 830 [61]
6–34 9 152–250 150–152 25–36 71–429 45,000–44,800 760–1000 [62]

58–85 8 300 200 45–52 349–1046 37,600 773 [63]
34–57 4 210–300 200 31–41 507–1134 35,630–43,370 700–886 [64]
52–54 2 300 200 24–27 88–226 200,000 1061–2000 [65]
14–16 2 152 152 49–52 63–99 140,000 1900 [66]
81–189 12 400 200 29–73 261–1162 48,700–69,300 762–1639 [67]
42–81 6 305 152 29–45 355–1013 45,500–50,600 552–896 [68]
47–51 3 229 178 48 219–1077 41,000–124,000 552–896 [69]
80–238 5 380 280 34–43 339–1964 38,000–40,200 582–603 [70]
39–85 5 270–294 200 42–54 299–1356 38,000–49,000 552–773 [71]
49–54 3 254–256 230 40 226–603 50,000 1000 [72]
21–41 6 165 180 30 115–424 42,900–46,600 1075–1121 [73]
23–50 10 165 180 47–70 171–636 42,900–130,000 1029–2068 [74]

1 
 

 

 

Figure 1. Distribution histograms of the variables (W, D, fc’, As, EM, Tf, M) used in the development 
of models. 
 

Figure 1. Cont.
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Figure 1. Distribution histograms of the variables (W, D, fc′, As, EM, Tf, M) used in the development
of models.

Table 2. Descriptive statistics of input and output variables.

Parameters Minimum Maximum Mean Median Standard
Deviation Skewness Kurtosis

Input parameters

Width, W (mm) 130 381 194.2 200 3.9 2 6
Depth, D (mm) 152 550 274.4 294 8.6 0.9 0.7

Concrete compressive strength,
fc′ (MPa) 24 97 42.9 41 1.2 1.6 3.4

Bottom tensile reinforcement,
As (mm2) 57 1964 482.9 425 30.8 1.5 3.2

Elastic Modulus, EM (MPa) 35,630 200,000 53,060 43,370 2550 3 10
Tensile strength at failure (Tf) 552 2069 927.6 773 33.2 1.7 2.2

Flexural capacity, M (kN-m) 6 238 62.4 51 4.3 1.5 2

2.2. Machine Learning Approaches
2.2.1. Decision Tree

A Decision tree (DT) belongs to a family of supervised machine learning algorithms.
As its name suggests, DT is similar to a tree having any branches which represent a possible
reaction or different outcomes to a problem. DTs have the ability to visualize all the
probable outcomes to a problem under all circumstances and thus have great importance
in decision making [75]. DTs provide a better interpretation of model outputs compared to
“black-box” models such as neural nets [76]. Due to their simple and easy-to-understand
analytics and their precision on multiple data forms, DTs have found many applications in
various fields [77,78].

Each tree consists of nodes and branches in the DT model. Each node denotes the
features in a classification category, while every subset describes a possible value that
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the node can take [79]. The instance space from each internal node is divided into two
or multiple sub-spaces in accordance with a specific discrete function of input attributes
values. At the model output, each leaf is assigned to a unique category that is representative
of the most fitting target value. The values in the leaves of DTs are also known as weights in
some literature. DTs are sequential models that rationally combine the outcome of simple
tests where each one compares a nominal attribute against a set of possible values or a
numeric attribute versus a threshold value [80]. The partitioning scheme in DTs is designed
to determine the possible partition values along the midpoint of a set of consecutive unique
responses for each feature (i.e., gene expression). Different scoring criteria as Gini index
(Gini), Information Gain (InfoGain) are used to compare and evaluate each of the possible
tree partition values (Equations (1)–(4)) [75].

