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ABSTRACT

BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as 
atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple 
perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, 
chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone 
improved dyslipidemia-associated inflammation and inhibited atheroma formation in 
apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis.
MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen’s diet) 
and orally administrated with 10–20 mg/kg PPE and α-asarone for 10 wk.
RESULTS: The Paigen’s diet reduced body weight gain in apoE-deficient mice, which was 
not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles 
in Paigen’s diet-fed apoE-deficient mice, and despite a small increase in high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL 
were significantly reduced. Paigen’s diet-induced systemic inflammation was reduced in PPE 
or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE 
suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished 
aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet 
in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted 
in a significant decrease in plasma cholesteryl ester transfer protein level and an increase 
in lecithin:cholesterol acyltransferase reduced by supply of Paigen’s diet. Supplementation 
of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by 
Paigen’s diet in apoE-deficient mice.
CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation 
and promoted hepatic HDL-C trafficking in dyslipidemic mice.
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INTRODUCTION

Atherogenic dyslipidemia has emerged as a major risk factor for myocardial infarction and 
cardiovascular diseases (CVD) with severe complications [1]. Atherogenic dyslipidemia 
comprises a triad of increased low-density lipoprotein cholesterol (LDL-C) and triglycerides 
(TG), and decreased high-density lipoprotein cholesterol (HDL-C), and is known to be caused 
by the imbalance of these lipids [1,2]. Atherogenic dyslipidemia is enhanced by fat-rich diet, 
smoking, physical inactivity, obesity and type 2 diabetes mellitus [1]. High saturated fat 
intake increases CVD risk in phenotype B individuals with small LDL particles, accompanying 
increases in total cholesterol (TC) and LDL-C [3]. Atherogenic dyslipidemia is mainly 
controlled and managed in an unconvincing manner due to available therapeutic limitations 
[4]. Evidence is increasing to support that a mixture of lipid-lowering agents such as statins 
(HMG-CoA reductase inhibitors) and other drugs, reduces CVD and mortality in patients with 
dyslipidemia [5,6]. In addition, the approved non-statin drugs such as HDL particles, niacin, 
cholesteryl ester transfer protein (CETP) inhibitors and LDL-C-lowering agents are ready to 
take on novel roles in managing dyslipidemia and hypercholesterolemia [5,6].

Apolipoprotein (apo) E is present as a part of chylomicron remnants, very low-density 
lipoprotein (VLDL), intermediate-density lipoprotein and some HDL [7]. In peripheral 
tissues apoE primarily produced by the liver and macrophages, interacts significantly 
with the LDL receptor and mediates the normal catabolism of TG-rich lipoproteins and 
cholesterol metabolism [8,9]. Accordingly, apoE deficiency or abnormality comes up a series 
of pathological conditions including dyslipidemia, hypercholesterolemia, atherosclerosis and 
Alzheimer's disease [10]. The apoE deletion results in increased hepatic cholesterol content, 
decreased HDL, and decreased hepatic HMG-CoA reductase activity [10]. On the other 
hand, apoE plays a crucial role in regulation of lipid metabolism through influencing the 
activity of hepatic lipase and CETP [8,9]. Also, apoE promotes cholesterol efflux from lipid-
loaded macrophages in the artery wall, which is thought to be atheroprotective [9,11]. ApoE, 
rather than apoA1, may activate lecithin:cholesterol acyltransferase (LCAT) on large HDL 
particles to promote esterification of effluxed free cholesterol [11]. Nevertheless, the precise 
mechanism of action of highly sensitive effects of apoE is not yet clear.

Despite development of the prevention and treatment of dyslipidemia, the use of medications to 
treat dyslipidemia is limited to chemicals. Several studies review conventional natural therapies 
for metabolic abnormalities, including atherogenic dyslipidemia, obesity, and insulin resistance 
[12,13]. Naturally-occurring bioactive compounds are highly efficient, mostly safe and very-well 
tolerated [13,14]. Purple perilla frutescens (Fig. 1A) is an edible plant broadly growing in Eastern 
Asia including China and Japan as well as Korea. Purple perilla frutescens has several health 
benefits to treat depression-related disease and asthma [15,16]. Our previous studies have shown 
that the extracts of purple perilla frutescens (PPE) enhance cholesterol efflux from oxidized LDL-
exposed macrophages and antagonize macrophage endoplasmic reticulum stress in lipid-laden 
macrophages [17,18]. In addition, the constituents to inhibit aldose reductase and xanthine 
oxidase are identified in PPE [19,20]. Furthermore, one investigation shows that α-asarone 
inhibits HMG-CoA reductase, lowers serum LDL-C levels and reduces biliary cholesterol 
saturation index in hypercholesterolemic rats [21]. Based on these findings, the current study 
attempted to determine that PPE blocked dyslipidemia-induced inflammation and inhibited 
atheroma formation in high cholesterol diet-fed apoE-deficient mice. In addition, this study 
investigated whether α-asarone (Fig. 1A), a bioactive component in PPE inhibited atherosclerotic 
abnormalities and dyslipidemia in mice lacking apoE [22].
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MATERIALS AND METHODS

