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Abstract

Background: Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance
of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and
decreased osteoblast activities is considered as an underlying cause of osteoporosis.

Methods and Findings: The cures for osteoporosis are limited, consequently the potential of CD34+ cell therapies is
currently being considered. We developed a nanofiber-based expansion technology to obtain adequate numbers of CD34+

cells isolated from human umbilical cord blood, for therapeutic applications. Herein, we show that CD34+ cells could be
differentiated into osteoblastic lineage, in vitro. Systemically delivered CD34+ cells home to the bone marrow and
significantly improve bone deposition, bone mineral density and bone micro-architecture in osteoporotic mice. The
elevated levels of osteocalcin, IL-10, GM-CSF, and decreased levels of MCP-1 in serum parallel the improvements in bone
micro-architecture. Furthermore, CD34+ cells improved osteoblast activity and concurrently impaired osteoclast
differentiation, maturation and functionality.

Conclusions: These findings demonstrate a novel approach utilizing nanofiber-expanded CD34+ cells as a therapeutic
application for the treatment of osteoporosis.
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Introduction

Osteoporosis is a systemic bone disorder, affecting more than

200 million people worldwide [1]. Bone is a dynamic organ that

undergoes constant remodeling via cycles of bone formation and

resorption, by osteoblasts and osteoclasts [2]. Imbalance of

osteoclastic and/or osteoblastic activities generally results in low

bone mineral density (BMD), loss of bone mass and mechanical

strength, leading to increased risk of fractures, typical of

osteoporosis [3]. Impaired osteoblastic differentiation of bone

marrow progenitor cells may also play a significant role in

developing osteoporosis. Age, endocrine malfunction or deficiency,

nutrition, or lack of physical activity, all can imbalance the

osteoblasts and osteoclasts activities, affecting both trabecular and

cortical bone at molecular, cellular and structural levels [4,5]. It

has been shown that reduction in trabecular bone in osteoporosis

is associated with increased adiposity in bone marrow, which could

be due to transcriptional switch in favor of adipogenesis instead of

osteoblastogenesis of bone marrow precursor cells [6,7].

The mesenchymal progenitor cells in the bone marrow give rise

to osteoblasts under the influence of multiple osteogenic signals

specific for their proliferation and differentiation [8]. Osteoblastic

differentiation is initiated by binding of bone morphogenetic

proteins (BMPs) to their receptors that activate transcription

factors, Runx2 and Osterix, and subsequent expression of

downstream osteoblast specific genes such as alkaline phosphatase,

collagen type 1, osteonectin, osteocalcin and bone sialoprotein
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[9,10,11]. BMPs upregulate osteoblastic genes via activation of

Smad1/5/8 signaling molecules and regulate mineralization of

osteoblastic cells via Wnt in an autocrine signaling loop [12].

Runx2 is a potent inhibitor of adipogenesis, and is required for the

differentiation of adipocytes to osteogenic lineage [13]. Addition-

ally, balance of osteoprotegrin (OPG): receptor activator of

nuclear factor kappa-B ligand (RANKL) ratio, osteocalcin and

cytokines such as interleukin (IL)-1 IL-4, IL-6, monocyte

chemotactic protein (MCP)-1 and granulocyte macrophage colony

stimulating factor (GM-CSF) have been shown to regulate the

activities of osteoblastic and osteoclastic cells [14,15].

Although, associated with side effects, anti-resorptive and

anabolic therapies are currently available for osteoporosis [3,16].

Furthermore, these therapies have temporary effects, and the

decrease in fracture incidences in long-term is debatable [17,18].

Recently, much effort has been expended to understand the

therapeutic effectiveness of CD34+ cells in various degenerative

diseases. However, the major hurdles are the unavailability of

sufficient number of biologically functional CD34+ cells and

maintaining their regenerative potential for therapeutic applica-

tions.

We previously reported that human CD133+/CD34+ cells could

be expanded in vitro up to 250-fold in a serum-free medium on

aminated poly-ether sulfone (PES) nanofiber coated plates within

10 days, while preserving stem cell phenotype and biological

functionality [19]. These cells are considered biologically superior

as they exhibit better engraftment capabilities, express homing

markers (CXCR4 and LFA-1) towards bone marrow and maintain

their multipotency. This allows them to differentiate into multiple

lineages such as endothelial, and hematopoietic lineages. Here we

show that nanofiber-expanded CD34+ cells could be differentiated

towards osteoblastic lineage, in vitro. Furthermore, CD34+ cell

transplantation into an osteoporotic NOD/SCID murine model

augments bone formation rate, bone mineral density and improves

bone micro-architecture. These improvements correlate with the

elevated serum levels of osteocalcin, interleukin (IL)-10 and

granulocyte-macrophage colony stimulating factor (GM-CSF),

and decreased level of monocyte chemotactic protein-1 (MCP-1).

CD34+ cell transplantation not only improved osteoblast func-

tionality but also concurrently impaired differentiation and

maturation of osteoclasts, thereby reducing osteoclast activity in

osteoporotic mice. The findings demonstrate a novel potential of

nanofiber-expanded CD34+ cells in reverting osteoporosis.

Results

Differentiation of nanofiber-expanded CD34+ cells
towards osteoblastic lineage

Our previous studies showed that nanofiber expanded human

umbilical cord blood (hUCB) CD34+ cells retain multipotency as

evident by their ability to differentiate into endothelial or smooth

muscle cells [19,20]. Here we sought, whether these cells could

also be differentiated towards osteoblastic lineage in vitro. To test

that, CD133+ cells were isolated from hUCB and expanded on

nanofiber coated plates in serum-free expansion medium with

supplements for 10 days, in vitro [19]. The cell phenotype was

confirmed by the expression of CD34, CD45, CXCR4, LFA-1,

MHC-I & II, CD14, CD11a and absence of CD69, CD117,

CD105 using flowcytometric analyses (data not shown). CD34+
cells were then induced to osteoblastic differentiation in the

presence of ascorbic acid and b-glycerophosphate, in vitro.

Remarkable cellular changes in shape and size were observed

within 7 days and mineralized nodules were apparent at 21 days

in more than 95% of the cells (Figure 1A, upper right panel). The

mineral deposition by induced CD34+ cells was confirmed by the

presence of calcium in Alizarin red stained cells. CD34+ cells

cultured in tissue culture media (TCM) lacking ascorbic acid and

b-glycerophosphate, also showed few randomly scattered cells with

faint intracellular alizarin red staining (Figure 1A, lower left panel).

However, the intensity of stain was markedly higher in cells

induced to differentiate into osteoblastic lineages (Figure 1A, lower

right panel).