In f oGain = In f o(Parent)−∑k(pk)In f o(Childk) (2)

In f o(q) = −∑j

(Nj(t)
N(t)

)
) log2

(Nj(t)
N(t)

)
(3)

Gini = impurity(Parent)−∑k(pk)impurity(Childk) (4)

impurity = 1−∑j ‖
p(j)Nj(t)

Nj
‖

2

(5)

where N(t) is the number of samples in node t; Nj represents the number of samples be-
longing to the class j; Nj(t) is the class j samples associated with node t. The terms q and pk
denotes the features sub-space and portion of samples passed to kth sub-space, respectively.

2.2.2. Gradient Boosting Tree

The fundamental intuitive idea behind all boosting algorithms is to combine multiple
weak learners that should result in classification and regression models with improved
predictive performance compared to a single model [81]. In machine learning, the weak
learner refers to a model that performs slightly better than a random chance. This concept,
which is known as “strength of weak learnability”, was originated from the introduction
of Ababoost in the early 1990s [82]. For gradient boosting trees, such weak learners are
shallow decision trees.

Three main elements are involved during the predictive modeling of gradient boosting
trees, i.e., (i) a loss function to be optimized, (ii) a weak learner for making predictions,
(iii) and an additive model for combining the weak learners in order to minimize the
loss function. The adopted loss function is typically influenced by the type of problem
or task being addressed. For regression problems, a squared loss is the conventional
choice, whereas, for classification tasks, an exponential error is a plausible loss function [81].
However, there may be circumstances in where other loss functions such as binomial
deviance, Huber loss or absolute error could be more appropriate. The weak learners
(decision trees) are constructed in a greedy manner by choosing the best split points
(based on nodes purity index such as Gini) to minimize the loss. When adding the trees,
a stochastic gradient descent procedure is employed to optimize the loss. Predictions of
each tree in the gradient boosting tree algorithm are added sequentially, and the overall
prediction error decreases as the iteration progresses. It is important that weak learners
remain weak despite having some skill. An efficient heuristic is one having constrained
tree creation which can be undertaken using several constraints such as number of trees,
tree depth, number of nodes or leaves, observations per split, and minimum improvement
to loss. In addition to their structure, additional constraints may be imposed to improve
their performance. The leaf weight values can be optimized using different regularization
functions which are intended to overcome the “overfitting” problem by placing restrictions
on model parameters [83]. In the context of GBT, this refers to controlling the iterations (T)
or trees during the training process. Additive models of GBT with potentially all input
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variables (x) may be represented by the general expression shown in Equation (6), while
the function for optimizing the number of iterations is shown in Equation (7).

f (x) = ∑T
t=1 Bth(x; at) (6)

ft(x) = ft−1(x) + τ . βth(x; at) (7)

where the term h(x; at) is often regarded as a simple function characterized by the multiplier
β and set of parameters (a = {a1, a2, . . . }).The parameter has a retarding effect on the
learning rate of the series, which means that for achieving better accuracy, the series has to
be long enough to compensate for shrinkage.

2.2.3. Development of the Model and Hyper-Parameters Tuning

Two models, namely DT and GBT were created in a rapidminer environment follow-
ing the methodology explained in Figure 2. Overall, the modelling encompasses basic
processing, feature modelling, transform validation and scoring data, validation of the
models alongside generating scores, weights and simulator, production of the model, and
finally delivering the results.

Firstly, basic processing of the database was initiated. The database was subjected to
pre-processing. A single row of all the inputs was created to be deployed into the model,
attributes were converted into nominal or real values, attributes were labelled, the target
variable was defined, and input variables were selected based on their correlations with
the target variable. Subsequently, the data were partitioned into the training (60%) and
validation datasets (40%). Some basic features were introduced, such as handling unknown
values, replacing missing values, and remembering known and unknown values, which
were then subjected to feature engineering and modelling. This includes operators, such as
handling the columns with the text, automating feature engineering, optimization, cross-
validation operator for introducing the specific ML model, applying the ML model, and
training the model based on the optimized hyperparameters. After this, the transformation
of the training and scoring data (no known target value) to missing values was completed.
The models were applied to the validation and scoring data to validate the models. A model
simulator was created for future predictions of the new data. Finally, a production model
was generated based on the training and validation sets using the same hyperparameters
to deliver the results.