Animals and diets
Homozygous apoE-deficient and wild type C57BL/6 mice (5 wk of age) were obtained from 
Japan Shizuoka Laboratory Center and the males used for this study. Mice were housed 
individually in wire-bottomed cages and kept on a 12 h light/12 h dark cycle at 20–25°C with 
60% relative humidity under specific pathogen-free conditions. The animal experimental 
design and grouping were described in Fig. 1B. The WT mice were fed with chow or 
atherogenic diet (Paigen’s diet; including 1.25% cholesterol) for 10 wk supplied by Research 
Diets, Inc. (New Brunswick, NJ, USA). The apoE-deficient mice were divided into 5 groups. 
One group was fed on atherogenic diet, and the other groups were fed on 10 mg/kg/body 
weight (BW) PPE, 20 mg/kg/BW PPE, 10 mg/kg/BW α-asarone, or 20 mg/kg/BW α-asarone 
during same experimental periods. The animals were allowed to acclimatize for a week 
before beginning the experiments. All animal experiments were performed in accordance 
with the University’s Guidelines for the Care and Use of Laboratory Animals approved by the 
Committee on Animal Experimentation of Hallym University (hallym R2014-40). No mice 
were dead and no apparent signs of exhaustion were observed during the experimental period.

1101https://doi.org/10.4162/nrp.2023.17.6.1099

Purple perilla frutescens and dyslipidemic atheroma

https://e-nrp.org

C57BL/6N
apoE-deficient-C57BL/6N mice

(5 week-old)
Adaptation for 

1 week

6 week
16 week

(sacrifice)

Fed chow diet 

Fed atherogenic Paigen's diet 

Oral administration of 10 mg/kg or 20 mg/kg PPE or α-asarone via gavage for 10 weeks daily

Animal groups

Chow diet Paigen's diet

Wild type mice Wild type mice

apoE-deficient mice

10 mg/kg or 20 mg/kg 
PPE

10 mg/kg or 20 mg/kg 
α-asarone

(B)

15
0 1 2 3 4 5 6 7 8 9 10

17

19

21

23

25

27

29

31

Bo
dy

 w
ei

gh
t (

g)

Feeding duration (wk)

Wild type mice + chow diet
Wild type mice + Paigen's diet
apoE-deficient mice
apoE-deficient mice + Paigen's diet
+ 10 mg/kg PPE
apoE-deficient mice + Paigen's diet
+ 10 mg/kg α-asarone

Purple perilla

(A) (C)

α-asarone

Fig. 1. Chemical structure of α-asarone (A), animal experimental design and grouping (B), and change of BWs during feeding (C). Wild type and homozygous 
apoE-deficient C57BL/6N mice (5 wk of age) were fed either chow diet or atherogenic Paigen’s diet. Atherogenic Paigen’s diet-fed apoE-deficient mice were 
divided into 5 subgroups. These apoE-deficient mice received 10–20 mg/kg PPE or 10–20 mg/kg α-asarone via gavage daily for 10 wk. The animal BW was 
measured at the beginning of the experiment and at 1 wk intervals for 10 wk. Values in curved linear graphs were expressed as mean ± SEM (n = 8–10). 
apoE, apolipoprotein E; PPE, purple perilla frutescens extract; BW, body weight.