Molecular evidences for osteoblastic differentiation of
CD34+ cells

To further investigate the differentiation of CD34+ cells into

osteoblastic lineage, the expression of osteoblast specific genes and

proteins were analyzed. Semi quantitative RT-PCR analysis

revealed that differentiated nanofiber-expanded cells upregulated

expression of transcription factor Runx2, and bone associated

proteins such as alkaline phosphatase, osteocalcin, osteonectin and

collagen type 1A1 at various time points during the course of

differentiation (Figure 1B). The expression of osteocalcin in freshly

isolated CD133+ cells was consistent with earlier reports [21]. Fold

increase for the gene expressions at mRNA level compared to

undifferentiated control was analyzed, as follows: Runx2; Day 7,

0.8460.14; Day 21, 1.1860.1; Alk Phos; Day 7, 0.960.05; Day

21, 1.760.13; Osteocalcin; Day 7, 1.0260.05; Day 21, 1.5660.1;

Osteonectin; Day 7, 1.1660.04; Day 21, 1.5160.48; Collagen

1A1; Day 7, 0.6160.13; Day 21, 1.7960.27. Additionally,

immunocytochemical analysis revealed that CD34+ cells stained

positive with Smad1/5/8 and osteocalcin upto 21 days of

differentiation (Figure 1C). Western blots showed an increase in

protein levels of BMP2, BMP4, dishevelled protein (DVL) 2,

DVL3 and Smad1/5/8 in differentiated cells at all time points

during the course of differentiation. GAPDH was used as loading

control and MC3T3 cells differentiated into osteoblasts were used

as a positive control (Figure 1D). Fold increase of the protein level

compared to undifferentiated control was analyzed, as follows

BMP2; Day 7, 0.7860.24; Day 21, 1.260.01; BMP4; Day 7,

0.4560.2; Day 21, 1.760.61; Smad 1/5/8; Day 7, 1.4660.04;

Day 21, 1.0160.12; DVL2; Day 7, 0.7260.09; Day 21, 1.160.12;

DVL3; Day 7, 1.2460.04; Day 21, 1.060.12. Collectively, these

data confirm osteoblastic differentiation of nanofiber expanded

hUCB CD34+ cells.

Nanofiber-expanded CD34+ cells induce bone formation
in a murine model of osteoporosis

We further investigated the therapeutic potential of nanofiber-

expanded human CD34+ in a mouse model of dexamethasone-

induced osteoporosis in immunocompromised NOD/SCID mice.

Mice (n = 6/group) injected with dexamethasone for 21 consec-

utive days, followed by withdrawal for 5 days with tapering dose,

and subsequently were either not treated and sacrificed (Op),

treated with CD34+ cells via intra-cardio-ventricular injection

(Op+ Cells; 0.56106/mouse), or treated with DMEM alone

(Op+Med). Mice in all groups did not exhibit weight loss or gain

during the course of experimentation. Hematoxylin and eosin (H

& E) staining of longitudinal sections of femurs showed a decrease

in the number of trabecular bone spicules in Op and Op+Med

mice, as compared to untreated controls. However, after 28 days

of CD34+ cell transplantation, an increase in the numbers of

trabecular bone spicules was observed (Figure 2B, arrows). The

number of adipocytes was significantly increased in Op and

Op+Med mice, as compared to untreated control (Figure 2B,

arrowheads). Further, the number of adipocytes was evaluated in

each group and a marked reduction in adipocytes was observed in
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Op+Cells mice, as compared to Op mice. The number of

adipocytes/high power field (HPF) was: control, 9.562.7; Op,

34.2567.5; Op+Media, 29.7563.9; Op+Cells, 13.7561.7

(Figure 2C, lower panel).

CD34+ cells home to the bone marrow
The chemokine receptor, CXCR4 binds to SDF-1, a chemo-

tactic ligand expressed by bone marrow cells. Additionally, the

presence of lymphocyte adhesion molecules (LFA-1) is required for

the bone marrow homing of CD34+ cells. Since, we observed that

both CXCR4 and LFA1 are highly expressed on CD34+ cells after

10 day of expansion on nanofibers, we next sought to examine the

homing of these cells in the osteoporotic mice. Although delivered

systemically, via intra-cardio-ventricular injection, CD34+ cells

home to bone marrow (Figure 2D) as well as other organs such as

lung, liver and spleen (data not shown). In the bone marrow,

CD34+ were detected near the endosteal sites and around the bone

marrow sinusoids, as well as at the surface of trabecular bone

Figure 1. Osteoblastic differentiation of nanofiber-expanded CD34+ cells. (A). Morphology of the cells was visualized under phase contrast
microscope at day 1 (control, upper panel) after seeding of nanofiber-expanded CD34+ cells (10 days expansion of CD133+/CD34+ cells on nanofiber)
and at day 14 after differentiation of cells with osteoblast specific stimulants (b-glycerophosphate and ascorbic acid) in DMEM complete medium
cultured on a 24-well tissue culture plate. Arrowheads indicate the clusters that formed after differentiation. Alizarin Red S staining (lower panel) was
performed to the cells cultured for 21 days either with osteoblast specific differentiation medium (differentiated cells) or DMEM complete medium
only (control). Red stains in the control image indicate the intracellular calcium in random differentiated cells and arrowheads indicate higher level of
mineral depositions in differentiated cells. The experiment was repeated at least three times and representative images are shown. (B). RNA was
isolated from differentiated cells during the course of osteoblastic differentiation at various time points as stated, and one microgram of RNA was
used to make cDNA. One micro liter of cDNA was used to perform semi-quantitative RT-PCR analysis for Runx2, alkaline (Alk) phosphate, osteocalcin,
osteonectin, collagen Type 1A1 and GAPDH as a loading control. Nanofiber expanded cells (10 days) were used as a control. (C). Detection of
osteoblast specific proteins in differentiated cells. Immunocytochemical staining was performed with the 21 days-differentiated cells using either
Sma and Mad related proteins (Smad 1/5/8) or osteocalcin specific antibodies, and IgG isotype as control. Green fluorescence indicates positive
staining and blue fluorescence indicate DAPI (nuclear) staining. (D). Protein levels were evaluated for various signaling molecules of BMP, Wnt and
Smad pathways during the course of osteoblastic differentiation of nanofiber-expanded CD34+ cells. Undifferentiated nanofiber-expanded cells and
differentiated MC3T3 cell line were used as controls. Representative of three sets of experiments is shown here.
doi:10.1371/journal.pone.0039365.g001

CD34+ Cells Reverse Osteoporosis

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e39365



spicules after 48 hours (Figure 2D, upper left panel), as well as

after 2 weeks (Figure 2D, upper right panel).