The hyperparameters of the DT and GBT were tuned using the trial and error method
listed in Table 3. For the DT model, maximal depth was varied from 2 to 25, whereas the
minimal error rate was obtained for 7. Similarly, for the GBT model, the number of trees,
maximal depth and learning rate were varied from 30–150, 2–7, and 0.001–0.1, respectively.
The optimum results were obtained for 90 trees, 2 maximal depth and a 0.1 learning rate.
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Figure 2. Development of DT and GBT models.
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Table 3. Tuning hyper-parameters of DT and GBT models.

Model Parameter Value Error Rate
Optimization (%)

DT Maximal depth 2 32.3
4 21.8
7 20.0
10 20.0
15 20.0
25 20.0

GBT Number of trees, maximum
depth, Learning rate 30, 2, 0.001 37.3

90, 2, 0.001 36.1
150, 2, 0.001 35.2
30, 4, 0.001 37.3
90, 4, 0.001 36.1

150, 4, 0.001 35.1
30, 7, 0.001 37.3
90, 7, 0.001 36.1

150, 7, 0.001 35.1
30, 2, 0.01 33.3
90, 2, 0.01 27.3
150, 2, 0.01 23.3
30, 4, 0.01 33.1
90, 4, 0.01 26.9
150, 4, 0.01 23.1
30, 7, 0.01 33.1
90, 7, 0.01 26.9
150, 7, 0.01 23.1

30, 2, 0.1 18.2
90, 2, 0.1 17.5

150, 2, 0.1 17.5
30, 4, 0.1 17.5
90, 4, 0.1 18.1

150, 4, 0.1 18.3
30, 7, 0.1 17.5
90, 7, 0.1 18.1

150, 7, 0.1 18.3

2.2.4. Evaluation Criteria

The models were evaluated using correlation coefficient (R), mean absolute error
(MAE), and root mean square error (RMSE) in accordance with the previous literature [84].
The mathematical equations for these statistical evaluation functions are shown as
Equations (8)–(10), respectively.

R =
∑n

i=1(ei − ei )(mi −mi )√
∑n

i=1(ei − ei )
2(mi −mi )

2
(8)

MAE =
∑n

i=1|ei −mi|
n

(9)

RMSE =

√
∑n

i=1 (ei −mi )
2

n
(10)

where ei and mi are nth experimental and model results, respectively; ei and mi denote
the average values of experimental and model results, respectively, and n is the number of
samples in the data set.
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3. Results and Discussions
3.1. Pearson’s Linear Correlations

In order to evaluate the correlation among the variables, the data employed in the
current study were investigated for linear Pearson’s correlation. It can be seen that As,
and D have a strong positive correlation with the flexural capacity of beams. The basic
ACI equation for flexural strength of beam also inhibits a similar trend in flexural capacity
with an increase in As and D. The width of the beam (W) and fc′ show comparatively
moderate positive correlation with M. The remaining attributes EM and Tf have minor
linear correlations, suggesting the existence of non-linear correlations between the inputs
and the target variable. The detailed coefficient matrix provided can be seen from Table 4
and Figure 3.

Table 4. Correlation matrix among variables used in the development of models.

Attribute As D EM fc′ Tf M W

As 1.00 0.44 −0.17 0.09 −0.23 0.70 0.09
D 0.44 1.00 0.01 0.03 −0.17 0.85 0.19

EM −0.17 0.01 1.00 −0.02 0.76 0.04 −0.04
fc′ 0.09 0.03 −0.02 1.00 0.06 0.16 −0.31
Tf −0.23 −0.17 0.76 0.06 1.00 −0.06 −0.04
M 0.70 0.85 0.04 0.16 −0.06 1.00 0.22
W 0.09 0.19 −0.04 −0.31 −0.04 0.22 1.00

Figure 3. Correlation strength between input and output variables.