The PPE preparation and the identification of α-asarone were described in our previous 
studies [20,21]. Purple perilla was obtained from a local market in Chuncheon, and 
α-asarone was purchased from Cayman Chemical (Ann Arbor, MI, USA). Dried leaves of 
Perilla frutescens (2 kg) were extracted 3 times with 99.5% methanol for 5 h. The solvent 
was evaporated under reduced pressure below 45°C to give a methanol extract. The extract 
was suspended in distilled water and partitioned with n-hexane, methylene chloride, ethyl 
acetate, n-butanol, and H2O. A portion of the n-hexan fraction (purple perilla extract, 
PPE) was purified by chromatography on silica gel eluted with chloroform and increasing 
proportion methanol (10:0–9:1) to yield eleven parts (part 1–10). The part 5 (0.46 g) showing 
the most potent activity was further purified via recrystallization to yield compound 1 (76 
mg). The 1H-NMR, 13C-NMR, ESI-MS, and UV data confirmed compound 1 as α-asarone.

Measurements of food intake and weighs of body and organs
Food intake, BW and organ weight were measured in chow diet- or atherogenic diet-fed mice 
every week during the 10 wk-supplementation of PPE and α-asarone. Pre-weighed food was 
supplied in a standard stainless steel hopper. The amount of food left over was measured, 
including what was on our floor or spilled on the plastic sheet placed under each cage.

At the end of the experiment, all the mice were sacrificed under zoletin/lumphoon 
anesthesia. Blood samples were collected from the eye into EDTA-coated tubes. Plasma 
samples were obtained by at 3,000 rpm for 10 min and stored at −700C. The organs were 
washed with physiological saline by direct injection in the heart left ventricule. Collected 
aortas were immediately frozen in liquid N2 until analysis, and conducted to fixation 
with formaldehyde for the immunohistochemistry analysis. The collected livers were 
homogenized for the RNA collection.

Measurements of plasma lipids
After blood was centrifuged, plasma was used to measure lipid profile and contents. TC, TG 
and HDL-C were measured using enzymatic assays (Asan Pharmaceuticals, Hwasung, Korea). 
LDL-C was determined by using the formula, LDL = TC − (HDL − TG/5). In addition, VLDL 
was calculated by the formula, VLDL = TG/5. Based on these values, the atherosclerosis index 
(AI) was obtained by using the formula, AI = (TC − HDL-C)/HDL-C.

Enzyme-linked immunosorbent assay (ELISA)
The plasma levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, CETP, 
phospholipid transfer protein (PLTP), and LCAT were examined by using sandwich-type 
ELISA kits (USCN, Wuhan, China; R&D systems, Minneapolis, MN, USA; MyBioSource, 
San Diego, CA, USA), according to the manufacturer’s instructions. After reacting plasma 
samples on plate wells pre-coated with a biotinylated antibody of MCP-1, IL-1β, CETP, PLTP, 
or LCAT, an avidin-conjugated horseradish peroxidase (HRP) was added to microplate wells. 
The TMB substrate was added to wells for detecting color change and the enzyme-substrate 
reaction is terminated by the addition of 3 N sulfuric acid. The changed color was measured 
by spectrophotometry at λ = 450 nm.

Aortic atheroma formation
Aortic atheroma formation was assessed by staining lipid deposition in the aortas. The 
aortas were dissected and fixed with 4% paraformaldehyde solution overnight. Subsequently, 
fixed aorta tissues were soaked with 30% sucrose for dehydration. The aorta tissues were 
embedded with OCT compound and cut into 5 μm thickness on a glass slides by using a 
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microtome. To identify the atheroma in the aortas, the sections of aorta tissues were stained 
by hematoxylin and oil red O. The stained samples were observed with microscopes.

Immunohistochemical analysis
For the immunohistochemical staining, aortas were obtained at the end of the experiments 
and fixed in 10% buffered formalin. The 5 μm-thick sections of frozen aorta tissues were 
dried on the air at room temperature for 20 min, rehydrated with PBS for 10 min and 
quenched endogenous peroxidase activity with 3% H2O2 solution for 10 min. Subsequently, 
tissues were incubated with 2% serum blocking buffer for 1 h. The tissue sections were 
incubated with a primary antibody of CD68 (Santa Cruz Biotechnol., Heidelberg, Germany) 
and F4/80 (Abcam, Boston, MA, USA) overnight and HRP-conjugated anti-mouse IgG for 
1 h. For the CD68 visualization, the sections were visualized with 3,3′-diaminobenzidine to 
produce a brown staining, being counterstained with hematoxylin. For the measurement 
of F4/80 expression, the sections were visualized with vector NovaRED substrate (Vector 
Laboratories, Newark, CA, USA) to produce a red staining. The stained tissue sections were 
examined using an optical Axiomager microscope system (Zeiss, Göttingen, Germany) and 5 
images (400×) were taken for each section.