Mineral apposition rate in response to CD34+ cell
transplantation

To determine the effect of CD34+cell transplantation on the

mineral apposition rate (MAR), calcium binding fluorescent dye

calcein (green) was injected at 17 days post CD34+ cell or medium

injection. Subsequently, on day 24, fluorescent dye alizarin (red),

and femurs were harvested on day 28. The inter-label distance

between the two dyes was narrower at cortical and trabecular

regions of the Op+Med mice compared to the Op+Cells mice

indicating limited bone deposition in Op+Med mice. The values

for mineral apposition rate were assessed in plastic embedded

femur bone sections of Op+Med and Op+ Cells on the endosteal

surface of metaphysial region of the femur, distal to the growth

plate (Cortical MAR, mm/day; Op+Med, 0.4760.04; Op+Cells,

3.0760.29). Similarly, significant increase in trabecular MAR was

observed in Op+Cells compared to Op+Med at the growth plate

region (Trabecular MAR, mmm/day; Op+Med, 0.4960.05;

Op+Cells, 1.3560.09) (Figure 3).

Ultra structural analysis of bones after CD34+cell
transplantation

To evaluate the extent of trabecular and cortical bone repair/

regeneration and to image the differences in bone quality at the

ultrastructural level, femurs from Op, Op+Med, Op+Cells were

examined by micro computed tomography (MicroCT) (Figure 4A–

1B, left panels). Quantitative analyses showed an increase in

trabecular number in Op+Cells as compared to Op+Med mice

(trabecular number, 1/mm; control, 0.4660.1; Op, 0.1160.1;

Op+Med, 0.2360.1; Op+Cells, 0.6460.1) (Figure 4A, upper right

Figure 2. Effect of CD34+ cells on bone histomorphology in femurs of osteoporotic NOD/SCID mice. Osteoporosis (Op) was developed
by injection of dexamethasone (for 21 days and 5 days for withdrawal) or saline as a control (Control) in seven month-old female NOD/SCID mice.
Nanofiber-expanded CD34+ cells (half a million per mouse) were injected to the osteoporotic mice (Op+Cells) and serum-free medium was used as a
media control (Op+Med). Femurs were harvested after 28 days of CD34+ cell injection, fixed, embed and H & E staining was performed. (A). An
increased number of cortical bone micro fissures (arrowheads) were found in Op mice compared to control and numbers were reduced in Op+Cells
animals. (B). A decreased number of trabecular bone spicules (arrows) and increased numbers of adipocytes (arrowheads) were found in Op mice
compare to control under the growth plate region. In Op+Cells animals increased number of trabecular bone spicules and a decreased number of
adipocyes were observed (n = 6/each group). (C). Evaluated numbers of microfissures and adipocytes per high-power field (HPF) in femur bone
sections were shown in a graphical form (n = 6, four HPF/section). (D). Detection of systemically delivered GFP+ nanofiber-expanded human CD34+

cell in the bone marrow after 48 h and two weeks. Arrows indicate trabecular bone and sinusoids within the bone marrow.
doi:10.1371/journal.pone.0039365.g002
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panel). Similar trend was observed for trabecular thickness (mm):

control, 0.6360.06; Op, 0.4560.02; Op+Med, 0.4660.09;

Op+Cells, 0.5960.04. A significant increase in trabecular bone

volume/ total volume was observed in Op+Cells mice, as

compared to Op+Med mice, i.e., trabecular bone volume/total

volume in control, 4.6761.5; Op, 0.5560.4; Op+Med, 1.5961.1;

Op+Cells, 10.2263.8 (Figure 4A, lower right, panel). Similarly,

similar pattern was observed for bone mineral density (BMD) of

the trabeculae. BMD was significantly increased in Op+Cells mice

compared to Op +Med (BMD, g/cm3; control, 0.22360.02; Op,

0.12160.02; Op+Med, 0.12960.02; Op+Cells, 0.2160.01). The

reductions in BMD in Op mice indicated that dexamethasone

treatments effectively decreased mineral density, and BMD was

increased after CD34+ cell transplantation indicated reversal of the

osteoporotic phenotype. Similarly, significant decrease in the

degree of anisotropy (DA) was observed in the Op+Cells mice

compared to Op+ Med mice (DA; control, 2.260.29; Op,

360.28; Op+Med, 2.660.23; Op+Cells, 1.7560.1). Our data

correlates with the previously reported results where higher degree

of anisotropy was observed in osteoporotic bone compared to their

healthy controls [22,23]. Similarly, structure model index (SMI) of

the trabeculae bone was reported to be an important predictor of

changes in micro-architecture of trabeculae in osteoporotic

conditions. SMI indicates three-dimensional shape of the trabec-

ular bone. Value of SMI for ideal plate is 0 and for ideal rod is 3

[24]. Transition from plate to rod shape has been reported in

osteoporotic and aged bones when compared to the healthy

controls [25]. Similarly, our data showed a transition from more

rod like structures in Op, Op+Med mice and more plate like in

Op+Cells mice (SMI; control, 0.260.22; Op, 1.0 60.017;

Op+Med, 1.1360.25; Op+Cells, 0.2760.08).

Metaphysial bones were also analyzed for cortical porosity, ratio

of total bone volume to tissue volume and bone mineral density

(BMD). MicroCT analysis of cortical bones revealed significant

decrease in BMD in Op+Cells mice as compared to Op+Med

mice, (BMD, g/cm3; control, 0.2860.02; Op, 0.260.01;

Op+Med, 0.1960.02; Op+Cells, 0.3360.01). Similar results were

obtained for ratio of cortical bone volume/tissue volumes (control,

79.6462.13; Op, 66.460.86; Op+Med, 6761.34; Op+Cells,

77.964), suggesting a marked increase in cortical bone volume/

tissue volume in Op+Cells mice as compared to Op+Med mice.

Furthermore, results for cortical bone revealed a non-significant

decrease in porosity of cortical bones in Op+Cells mice as

compared to Op+Med mice, (cortical bone porosity (%); control,

17.1761.3; Op, 35.5260.5; Op+Med, 29.3564.9; Op+Cells,

25.0361.77) (Figure 4B, upper right panel).

CD34+ cell transplantation elevated serum levels of
osteocalcin

As osteocalcin is the characteristic marker of osteoblast function,

the levels of osteocalcin in the serum were evaluated to investigate

in vivo effects of CD34+ cell therapy on osteoporotic mice. As

shown in Figure 5, after osteoporosis, the serum levels of

osteocalcin decreased as compared to untreated control mice.