3.2. Prediction Performance of the Developed Models

This section concentrates on statistical evaluation of the developed models in terms of
correlation coefficient, MAE, RMSE and the slope of regression line to assess the robustness,
effectiveness, and comparative investigation of the developed DT and GBT models for
estimating the flexural strength of FRP-reinforced concrete beams. For the development of
a reliable and efficient AI model, the ratio between the number of observed records (i.e.,
60% training and 40% validation data points which in this case are 80 and 54, respectively)
and contributing input variable (six in the current study) must not be less than three and
preferably more than 5 [85]. In this research study, for considered flexural strength of
FRP-reinforced concrete beams, this ratio equals 13.33 in the training and 9 in the validation
phase, which is far beyond the recommended limit, representing relatively more reliable
development of AI models. The observed (experimental) and forecasted moments for FRP



Polymers 2022, 14, 1303 11 of 20

beams (Figure 4a) for the DT model (Figure 4b) and for the GBT model in the training and
validation stage are visualized along with the performance indicator (i.e., slope, R, MAE,
and RMSE). The 45-degree standard regression line represents the ideal fitted line with
a slope exactly equaling 1. The distribution of the plotted points must be nearer to the
standard line, with a slope greater than 0.8, minimal error metrics (MAE and RMSE) and
R > 0.8 for reliable performance and strongly correlated models [36,86]. The slope of the
regression line for DT and GBT corresponds to 0.75 and 0.83, respectively. In the case of the
GBT model, the slope is greater than 0.8, hence representing a more robust performance
compared to the DT model. The values of R for the training data of DT and GBT models
are 0.974 and 0.964, respectively. Similarly, the validation data also yielded comparable R
values equaling 0.92 and 0.94 for DT and GBT models, respectively. The magnitude of R in
both the training and validation suggests strongly correlated models; however, R in the
case of GBT is greater in the validation phase for the GBT model. Moreover, the values of R
in the validation phase are almost comparable to that of the training phase, hence ruling
out the problems of overfitting in the developed models.

Figure 4. Prediction performance of the developed model: (a) DT, and (b) GBT.
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It is noteworthy that a higher value of R is not the sole indicator to judge the robustness
of the AI model. Therefore, several error indices such as MAE and RMSE were also
considered in this study. Mainly, while training the model, the optimization process targets
the minimization of MAE alongside higher correlation magnitudes. The values of MAE
was observed as 10.7 MPa and 11.74 MPa for the training phase of DT and GBT models,
respectively. The validation dataset yielded 10.31 and 11.25 MPa for DT and GBT models.
RMSE equaled 17.2 MPa and 15.67 MPa in the training stage and 19.92 MPa and 16.36 MPa
in the validation stage, respectively, for DT and GBT models.

Based on the statistical evaluation from the validation phase, the value of R and the
slope of the regression line were greater in the GBT model. For the same data, the value
of RMSE was smaller for the GBT model; hence, the GBT model can be considered more
robust compared to DT model.

It is imperative to evaluate the overall performance of the models, examining the error
between experimental records and model-predicted output [87,88]. It can be observed
from Figure 5 that predictions followed the experimental results more closely for both the
developed models. Figure 6 displays the error generated in the validation stage for DT
and GBT models. It can be seen that for DT and GBT models, the maximum of the points
were within ±10 MPa. The value of MAE for the test data in the case of DT model was
10.32 MPa, whereas, for the GBT model it was 11.25 MPa as shown in Figure 4. Therefore,
the results from statistical viewpoint and relative error (Figure 6) show that the error in the
developed models was within 20% (10.32/62.4 = 16.5% and 11.25/62.4 = 18.02%), where
62.4 is average value of the flexural strength of the database used in this study. The trend
line of the errors intersects the y-axis at zero, reflecting the minimal errors in the developed
models. Thus, in addition to higher correlation and lower error statistics, the developed
models can be effectively used to estimate the flexural strength of FRP-reinforced concrete
beams that will aid designers and practitioners to avoid heavy testing and save money
and time.