Reverse transcription polymerase chain reaction (RT-PCR) analysis
The liver tissues were homogenized with Trizol, and then centrifuged at 12,000 rpm for 20 
min. Supernatants were collected to new tube and isopropanol was added to for the RNA 
precipitation. After centrifugation, pellets were RNA and quantified with spectrophotometry 
at λ = 260 nm. For the cDNA, same amount of RNA (5 μg) were conducted with 200 units 
of reverse transcriptase at 42°C for 50 min and at 70°C for 15 min. The polymerase chain 
reaction (PCR) was conducted using mRNA transcripts of mouse apoA-1 (forward primer: 
5′-TCC-CAG-AAG-TCC-CGA-GTC-AA-3′, reverse primer: 5′-AGC-AAG-ATG-AAC-CCC-AGT-
CC-3′, product size:220 bp), scavenger receptor (SR)-B1 (forward primer: 5′-ATG-GGC-
CAG-CGT-GCT-TTT-ATG-A-3′, reverse primer: 5′-AAC-CAC-AGC-AAC-GGC-AGA-ACT-A-3′, 
product size:752 bp), β-actin (forward primer: 5′-GAC-TAC-CTC-ATG-AAG-ATC-3′, reverse 
primer: 5′-GAT-CCA-CAT-CTG-CTG-GAA-3′, product size:500 bp), and GAPDH (forward 
primer:5′-AAC-TTT-GGC-ATT-GTG-GAA-GGG-3′, reverse primer: 5′-GAC-ACA-TTG-GGG-
GTA-GGA-ACA-C-3′, product size:224 bp) with an addition of 25 μL of 10 mM Tris-HCl (pH 
9.0) containing 25 mM MgCl2, 10 mM deoxynucleotide triphosphate and 5 units of Taq DNA 
polymerase. Each cycle (35 cycles) consisted of 30 s at 94°C, 30 s at 60°C and 45 s at 72°C, and 
the final extension was for 10 min at 72°C. After thermocycling and electrophoresis of the 
PCR products (20 μL) on 1% agarose gel containing 0.1% ethidium bromide, the bands were 
visualized using a TFX-20M model-UV transilluminator (Vilber-Lourmat, Marene-la-Vallee, 
France) and gel photographs were obtained.

Statistical analysis
The data are presented as means ± SEM. Statistical analyses were carried out employing 
Statistical Analysis Systems statistical software package (SAS Institute Inc., Cary, NC, USA). 
Statistical significance was determined by 1-way analysis of variance, followed by Duncan 
range test for multiple comparisons. Differences were considered significant at P < 0.05.
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RESULTS

Weights of body and organs
The BW of wild type mice fed chow diet increased throughout the feeding duration (Fig. 1C).  
However, the BW of wild type mice fed atherogenic diet highly increased up to 5th wk 
and thereafter the increase declined (Fig. 1C). Thus, the BW gain was not influenced in 
atherogenic Paigen’s diet-fed wild type mice, as with food intake (Table 1). However, despite 
a similar amount of food intake, the atherogenic diet reduced weight gain in mice that lacked 
apoE. When PPE or α-asarone was administered to apoE-deficient mice, the BW gain and the 
food efficiency ratio were not improved (Fig. 1C and Table 1). BW and food efficiency ratio has 
dropped dramatically in apoE-knockout mice treated with 20 mg/kg α-asarone.

The wet weights of the heart and liver of atherogenic Paigen’s diet-fed mice were much higher 
than those of chow diet-fed mice, while the kidney of atherogenic apoE-knockout mice was 
relatively lighter (Table 1). The weights of the heart and liver were reduced by supplementing 
10 mg/kg PPE and α-asarone.

Plasma lipid profile
The plasma levels of TC and LDL-C of Paigen’s diet-fed wild mice increased significantly, 
and these levels were further elevated (≤ 10-fold) in atherogenic diet-fed apoE-deficient mice 
(Table 2). In addition, the plasma levels of TG and VLDL were much higher in atherogenic 
diet-fed apoE-knockout mice, compared to those of wild mice. Conversely, the plasma level of 
HDL-C declined greatly (≤ 10-fold) in atherogenic diet-fed apoE mice, compared to those of 
wild mice (Table 2). When apoE-deficient mice were fed with atherogenic diet containing PPE 
or α-asarone, the plasma lipid profiles were improved, with considerable reduction in TC, 
TG, LDL-C, and VLDL despite a small increase in HDL (Table 2). As a result, the AI declined 
in a positive direction in PPE or α-asarone-supplied apoE-knockout mice.