However, after CD34+cell transplantation, the levels of serum

osteocalcin (ng/ml) were elevated, as follows: control, 30.561.1;

Op, 24.260.04; Op+Med, 27.56 and Op+Cells, 30.7261.7. This

increase in the levels of serum osteocalcin indicates potential

Figure 3. Detection of in vivo bone regeneration. In vivo immunolabeling with calcein (green) and alizarin (red) was performed in osteoporotic
mice that received CD34+ cell (Op+Cells) or medium (Op+Media) as a control 10 and 3 days respectively before sacrifice of the mice. Femurs were
harvested, formalin fixed and then embedded in methylmethacrylate resin. Thirty mm thick sections were mounted on the slides and observed under
a fluorescence microscope. Increased mineral apposition rate (MAR) was observed in the endosteal sites of the cortical bone as well as trabeculae,
distal from the growth plate, as detected by green fluorescence in mice that received CD34+ cells compared to control (n = 3/group). The values of
MAR (mm/day) for the cortical and trabecular bone are shown graphically.
doi:10.1371/journal.pone.0039365.g003
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increase in the activation of osteoblasts and bone formation, as a

consequence of CD34+cell transplantation in Op mice.

Serum levels of cytokines and growth factors
It was reported that in vitro cultures of osteoblasts produce

factors such as granulocyte-macrophage colony stimulating factor

(GM-CSF) and interleukin-1 (IL-1) [26]. Multiplex ELISA was

performed to analyze the levels of serum cytokines and growth

factors implicated to play significant role in bone homeostasis

(from Quansys Biosciences, Logan Utah). Out of 20 markers tested

(n = 4 mice/group) four (MCP-1, GM-CSF, and IL-10) showed

marked changes in all groups (Figure 5). CD34+ cell transplan-

Figure 4. MicroCT images and analyses of bones. Formalin fixed femur bones were scanned using a high resolution MicroCT scanner (SkyScan
1172-D) established at 16 mm resolution and analyzed with the associated software (CTan). (A). Three dimensional image reconstruction of trabecular
bones towards the distal side of the femur and, 0.1 mm away from the metaphyseal side of the growth plate is shown for each group (upper; left
panel) and analysis is shown (upper; right panel) (n = 6/group). (B). MicroCT images (lower; left panel) and analyses of cortical bones (lower; right
panel). Three dimensional (3D) image reconstruction of metaphyseal bones were generated at 2 mm away from growth plate and shown in the left
panel. Analyzed data is presented in the lower; right panel (n = 6/group). NS = non-significant.
doi:10.1371/journal.pone.0039365.g004
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tation appeared to direct normalization of the levels of markers of

the osteoporosis. GM-CSF and MCP-1 levels were shown to have

opposite effects on the osteoclast function [14]. Our data revealed

a marked increase in MCP-1 levels in the Op mice while MCP-1

levels plummet after the CD34+ cell transplantation in Op mice

(MCP-1 in control, 116.7767.1; Op, 156.92612.8; Op+Med,

125.5767.8; Op+Cells, 87.9569.3). Reverse trend was observed

for GM-CSF levels (control, 17.9562.7; Op, 5.661.3; Op+Med,

5.161.5; Op+Cells, 12.2261.7). Interestingly, we observed that

levels of IL-10 (pg/ml) were suppressed in Op and Op+Med mice

but were dramatically upregulated in Op+Cells mice (IL-10 in

control, 2.92560.8; Op, 1.36 0.1; Op+Med, 1.97560.5;

Op+Cells, 12.562.3). As there was a high variation among the

animals and number of animals was small, results were not

statistically significant when posthoc analysis was performed by

using Bonferroni correction.

Impaired osteoclast differentiation following CD34+ cell
transplantation

Our observations regarding altered levels of cytokines and

growth factors and increased bone formation suggested possible

effects of CD34+ cell transplantation on differentiation and/or

function of bone resorbing osteoclasts. Thus, we investigated any

changes in differentiation or function of osteoclasts in Op mice

with or without CD34+ cell transplantation. Bone marrows

harvested from mice from all groups were allowed to adhere to

the plastic overnight in the presence of M-CSF. Non-adherent

cells were then induced to osteoclastic differentiation in the

presence of M-CSF and RANKL. During the course of

differentiation, cells were harvested at various time points (day 3

and 6) and osteoclast specific tartrate resistant acid phosphatase

(TRAP) staining was performed to detect cells differentiating into

mature osteoclasts. Osteoclasts were defined multinucleated

TRAP+ cells. At day 3 and 6, significant numbers of cells were

positive for TRAP staining in Op+Med mice. By day 6, extensive

numbers of large multinucleated cells were positive for TRAP

staining in the osteoporotic animals (Figure 6A, left panel).

However, significantly less numbers of TRAP positive multinu-

clear cells were observed in animals that received CD34+ cells

(Figure 6A, right panel). Quantification of TRAP+ cells at both

days 3 and 6 is shown graphically (Figure 6A).

Reduced functionality of osteoclasts after CD34+ cell
transplantation

Osteoclasts use actin rich, ring-shaped attachment structures

called sealing zone instead of focal adhesions for adherence to

mineralized substrate. Generation of the sealing zone is require-

ment for osteoclasts to resorb bone. Therefore, to evaluate the

osteoclast function, cells were immunostained for F-actin ring

formation using anti-F-actin specific antibody. The cells from bone

marrow of Op mice (Op+Med), demonstrated formation of clear

F-actin rings (Figure 6B, upper left panel). Contrarily, clear F-actin

ring in the bone marrow cells from Op+Cells mice was not

observed. We next assessed whether F-actin ring lacking bone

marrow cells from Op+Cells mice could resorb bone, using ivory

slices as substrate. As shown in Figure 6B, lower right panel,

osteoclast-like cells from Op+Med mice resorbed bone as

evidenced by the large pits formed in ivory slices. The number

and size of resorbed pits were significantly reduced in cells from

Op +Cells mice (Figure 6B, lower left panel), indicating that

CD34+ cell therapy significantly reduced osteoclast differentiation

and function (number of pits/ HPF: Op+Med, 15.562.1;

Op+Cells, 4.560.7; and pit area (mm2)/ HPF: Op+Med,

1420.266329.3; Op+Cells, 164.3619.6).