Figure 5. Tracing of experimental values by the predictions in the validation phase of the (a) DT, and
(b) GBT models.
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Figure 6. Error Analysis of the proposed models in the validation phase: (a) DT, and (b) GBT.

3.3. Second Level Validation of the Models (Parametric and Sensitivity Analysis)

For this purpose, a simulated data set was established such that the input variable was
varied uniformly between its extremes, and the other input variables were kept constant at
their average values, as shown in Table 5. The change in the target variable was plotted
against the variable input to obtain the parametric influence of the particular variable.
Similarly, a simulated dataset was employed for sensitivity analysis. The difference in the
values of the target variable with respect to each input variable was normalized to obtain
the relative percentage of each contributing variable. Parametric and sensitivity analyses
were conducted using the GBT model due to its high accuracy in comparison to DT model.

Table 5. Simulated dataset for parametric and sensitivity analysis.

Variable Input Parameters
No. of Datapoints Constant Input Parameters

Parameter Range

Width (mm) 130–381 20 Depth = 274.40 mm, fc′ = 42.85 MPa, As = 482.85 (mm2),
EM = 53,060 MPa, Tf = 927.59 MPa

Depth (mm) 152–550 20 Width = 194.25 mm, fc′ = 42.85 MPa, As = 482.85 (mm2),
EM = 53,060 MPa, Tf = 927.59 MPa

fc′ (MPa) 24–97 20 Depth = 274.40 mm, Width = 194.25 mm, As = 482.85 (mm2),
EM = 53,060 MPa, Tf = 927.59 MPa

As (mm2) 57–1964 20 Depth = 274.40 mm, Width = 194.25 mm, fc′ = 42.85 MPa,
EM = 53,060 MPa, Tf = 927.59 MPa

EM (MPa) 35,630–200,000 20 Depth = 274.40 mm, Width = 194.25 mm, fc′ = 42.85 MPa,
As = 482.85 (mm2), Tf = 927.59 MPa

Tf (MPa) 552–2069 20 Depth = 274.40 mm, Width = 194.25 mm, fc′ = 42.85 MPa,
As = 482.85 (mm2), EM = 53,060 MPa
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Figure 7 presents the parametric study based on the GBT model. The increase in width
from 130–381 mm yielded a change of almost 6 kN-m in the bending capacity. The change
in the depth significantly affected the bending capacity, almost 120 kN-m, with the increase
in depth from 152 to 550 mm. Bending Moment also increased with increasing fc′, As, EM
and Tf as shown in Figure 7. It can be observed that moment capacity significantly changed
with the variation in the depth rather than the width of the specimen. The empirical
equations and principles of mechanics also suggest similar variations in bending moment
with respect to the change in the depth of the beam. Moreover, the increase was not
significant with a rise in elastic modulus of FRP rebar. The sensitivity analysis showed that
depth of the beam contributed 60% of bending capacity, followed by As, Tf, fc′, EM and W,
respectively, as shown in Figure 8. The parametric and sensitivity analysis results are in
line with the principles of mechanics and empirical equations, suggesting the reliability of
the developed model.

 

2 

 

 
Figure 7. Parametric analysis of the input variable (W, D, fc’, As, EM, Tf) against moment (M) using 
GBT Model. 
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Figure 8. Percentage contribution of input variables using GBT model.

3.4. Comparison with Previously Developed Models and ACI

The accuracy of the developed model was compared with that of already available
formulations for flexural strength calculation of FRP-reinforced concrete beams as per
ACI 440-17 and previously developed AI models. The equations given as Equation (11)
through (15) were employed to calculate the flexural capacity of FRP-reinforced concrete
beams. The prediction made by Murad et al. [26] using GEP are reported in Figure 9
for comparison. The statistical evaluation of Figure 9 demonstrates that the GEP model
had a higher correlation compared to ACI model of 0.977 and 0.974, respectively. The
other indices were MAE (4, 11.91) and RMSE (15.23, 19.27) for the ACI and GEP models,
respectively. In contrast to the correlation values, the magnitude of errors was higher in
the case of the GEP model compared to the ACI formulation. For statistical evaluation,
the magnitude of errors should be small alongside correlation coefficients for an accurate
model. Hence, it is inferred that R should not be solely used as an evaluation index for
the developed model. In the comparison of GEP and ACI models, ACI was more accurate
because of comparable correlation and least error values. Figure 9 also shows that ACI
follows the experimental values more closely compared to the GEP model.