Effects of PPE and α-asarone on inflammatory formation of aortic atheroma
The transgenic apoE-deficient mice develop severe hypercholesterolemia due to aberrant 
clearance of atherogenic lipid particles from the circulation [23]. This study employed apoE-
knockout mice with an atherosclerosis-susceptible C57BL/6N genetic background, as an 
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Table 1. BW, food intake and organ weight in mice fed on chow diet or Paigen’s diet
Each group (n = 5–9) Chow diet Atherogenic Paigen's diet

Wild type mice Wild type mice ApoE-deficient mice
10 mg/kg PPE 20 mg/kg PPE 10 mg/kg α-asarone 20 mg/kg α-asarone

BW (g)
Initial 20.10 ± 0.28a 21.30 ± 0.26a 20.78 ± 0.52a 19.88 ± 0.30a 20.83 ± 0.60a 20.00 ± 0.30a 21.38 ± 0.32a

Final (10 wk) 25.50 ± 0.37ab 26.80 ± 0.39a 24.33 ± 0.67b 23.63 ± 0.60b 24.00 ± 0.26b 24.30 ± 0.40b 22.50 ± 0.19c

Δweight 5.40 ± 0.50a 5.50 ± 0.34a 4.136 ± 0.35b 3.75 ± 0.56b 3.17 ± 0.60b 4.30 ± 0.56b 1.13 ± 0.23c

ADG 0.08 ± 0.01a 0.08 ± 0.01a 0.06 ± 0.01b 0.06 ± 0.01b 0.05 ± 0.02b 0.06 ± 0.01b 0.02 ± 0.01c

Food intake
ADFI 3.87 ± 0.02a 3.88 ± 0.03a 3.90 ± 0.03a 3.84 ± 0.05a 3.71 ± 0.05b 3.69 ± 0.05b 3.63 ± 0.03b

FER 1.40 ± 0.13a 1.42 ± 0.09a 0.95 ± 0.14b 0.98 ± 0.1b 0.84 ± 0.16b 1.17 ± 0.15b 0.31 ± 0.06c

Organ weight (g)
Heart 0.17 ± 0.01b 0.27 ± 0.01a 0.22 ± 0.01a 0.18 ± 0.01b 0.23 ± 0.01a 0.19 ± 0.01b 0.28 ± 0.01a

Liver 0.94 ± 0.03c 1.72 ± 0.03a 1.78 ± 0.13a 1.24 ± 0.03b 1.60 ± 0.07a 1.31 ± 0.04b 1.72 ± 0.17a

Kidney 0.43 ± 0.01a 0.43 ± 0.01a 0.39 ± 0.01b 0.31 ± 0.01b 0.33 ± 0.02b 0.32 ± 0.01b 0.38 ± 0.01b

Wild type mice and apoE-deficient mice were fed with chow diet or atherogenic Paigen’s diet for 10 wk with and without 10–20 mg/kg PPE or α-asarone. Wild 
type mice were fed chow diet as control mice. Statistical evaluation was done with Duncan range test for multiple comparisons after 1-way analysis of variance. 
Respective values (mean ± SEM) not sharing a small alphabetical letter in the same row are different at P < 0.05.
BW, body weight; ADG, average daily gain; ADFI, average daily food intake; FER, food efficiency ratio; apoE, apolipoprotein E; PPE, purple perilla frutescens extract.



experimental animal model of atherosclerosis. The current study examined whether chronic 
supply of atherogenic diet to apoE-deficient mice induced systemic inflammation, which was 
inhibited by treating PPE and α-asarone. The wild type mice exposed to a Paigen’s diet for 
10 wks resulted in a significant increase in plasma MCP-1 level (Fig. 2A). In addition, plasma 
IL-1β level slightly increased in atherogenic diet-fed wild type mice (Fig. 2B). However, the 10 
wk-feeding of Paigen’s diet-alone to mice lacking apoE highly elevated the plasma levels of 
these inflammatory mediators. When PPE or α-asarone was treated to apoE-lacking mice, the 
systemic inflammation was alleviated (Fig. 2A and B).