Figure 5. Serum levels of cytokines and growth factors. Blood was collected from all groups of animals (Control, Op, Op+Med and Op+Cells)
before sacrifice and collected serum was stored at 280uC freezer. Increased levels of serum osteocalcin (indicative of bone formation) were observed
in the mice that received CD34+ cell. Sandwich ELISA was performed to evaluate serum levels in all groups of animals using an osteoclacin ELISA kit
(Biomedical Technologies, Inc, Staughton, MA), (n = 4 in triplicate). To assess the levels of various cytokines and growth factors (twenty factors) from
collected serum (250 ml/animal) the multiplex ELISA was performed in triplicate by Quansys Biosciences, Logan Utah (n = 4/group). The values of
MCP-1, GM-CSF and IL-10 were graphically reported as mean 6 SEM.
doi:10.1371/journal.pone.0039365.g005
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Discussion

Despite the hematopoietic origin of nanofiber expanded CD34+

cells, herein we show that these cells could be differentiated

towards osteogenic lineage. Both hematopoietic and osteogenic

cells express similar families of transcription factors such as Cbfa/

Runx with some differences in expression levels of their sub family

members [27,28]. These observations led us to believe that hUCB

Figure 6. Impaired osteoclast differentiation, maturation and functionality in osteoporotic mice received CD34+ cells. Harvested
bone marrow was subjected to differentiation towards osteoclasts using M-CSF and sRANKL (n = 5). (A). During the course of differentiation at day 3
and 6, cells were stained with tartrate-resistant acid phosphatase (TRAP). The purple color was considered to indicate TRAP+ cells (arrows, left panel)
and the yellow color as TRAP- cells. Nuclei were stained with DAPI for counting cell numbers. The Op+Med showed an increased number of TRAP+
cells at day 3 (upper, right panel) as well as day 6 compared to Op+Cells (lower, right panel). Evaluated values of differentiated osteoclasts are
graphically presented. (B). To determine osteoclast functionality on day 4 of differentiation, osteoclasts were harvested and plated on thin ivory slices.
Bone resorption assays were performed using osteoclasts from all four groups of animals and to analyze the formation of F-actin rings on ivory bone
slices (arrow, upper; left panel). Ivory slices were stained with hematoxylin and analyzed for the resorbed pits on day 10 of differentiation. The
formation of F-actin rings was assessed by F-actin specific antibody (green fluorescence). F-actin rings were prominent in osteoclasts derived from
Op+Med animals (arrow, upper; left panel), however, osteoclasts derived from Op+Cells animals stained negative for F-actin ring (arrow, upper; right
panel). Fewer and smaller resorption pits formed by osteoclasts from Op+Cells animals (arrow, lower; right panel) compared to those formed by
animals from Op+Med (arrow, lower; left panel). Evaluated values of pit area/ high power field (HPF) and number of pits/ high power field (HPF) are
shown graphical.
doi:10.1371/journal.pone.0039365.g006
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derived CD34+ cells might also have potential to differentiate in

the osteoblastic lineage. Indeed, we have observed that CD34+

cells in response to osteogenic signals, ascorbic acid and b-

glycerophosphate, expressed Runx2, osteocalcin, osteonectin,

collagen1A1, alkaline phosphatase, and BMP, Smad and Wnt

signaling molecules, which are characteristically expressed by

osteoblasts [29]. Runx2 is required for osteogenic differentiation of

mesenchymal cells, whereas osteocalcin, osteonectin and collagen

type1A1 are integral to bone matrix [9,10,30]. BMPs expressed by

osteoblasts, bind and transduce signals via receptors to activate

Smad 1/5/8 signaling pathway, to induce gene expression for

bone-associated proteins [10]. Wnt signaling associated proteins

Dvl2 and Dvl3 are required to transmit signals during osteoblastic

differentiation [31,32]. These findings provide evidence that

hUCB derived CD34+ cells are multipotent in nature and

microenvironmental cues could drive their differentiation towards

osteoblastic lineages.

Characteristic hallmark of osteoporosis is the loss of bone. We

have observed that, following dexamethasone treatment mice

exhibit significant decreases in trabecular and cortical BMDs

compared to controls. Trabecular bone micro architectural

parameters such as anisotropy and structure model index also

provide strong evidences that dexamethasone was able to induce

osteoporosis. This bone loss and changes in bone micro-

architecture were almost restored within 28 days following

application of a single bolus of hUCB derived CD34+ cells. In

osteoporosis, the balance of osteoblast and osteoclast cells is

severely compromised. The number of osteoclasts is increased and

they obliterate bone micro-architecture, which ultimately results in

loss of bone mass [33,34]. This is further accompanied by the bone

marrow stromal cells differentiation towards adipogenesis and

inhibition of osteoblastogenesis [35]. In the current study, we

found the loss of trabecular bone spicules and loss of cortical bones

in the osteoporotic mice and concurrent increment of adipocytes.

However, application of nanofiber-expanded CD34+ cells induced

significant reversion of osteoporosis, by increment of bone

formation presumably by osteoblasts and concomitant decrease

in number of adipocytes and osteoclasts. In fact, circulating

CD34+ cells have been shown to be recruited to the skeletal defect

sites and heal non-union fractures in murine models [36,37]. The

chemokine receptor, CXCR4 binds to stromal derived factor

(SDF)-1 expressed highly in bone marrow stromal cells, and is

required for efficient homing of cells to the bone marrow [38].

Since, nanofiber-expanded CD34+ cells constitutively express high

levels of CXCR4, this may be critical for homing of these cells to

bone marrow. In a preclinical model of osteoporosis, adenoviral-

mediated overexpression of CXCR4 gene was shown to be

necessary for bone marrow derived mesenchymal cells, to home in

the bone marrow [39]. However, advantages of using the

nanofiber-expanded cells are that we do not need to induce

CXCR4 expression using any viral methods, which has potential

to integrate to the host genome [40]. Although nanofiber-

expanded cells home to the other organs such as lung or spleen

besides bone marrow, no bone formation was observed in other

organs. Also, recently it was shown that CXCR4 expression on the

precursor cells was important for bone formation [41]. Addition-

ally, hUCB derived CD34+ cells have greater advantage in that

these cells have not been reported to induce oncogenic transfor-

mation in experimental model systems [20].

During osteoporosis, osteoblasts undergo apoptosis, thereby,

altering the bone formation and lowering bone mineral density.

This is paralleled by lower levels of serum osteoclacin, a marker for

bone turnover [42]. Current findings show that CD34+ cell

transplantation decreased the numbers of adipocytes in bone

marrow, increased trabecular numbers and thickness, and

increased BMD, thereby indicating induction of osteoblast in

bone. An increase in the osteocalcin levels coupled with an

increase in vivo mineral apposition rate in the mice that received

CD34+ cell transplantation, confirms the regenerative potential of

CD34+ cells in bone formation.