Figure 9. Comparison of ACI and existing AI models.

Comparing the developed GBT model with the existing models, it can be seen that
the GBT model has an almost comparable R of 0.964 to that of the ACI and GEP model.
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The magnitude of MAE and RMSE were 11.25 and 16.36, respectively. The magnitude of
errors was less than in the previously developed GEP model; however, the existing ACI
formulations surpassed the accuracy of the developed GBT model.

ρ f =
A f

bd
(11)

ρ f is FRP reinforcement ratio, A f is the area of longitudinal flexural reinforcement (mm2),
b is width of the beam (mm), and d is the depth of the beam (mm).

β1 =


17 ≤ f ′c ≤ 28 β1 = 0.85

28 < f ′c < 55 β1 = 0.85− 0.05( f ′c−28)
7

f ′c ≥ 55 β1 = 0.65
(12)

β1 is compressive stress block parameter, f ′c is the concrete compressive strength
When ρ f > ρb

f f =

√√√√√(
E f εcu

)2

4
+

0.85β1 f ′c
ρ f

E f εcu − 0.5E f εcu ≤ f f u (13)

ρb is a balanced reinforcement ratio. ff is tensile stress of FRP rebar at failure, E f is elastic
modulus of longitudal FRP bars, εcu is ultimate concrete strain = 0.003, f f u is ultimate
tensile strength of FRP rabars

When ρ f < ρb

cb =

(
εcu

εcu + ε f ut

)
d (14)

Mn = A f f f u

(
d− β1cb

2

)
(15)

c is the distance from extreme compression fiber to the neutral axis of the member (mm),
and cb is the distance from extreme compression fiber to the neutral axis of the member at
balanced strain condition (mm).

4. Conclusions

This article presents estimation of the bending capacity of FRP-reinforced concrete
beams. Previously, Murad et al. [26] developed a GEP tree-based model for flexural capacity
of concrete beams reinforced with FRP rebars. It was shown that the strength achieved
from the existing ACI equations for flexural capacity deviated from the experimental
results. Therefore, the GEP model was found to have better accuracy than ACI 440 in
terms of correlations (R) only. Upon other statistical evaluations of their results, our
research demonstrated a higher error matrix of GEP predictions compared to ACI equations.
Therefore, this research presented modern regression AI techniques namely DT and GBT,
for this purpose. The following major conclusions were drawn from this study.

1. The value of the correlation coefficient (R) for DT and GBT models were significantly
higher than 0.8 (0.974 and 0.964 for the training stage and 0.92 and 0.94 for the
validation stage, respectively), reflecting a solid agreement of input attributes in
predicting flexural strength. Error evaluation such as MAE (10.32 kN-m) showed
lower values in the validation phase in the case of DT models, whereas lower RMSE
(16.36 kN-m) in the GBT model was observed. The performance of both the models
were comparable; however, based on the comparison of the slope of validation data
recorded as 0.83 (more closer to 1) for GBT models against 0.75 for the DT model and
higher R for the validation phase, the GBT model can be considered more accurate
and robust.
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2. The parametric study revealed a similar trend of the target variables with the change
in the input variables coherent with the literature, further validating the trained
model. The sensitivity analysis revealed the depth of the beam as the most influential
parameter contributing towards flexural strength.

3. The currently developed GBT model surpassed the accuracy of the previously de-
veloped GEP model. Hence, the GBT model can effectively predict flexural strength;
however, the existing ACI equations are more reliable than the current and previously
developed AI models. While comparing the models, it was shown that R should not
be used as a single parameter in assessing the performance of the AI models; rather, a
few error indices, specifically the MAE should be included.
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