The present study examined whether PPE and α-asarone reduced atheroma formation in 
atherogenic apoE-knockout mice, evidenced by oil red O staining. When apoE-deficient mice 
were fed a Paigen’s diet for 10 wks, severe atheroma was developed in aortas, compared to 
those of wild type mice fed the atherogenic diet (Fig. 2C). In contrast, the aortic atheroma 
was highly suppressed by supplementing 20 mg/kg PPE or 20 mg/kg α-asarone to these 
mice. Therefore, PPE containing α-asarone may be a therapeutic agent against inflammatory 
atheroma formation due to hypercholesterolemia.

Inhibition of inflammatory cell infiltration by PPE and α-asarone
Macrophages are identified in murine tissues using a small range of markers such as F4/80, 
CD68 and CD11b [24]. This study attempted to reveal that PPE or α-asarone inhibited the 
infiltration of foamy macrophages in aortas of apoE-deficient mice. There was no induction 
of CD68 and F4/80 in the aortas of wild type mice, evidenced by immunohistochemical 
staining (Fig. 3). The staining of CD68 and F4/80 was enhanced in apoE-knockout mice 
fed Paigen’s diet, indicating that numerous macrophages were infiltrated to foamy aortas 
(arrows). When the apoE-lacking mice were supplemented with PPE or α-asarone, the 
accumulation of CD68- and/or F4/80-positive macrophages was diminished (Fig. 3).

Effects of PPE and α-asarone on plasma levels of lipid transfer proteins
Atherosclerosis-prone apoE-knockout mice accumulate cholesterol ester-enriched lipids 
in the blood due to poor lipoprotein clearance [25]. This study investigated that PPE and 
α-asarone influenced the plasma levels of lipid transfer proteins involved in the reverse 
cholesterol transport (RCT). The Paigen’s diet feeding tended to increase plasma levels 
of CETP and PLTP in wild type mice (Fig. 4A and B). In addition, the atherogenic feeding 
markedly enhanced the levels of these transfer proteins in apoE-deficient mice. The 
administration of PPE and α-asarone to atherogenic diet-fed apoE-lacking mice diminished 
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Table 2. Plasma lipid profiles in mice fed on chow diet or Paigen’s diet
Each group  
(n = 5–9)

Chow diet Atherogenic Paigen's diet
Wild type mice Wild type mice ApoE-knockout mice

10 mg/kg PPE 20 mg/kg PPE 10 mg/kg α-asarone 20 mg/kg α-asarone
TC 115.97 ± 3.41e 192.01 ± 7.53d 1,871.50 ± 154.49a 1,336.61 ± 84.08c 1,270.61 ± 62.22c 1,514.16 ± 90.40b 1,572.38 ± 87.46b

TG 39.94 ± 2.11d 47.97 ± 4.34c 93.13 ± 4.58a 86.83 ± 11.22a,b 76.40 ± 9.542b 73.078 ± 4.018b 71.12 ± 6.32b

HDL-C 58.45 ± 6.17a 48.98 ± 5.41a 6.13 ± 0.82c 6.05 ± 1.31c 8.88 ± 2.78b,c 7.822 ± 1.148c 11.48 ± 2.11b

LDL-C 49.53 ± 6.30e 133.43 ± 8.69d 1,846.74 ± 154.20a 1,313.19 ± 85.43c 1,246.64 ± 59.63c 1,491.72 ± 90.70b 1,546.68 ± 87.45b

VLDL 7.99 ± 0.42d 9.59 ± 0.87c 18.63 ± 0.92a 17.37 ± 2.24a,b 15.28 ± 1.91b 14.62 ± 0.80b 14.23 ± 1.26b

AI 1.19 ± 0.23e 3.46 ± 0.60d 351.65 ± 53.58a 288.82 ± 46.62a,b 235.90 ± 83.81b 231.48 ± 38.88b 191.53 ± 32.16c