Elevated levels of GM-CSF, and IL-10 and decreased level of

MCP-1 in serum were also evident with the CD34+ cell

transplantation. Previous in vitro studies have shown that in the

presence of CD34+ cells, osteoblasts secrete GM-CSF and

cytokines such as IL-6, IL-4 and IL-1 involved in bone homeostasis

[15,43,44]. Current findings suggest that CD34+ cells likely

modulate cytokine secretions during induction of osteogenesis. In

this respect, we have observed high level of IL-10 in serum of the

mice that received CD34+ cells. The importance of IL-10 in bone

metabolism was demonstrated in IL-10 deficient mice, which

develop osteopenia and decreased bone formation [45,46]. IL-10

exhibits anti-osteoclastic activity and may directly inhibit osteoclast

precursor cell differentiation [47]. CD34+ cell transplantation thus

acts by upregulating the levels of IL-10 that may in turn regulate

the bone remodeling by impairing osteoclastogenesis and restoring

the bone formation [46,47].

Above findings thus demonstrate a novel therapeutic potential

of nanofiber-expanded CD34+ cells in resolving osteoporosis.

These cells provide several advantages over other cell types as they

are easily accessible, less immunogenic and maintain multi-

potency. They can be available in unlimited numbers via

expansion on nanofibers; constitutively express CXCR4 for

efficient homing to the bone marrow; and differentiate into

osteogenic lineage in vitro. These cells are biologically functional as

they significantly improve bone mineral density, bone formation

and bone micro-architecture in osteoporotic murine model. These

characteristics make them an attractive choice of cells for bone

induction in patients with severe bone loss due to osteoporosis.

Materials and Methods

Isolation of CD133+ hematopoietic cells
Fresh human umbilical cord blood was obtained from The

Ohio State University Medical Center with written consent from

donors and prior approval from the internal review board. Briefly,

heparinized cord blood was diluted with PBS (1:1) and carefully

layered over 10 ml of Ficoll-Paque (GE Health Care-Biosciences,

USA). After 30-min centrifugation in a swinging bucket rotor at

1400 rpm, the upper layer was aspirated and the mononuclear cell

layer (buffy coat) was collected. Following labeling with magnetic

bead conjugated anti-CD133 monoclonal antibody (Miltenyi

Biotec Inc, Bergisch Gladbach, Germany), two cell separation

cycles (with different columns) were performed using the

AutoMACS cell sorter (Miltenyi Biotec) following manufacturer’s

protocol and reagents. After separation, purity of the cell product

was determined by flow cytometry (more than 95% cells were

CD133+). Total 4–6 samples of cord blood were procured, isolated

and used nanofiber mediated expansion and in vitro and in vivo

experiments.

Expansion of CD133+ hematopoietic cells
Electrospinning, surface grafting, and amination of PES

nanofibers were carried out according to the procedure described

earlier [48]. All chemicals were purchased from Sigma-Aldrich

(USA) unless otherwise stated. PES granules were purchased from

Goodfellow Cambridge Limited, UK. CD133+ cells were

expanded on nanofiber-coated plates using serum free expansion

medium (SFEM) as previously described [19]. In brief, purified
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recombinant human stem cell factor (SCF), Flt-3 ligand (Flt3),

thrombopoietin (TPO), and IL-3 were purchased from Peprotech

Inc. (Rocky Hill, NJ). The StemSpan SFEM medium was

purchased from StemCell Technologies (Vancouver, BC, Cana-

da). Nanofiber meshes were securely glued to the bottoms of wells

of a 24-well tissue culture plate. Eight hundred CD133+ cells were

seeded onto each scaffold in 0.6 ml StemSpanTM serum-free

expansion medium, which consists of 1% BSA, 0.01 mg/ml

recombinant human insulin, 0.2 mg/ml human transferrin,

0.1 mM 2-mercaptoethanol, and 2 mM L-glutamine in Iscove’s

MDM, supplemented with 0.04 mg/ml low-density lipoprotein

(Athens Research and Technology Inc., USA), 100 ng/ml SCF,

100 ng/ml Flt3, 50 ng/ml TPO, and 20 ng/ml IL-3. Cells were

cultured at 37uC in an atmosphere containing 5% CO2 for

10 days without medium change. Cells were harvested after

10 days of expansion. All wells were washed once with non-

enzymatic cell dissociation solution and twice with 2% FBS

containing Hanks’ buffer at 5 min intervals between each wash.

The collected cells were then concentrated through centrifugation

at 3006 g for 5 min. Aliquots of the cells were then used for cell

counting by a hemocytometer, flowcytometric analysis, as well as

for further studies.

Flowcytometry
Flowcytometric analysis was performed by using standard two

colors staining with a FACS Calibur flowcytometer (Becton

Dickinson, Heidelberg, Germany) as described earlier [19]. Non-

specific Fc-receptors were blocked with FcR-blocking reagent

(Miltenyi Biotec Inc.) prior to adding primary antibodies. Primary

antibody was incubated for 30 min at 4uC with the aliquots of

expanded cells. Antibodies used were anti-CD34-PE, anti-

CD133/2-FITC (all from Miltenyi Biotec Inc), PE labeled

CXCR4, von Willebrand Factor, CD31, CD45, MHC class I,

MHC class II, CD69, CD3, Mac-I, LFA-1, CD86, CD14 and

isotype controls were purchased from BD Biosciences (USA) After

incubation cells were washed with MACS buffer and resuspended

in MACS buffer. Dead cells were excluded via propidium iodide

staining. Data analysis was performed with BD Cell Quest

software. The Milan-Mulhouse gating method was used for cell

enumeration, where a double gating (CD133+ and CD34+)

strategy was used to identify the primitive hematopoietic

progenitor cell populations. At least 20,000 events were acquired.

Osteoblastic differentiation of nanofiber-expanded
CD34+ cells

After 10 days of CD133+ cell expansion on nanofiber, cells were

collected and reseeded in DMEM supplemented with 10% fetal

bovine serum (FBS), penicillin, streptomycin, and glutamate (PSG)

for three days in a 24-well plate or 4-chamber slides (Lab-Tek II

Chamber slide System, Nalge Nunc International Corp., Naper-

ville, IL, USA). The cultured cells were induced by specific

osteoblast differentiating factors (60 mM ascorbic acid and 10 mM

b-glycerophosphate) dissolved in fresh DMEM complete medium.

The differentiation process was continued for 3 weeks with a

change of fresh medium containing specific osteoblast inducing

factors in every 3rd day. During the process of differentiation,

some of the wells of differentiated cells were harvested at specific

time points for further studies (n = 4).