Wild type mice and apoE-deficient mice were fed with chow diet or atherogenic Paigen’s diet for 10 wk with and without 10–20 mg/kg PPE or α-asarone. Wild 
type mice were fed chow diet as control mice. Blood lipid contents were analyzed by using commercial detection kits. LDL-C = TC − HDL-C − (TG/5). VLDL = TG/5. 
AI = (TC − HDL-C)/HDL-C. Statistical significance was determined with Duncan range test for multiple comparisons after 1-way analysis of variance. Respective 
values (mean ± SEM) not sharing a small alphabetical letter in the same row are different at P < 0.05.
apoE, apolipoprotein E; TC, total cholesterol; TG, triglyceride, HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL, 
very low-density lipoprotein; AI, atherosclerosis index; PPE, purple perilla frutescens extract.
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plasma level of CETP responsible for cholesteryl ester transportation from HDL to TG-rich 
lipoproteins (Fig. 4A). However, the plasma PLTP level was not changed (Fig. 4B). On the 
other hand, the plasma LCAT level was down-regulated by Paigen’s diet feeding in wild type 
mice and apoE-deficient mice (Fig. 4C). Treating apoE-deficient mice with PPE and α-asarone 
highly elevated the LCAT level. Accordingly, PPE and α-asarone may promote RCT through 
affecting plasma levels of CETP and LCAT.

Elevation of hepatic HDL-C uptake by PPE and α-asarone
Endogenous apoA1 promoter can drive sustained expression of apoE, highly reducing plasma 
lipids in a model of hypercholesterolemia [26]. This study examined whether PPE and 
α-asarone restored the transcription of apoA1, a HDL component, evidenced by quantitative 
RT-PCR assay. The Paigen’s diet feeding induced a small reduction of apoA1 transcription in 
wild type mice. However, the atherogenic diet feeding greatly reduced the apoA1 transcription 
in mice lacking apoE (Fig. 5). On the contrary, oral administration of PPE and α-asarone 
enhanced the transcription of hepatic apoA1 in apoE-deficient mice (Fig. 5). It should be noted 
that the effects of α-asarone was much greater. Accordingly, α-asarone in PPE may promote 
hepatic ApoA1 synthesis and secretion in atherosclerosis-prone apoE-deficient mice.

Cholesterol from peripheral tissues, carried by HDL, is metabolized in the liver after uptake 
by the HDL receptor, SR-B1 [27]. This study further investigated that PPE or α-asarone 
improved the transcriptional expression of hepatic SR-B1 in atherogenic diet-fed apoE-
knockout mice. The RT-PCR analysis showed that Paigen’s diet feeding per se did not reduce 
the SR-B1 transcription in wild type mice (Fig. 5). However, in mice lacking apoE the 
atherogenic diet feeding markedly diminished its transcription. When apoE-lacking mice 
were fed a Paigen’s diet and orally administrated with 10–20 mg/kg PPE or α-asarone, the 
transcription of hepatic SR-B1 was highly enhanced (Fig. 5). Therefore, treating with PPE and 
α-asarone may alleviate atheroma formation in the vessels through regulating HDL clearance.
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These apoE-deficient mice received 10–20 mg/kg PPE or 10–20 mg/kg α-asarone via gavage daily for 10 wk. Plasma levels of CETP, PLTP, and LCAT were analyzed 
by commercial enzyme-linked immunosorbent assay kits of CETP (A), PLTP (B), and LCAT (C). Respective values (mean ± SEM, n = 7) in bar graphs not sharing a 
small alphabetical letter are different at P < 0.05. 
CETP, cholesterol ester transfer protein; PPE, purple perilla frutescens extract; apoE, apolipoprotein E; PLTP, phospholipid transfer protein; LCAT, 
lecithin:cholesterol acyltransferase.