Alizarin red S staining
To examine in vitro mineralization in osteoblastic differentiated

cells, Alizarin Red S staining was performed in wells of a 24-well

plate. Briefly, after 21 days of differentiation cells were fixed in

70% ethanol for one hour at room temperature followed by a wash

with water (10 minutes, 2 times) and incubated with 1% Alizarin

Red S solution for 30 minutes at room temperature (Chemicon

International, USA). The red stain was washed with water three

times and cells were mounted with mounting solution. Images

were obtained by using a digital camera attached to the

microscope (Axioplan2; Carl Zeiss) using Axio-vision software

(Carl Zeiss, NY, USA). Nanofiber-expanded CD34+ cells cultured

in DMEM complete medium were used as a control.

Immunocytochemical staining
One quarter of a million nanofiber-expanded CD34+ cells were

induced to differentiate in each well of 4-chamber slides for three

weeks. After three weeks of culture immunocytochemistry was

performed following standard protocol to assess osteoblastic

differentiation using osteoblast specific markers such as Smad 1/

5/8, osteocalcin and IgG as an isotype control. Nuclear stain was

performed with DAPI. Slides were observed under a fluorescence

microscope (Axioplan2; Carl Zeiss) and images were captured with

Zeiss Axiovision imaging software (Carl Zeiss, NY, USA).

RT-PCR and western blot analyses
Nanofiber-expanded CD34+ cells were induced to osteoblastic

differentiation in vitro. During the course of osteoblastic differen-

tiation, total RNA and proteins were isolated at various time

points using RNeasy Kit (Qiagen, USA) and RIPA, cell lysis buffer

respectively. One microgram of RNA was used for cDNA

synthesis using oligo dT (Invitrogen, USA) primer. Semi quanti-

tative PCR was performed using one micro liter of cDNA for the

gene specific primers such as Runx2, alkaline phosphatase,

osteocalcin, osteonectin, collagen 1A1 and GAPDH. Fold increase

for expression of each gene at mRNA level was analyzed using

UN-SCAN-IT software (Silk Scientific, Inc.). Nanofiber-expanded

cells were used as a control. Primers for RT-PCR reactions were

designed using Primer Blast-NCBI software: Human Runx2

forward primer: 59 TAAGTACACGGGCTTCAGGG 39; Hu-

man Runx2 reverse primer: 59 TTGTTGTCTTCTTGCCTCCA

39; Human Alk Phos forward primer: 59 GGACATGCAGTAC-

GAGCTGA 39; Human Alk Phos reverse primer: 59 CAC-

CAAATGTGAAGACGTGG 39; Human osteocalcin forward

primer:59 AAGCAAGTAGCGCCAATCT 39; Human osteocal-

cin reverse primer: 59 GGAAGTAGGGTGCCATAACAC 39;

Human osteonectin forward primer:59 ACATCGGGCCTTG-

CAAATACA 39; Human osteonectin reverse primer: 59 GAAG-

CAGCCGGCCCACTCATC 39; Human collagen1A1 forward

primer:59 CCTGGCCCCATTGGTAATGTT 39; Human col-

lagen1A1 reverse primer: 59 CCCCCTCACGTCCAGATTCAC

39; Human GAPDH forward primer: 59 CTGATGCCCC-

CATGTTCGTC 39; Human GAPDH reverse primer: 59

CACCCTGTTGCTGTAGCCAAATTCG 39.

Similarly, Western blot was performed for the level of BMP2,

BMP4, Smad-1/5/8 (all from Santa Cruz Biotechnology, Inc.,

CA), Dvl2, Dvl3, and GAPDH (all from Cell Signaling Technol-

ogy, Inc. MA) protein. Nanofiber-expanded cells were used as a

control. Induced differentiated MC3T3 cells were also used as a

positive control. Fold increase for expression of each gene at

protein level was analyzed using UN-SCAN-IT software (Silk

Scientific, Inc.).

Generation of osteoporosis
Seven month-old female NOD/SCID mice, retired breeder

(body weight approximately 25 g) were obtained from Jackson

Laboratory, Bar Harbor, ME and used for osteoporosis induction.

The mice were housed in sterile IACUC-approved facilities at the
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Biomedical Research Tower at The Ohio State University. After a

week of acclimatization, mice were intraperitoneally (i.p.) injected

with 5 mg/ kg body weight (b. wt.) of dexamethasone (American

Regent, Inc. Shirley, NY) or with saline (as a control) for

consecutive 21 days as described before [35]. Tapering doses of

dexamethasone were given for 5 days for withdrawal. The mice

were weighed every week during the injection to record any

significant weight loss.

CD34+ cell transplantation
The mice, that received glucocorticoid injections were either

sacrificed after 26 (21+5) days as an osteoporotic control or were

used for CD34+ cell / medium injections (6 mice/group). The

osteoporotic mice were anesthetized and injected with nanofiber-

expanded CD34+ cells (0.5 million in 300 ml of serum free

medium) via intra-cardio-ventricular injection or 300 ml of serum

free medium (Op+Med) as a control for CD34+ cell therapy

group. The osteoporotic mice of CD34+ cell therapy (Op+Cells)

group received only one dose of CD34+ cells and were sacrificed

after 28 days of injection. Osteoporotic mice receiving medium

(Op+Med) were also sacrificed at the same time point.

CD34+ cell homing
To assess the homing of CD34+ cells, GFP overexpressed

nanofiber-expanded CD34+ cells (0.5 million cells/mouse) were

injected into the mice via intra-cardio-ventricular injection after

induction of osteoporosis. Forty-eight hours and two weeks after

cell injection, mice were sacrificed and various organs were

harvested. Tissues were fixed in 10% formalin solution and

subsequently embedded in paraffin block. Five-micron sections

were cut and stained using anti-GFP primary antibody (Zymed

Laboratories, Inc, CA, USA) and detected with 3,39-Diamino-

benzidine (DAB) and mounted. Slides were observed under a

microscope (Axioplan2; Carl Zeiss) and images were captured with

Zeiss, Axiovision imaging software (Carl Zeiss).

Mineral apposition rate (MAR)
A separate set of seven months old NOD/ SCID mice (3 mice /

group) were subjected to generation of osteoporosis (21+5 days)

and followed by CD34+ cell transplantation or medium (as a

control) for 28 days as described above. Mice were intraperitone-

ally (i.p.) injected with calcium binding dye, calcein (green

flourescent dye; 10 mg/kg b.wt., Sigma); 10 days prior to sacrifice.