DISCUSSION

The atheroprotective apoE interacts with the LDLR and SR-B1 to engage in normal 
catabolism of TG-rich lipoproteins as well as cholesterol metabolism [8,9,28]. Accordingly, 
apoE deficiency or abnormality causes pathological disorders of CVD and neurological 
syndromes [10,29]. In the current study Paigen’s diet highly enhanced plasma level of LDL 
cholesterol with a substantial increase in plasma TG level even in wild type mice. After this 
atherogenic diet, mice lacking apoE clearly exhibited the atherosclerotic phenotype with 
hypecholesterolemia and aortic atheroma. These finding indicate that apoE-deficient mice 
can malfunction the hepatic clearance of plasma lipoproteins and promote the foam cell 
formation of peripheral tissue macrophages. In fact, the transcription of hepatic SR-B1 was 
attenuated in mice lacking apoE receiving the Paigen’s diet, indicating uptake of cholesterol 
carried by HDL from peripheral tissue was suppressed. The plasma levels of CETP and 
PLTP was significantly elevated in mice with hypercholesterolemia, but the LCAT level was 
minimally affected. Lack of CETP and PLTP is known to increase HDL and lower LDL levels 
[30]. However, the role of LCAT in atherosclerosis is still unclear [31]. Inhibition of CETP and 
PLTP can be a new approach to controlling atherogenic CVD. In addition, blood monocyte 
activation and inflammatory responses were observed in apoE-deficient mice fed on Paigen’s 
diet. Induction of aortic CD68 and F4/80 increased in apoE-deficient mice fed on Paigen’s diet, 
implying that atherogenic diet promoted the macrophage accumulation in aortic vessels.
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In the light of current knowledge, it may be reasonable to explore natural compounds 
that can diminish the incidence of atherosclerosis by reducing the abnormality of apoE-
responsive cholesterol metabolism. There are several reports about the favorable effects 
of natural compounds on the pathological development due to apoE deficiency in the 
cardiovascular system [32-34]. The polyphenol chlorogenic acid promotes cholesterol 
efflux, reducing atherosclerosis development in apoE-knockout mice fed with a cholesterol-
rich diet [34]. The current study revealed that PPE containing α-asarone inhibited 
hypercholesterolemia in atherogenic apoE-deficient mice with a marked decrease in plasma 
LDL-C. It should be noted that α-asarone greatly lowered the AI of apoE-knockout mice 
with increased HDL-C. Our previous studies have shown that PPE with α-asarone enhanced 
cholesterol efflux from oxidized LDL-exposed macrophages [17], In addition, α-asarone 
blocks 7β-hydroxycholesterol-exposed macrophage injury through promoting autophagy 
and diminishing ER stress [35,36]. This study showed that PPE and α-asarone blocked the 
atheroma formation in the aortas of atherogenic apoE-lacking mice. Therefore, the inhibition 
of aortic atheroma by PPE and α-asarone may entail a slight increase in cholesterol efflux to 
HDL in macrophages.

Several studies have shown potential mechanisms responsible for the atheroprotective 
properties of natural compounds in apoE-knockout mice [37-39]. Anthocyanin-rich black 
elderberry extract improves inflammation-related impairments in HDL function and 
reduces aortic cholesterol in hyperlipidemic apoE-deficient mice by impacting hepatic 
gene expression [37]. The current study showed that PPE and α-asarone lowered plasma 
levels of MCP-1 and IL-1β, alleviating systemic inflammation of apoE-deficient mice fed on 
atherogenic diet. The PPE containing α-asarone enhanced hepatic transcription of apoA1 
and SR-B1, indicating hepatic HDL-C uptake and normal HDL function. In addition, PPE and 
α-asarone reduced the aortic macrophage infiltration in parallel with a significant decrease 
in fat accumulation in the aorta of Paigen diet-fed mice. These findings suggest that PPE with 
α-asarone may encumber inflammation-responsive atheroma formation in atherosclerotic 
mice. Cannabis seed oil ameliorates experimental atherosclerosis through regulating high 
cholesterol diet-induced vascular inflammation in apoE-knockout mice [40]. On the other 
hand, PPE and α-asarone controlled plasma levels of lipid transfer proteins in apoE-deficient 
mice with diet-induced hyperlipidemia. One investigation shows that polydatin, a natural 
precursor of resveratrol, suppresses high fat diet-induced atherosclerosis in apoE-deficient 
mice through enhancing RCT [41]. PPE and α-asarone inhibited the CETP induction in 
cholesterol diet-fed apoE-knockout mice, carrying a larger cholesterol load to the liver 
for cholesterol secretion without directing hepatic uptake of LDL-C and VLDL-C by LDL 
receptors. Much effort has been made to develop HDL- and RCT-targeted drug therapies, but 
more investigation is required on how naturally-occurring dietary compounds affect HDL 
function and atherosclerosis [42].

In summary, the current study demonstrated that PPE containing α-asarone reduced 
inflammation-responsive atheroma formation in diet-induced atherogenic apoE-deficient 
mice (Fig. 6). Cholesterol-rich diet enhanced systemic inflammation and aortic macrophage 
infiltration suppressed by PPE and α-asarone. In addition, PPE and α-asarone inhibited the 
CETP induction of and conversely enhanced hepatic transcription of apoA1 and SR-B1, hence 
promoting hepatic uptake of HDL-C for cholesterol secretion. Accordingly, α-asarone in PPE 
interfered with diet-induced atherosclerosis, and restored HDL dysfunction in the absence 
of apoE. Although PPE can act as a regulator of CETP and LCAT against inflammation in 
rodents, the clinical role of PPE is still unclear. In addition, further work on safety is needed.
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