Alizarin Red Dye (red fluorescent dye; 50 mg/kg b.wt., Sigma)

was also injected to the same mice via i.p. route three days prior to

sacrifice. Upon sacrifice, femurs were harvested and formalin fixed

for 24 hours and then washed with 1x PBS, dehydrated with 70%

ethanol, 95% ethanol, 100% ethanol, infiltrated and embedded in

methylmethacrylate and polyester resin. Thirty-micrometer thick

sections were cut with a diamond blade using Saw Microtome

Leica SP1600 (Leica Microsystem, Wetzlar, Germany). The

sections were mounted on the slides using Vecta Mount (Vector

Labs, Inc. Burlingame, CA) and observed under a fluorescence

microscope (Carl Zeiss, NY, USA) and images were captured with

Zeiss Axiovision imaging software (Axioplan2). Images were

analyzed to assess the mineral apposition rate (MAR) by using

NIH Image J software. The mineral apposition rate (MAR, in mm

per day) was determined by dividing the mean width of the double

labels by the inter-label time as described previously [49].

Hematoxylin and eosin staining
All mice were euthanized after collecting blood and urine, and

femurs were removed by surgical dissection and were preserved in

10% neutral buffered formalin. After decalcification, paraffin-

blocked tissues were sectioned and stained with standard

hematoxylin and eosin (H&E) staining protocol at the same depth

from the growth plate.

Micro computed tomography (MicroCT)
Formalin fixed femur bones were encased in a tight fitted plastic

tube to prevent any motion during scanning. Femurs were scanned

using a high-resolution Micro CT scanner (SkyScan1172-D,

Kontich, Belgium) at 16mm resolution. For measurements of bone

mineral density (BMD; g/cm3), phantoms of 25 and 75 g/cm3

were scanned with the same settings as applied to the mice femur

bones from all groups. The scanned images were reconstructed

using Skyscan Nrecon software and analyzed with the CTan

software (Kontich, Belgium). Analyses of trabecular bone were

carried out in distal femur, 0.1 mm away from the growth plate. A

threshold was established and the same threshold value was kept

constant for all samples. Similarly, the metaphysial region, 2mm

away from the growth plate, was selected for the cortical bone

analysis. A separate threshold was established and kept constant

for all cortical bone measurements. The analyses were performed

for the bone volume, bone to tissue volume ratios, trabecular

number (Tb.N; 1/mm), trabecular thickness (Tb.Th; mm),

trabecular bone mineral density (BMD; g/cm3), degree of

anisotropy (DA), structure model index (SMI), cortical porosities

(%), ratio of bone volume/ tissue volume (BV/TV) and cortical

bone mineral density (BMD; g/cm3) in animals from all groups

using the Skyscan software and following manufacturer’s protocol.

The results were reported in mean 6 SEM (n = 6/ per group).

Three-dimensional (3D) models were reconstructed using CTvol

software from SkyScan.

Serum osteocalcin assay
Sandwich ELISA was performed for the collected mouse serum

using the osteocalcin ELISA kit (Biomedical Technologies, Inc,

Staughton, MA). Briefly, the mouse was anesthetized and blood

was collected from the descending aorta in an eppendorf tube and

kept at room temperature for an hour to coagulate, then

centrifuged at 14000 rpm for 20 minutes at 4uC. Serum was

collected and stored at 280uC until further use. Standard curve

was made and the serum samples were run in triplicates to assess

the amount of osteocalcin in the serum. The samples from each

group were diluted (5x) and incubated with the anti-serum

osteocalcin overnight and detected using streptavidin-horseradish

peroxidase (HRP) detecting system. The values were reported in

mean 6 SEM (n = 4/ per group, in triplicate).

Multiplex ELISA for cytokines and growth factors
To assess the levels of various cytokines and growth factors

(twenty factors from 250 ml of serum) from collected serum (from

all groups of animals before sacrifice and stored at 280uC), the

multiplex ELISA was performed in triplicate by Quansys

Biosciences, Logan Utah (n = 4/ per group). The values were

reported in mean 6 SEM.

Osteoclast differentiation
To assess the therapeutic effects of CD34+ cells on the bone

resorbing cells; bone marrow cells were collected from femurs of

animals of all the groups, after termination of experiments and

were induced for osteoclastic differentiation in vitro. Cells were

cultured overnight at 37uC incubator with 5% CO2 in aMEM

containing 10% heat inactivated fetal bovine serum in the

presence of 20 ng/ml M-CSF (R & D Systems, Minneapolis,
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MN). The next day, same number of non-adherent cells

(1.5 million for all the groups) were collected and incubated for

an additional 5–8 days in aMEM medium with 20 ng/ml M-CSF,

and 50 ng/ml GST-RANKL [50]. The fresh medium was

replaced every third day. At day 3 and 6 of differentiation, the

cells were stained for TRAP staining using an acid phosphatase,

leukocyte; TRAP staining kit (Sigma Aldrich, USA) and was

viewed and imaged with a fluorescence microscope (Carl Zeiss,

NY, USA). TRAP-positive cells (purple) containing at least three

nuclei were counted as osteoclasts.

Osteoclast cytoskeleton structure and functionality
Osteoclasts were generated on plastic dishes as described above

and on 3rd day of differentiation, osteoclasts cells were removed

and equal number of osteoclasts cells were re-plated either on

thinly cut ivory slices or glass cover slips. Cells were fixed at

various time points of culture with 1% formaldehyde in pH 6.5

(30 minutes at room temp), stabilization buffer (127 mM NaCl,

5 mM KCl, 1.1 mM NaH2PO4, 0.4 mM KH2PO4, 2 mM

MgCl2, 5.5 mM glucose, 1 mM EGTA, 20 mM Pipes), and

subsequently fixed and permeabilized with 2% formaldehyde,

0.2% Triton X-100, and 0.5% deoxycholate in the same

stabilization buffer. Cells were stained with F-actin specific Ab

and visualized using a Zeiss 510 META laser scanning confocal

microscope (Campus Microscopy and Imaging Facility, The Ohio

State University). Actin ring and podosome thicknesses were

determined by generating Z-stack images of randomly selected

cells and these structures were measured at their thickest points

[50]. Bone resorption was assessed using ivory slices and

osteoclasts were gently removed with cotton swabs and washed

with water. The ivory slices were then stained with hematoxylin

stain for 5 minutes at room temperature and excess stain was

removed by washing with water and pits were imaged with a

confocal microscope mentioned above.

Statistical analysis
Values were expressed as mean 6 SEM and statistical analysis

was performed by using JMP software (version 9, SAS Institute

Inc. NC). After checking equal variance two sample ‘t’-test was

performed for assessment of significance. Posthoc analysis was

performed by using Bonferroni correction and significance was

determined when p values were obtained less than 0.025.
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