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Abstract

Liquid manure (slurry) from livestock releases methane (CH4) that contributes significantly

to global warming. Existing models for slurry CH4 production—used for mitigation and inven-

tories—include effects of organic matter loading, temperature, and retention time but cannot

predict important effects of management, or adequately capture essential temperature-

driven dynamics. Here we present a new model that includes multiple methanogenic groups

whose relative abundance shifts in response to changes in temperature or other environ-

mental conditions. By default, the temperature responses of five groups correspond to

those of four methanogenic species and one uncultured methanogen, although any number

of groups could be defined. We argue that this simple mechanistic approach is able to

describe both short- and long-term responses to temperature where other existing

approaches fall short. The model is available in the open-source R package ABM (https://

github.com/sashahafner/ABM) as a single flexible function that can include effects of slurry

management (e.g., removal frequency and treatment methods) and changes in environ-

mental conditions over time. Model simulations suggest that the reduction of CH4 emission

by frequent emptying of slurry pits is due to washout of active methanogens. Application of

the model to represent a full-scale slurry storage tank showed it can reproduce important

trends, including a delayed response to temperature changes. However, the magnitude of

predicted emission is uncertain, primarily as a result of sensitivity to the hydrolysis rate con-

stant, due to a wide range in reported values. Results indicated that with additional work—

particularly on the magnitude of hydrolysis rate—the model could be a tool for estimation of

CH4 emissions for inventories.
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Introduction

Methane (CH4) emissions from livestock production make a significant contribution to global

warming, and manure management on farms contributes about 6.5% of global anthropogenic

CH4 emissions [1, 2]. Current emissions estimates in national inventories are based on guide-

lines from the IPCC [3], which offer a simple “Tier 1” approach with default emission factors

for livestock categories and average annual temperature, and a more detailed “Tier 2”

approach considering effects of organic matter (as volatile solids, VS) loading, retention time,

and temperature, i.e., properties that vary with farming practices and location. Tier 2 estimates

are currently based on a modification of the model presented by Mangino et al. [4], in which

the fraction of VS converted to CH4 within each month is calculated from a van ’t Hoff-Arrhe-

nius equation with an empirical estimate of activation energy and a reference point corre-

sponding to 100% degradable VS conversion at 30 or 35˚C. Although this provides a more

site-specific estimate of CH4 emissions than fixed emission factors, the method has been found

to poorly describe both temporal dynamics and total CH4 emissions in farm- and pilot-scale

experiments [5–7]. Thus, a more accurate approach is needed to describe and quantify CH4

production in manure environments.

Models with a dynamic description of microbial decomposition of organic matter in anaer-

obic digesters already exist [8–11]. The ADM1 model was originally developed for anaerobic

digestion almost two decades ago [10], and it remains a useful and popular tool for research

and possibly even plant management [12, 13]. Despite its complexity (at least 26 differential

equations), ADM1 and similar models were not developed to predict responses to temperature

change known to affect CH4 production in stored slurry. The distinction between short- and

long-term responses to environmental changes is also not included in these or most other

models, which therefore cannot be used to assess slurry management practices such as cooling

as a means to reduce CH4 emissions, or even for accurate estimation of seasonal variations.

For example, an empirical model that accounted for daily temperature and VS degradation

still failed to capture the observed dynamics of CH4 emissions, and it was concluded that the

description of methanogenic activity under variable slurry storage conditions was inadequate

[5].

In storage experiments with both fresh and aged slurry, a period of days to months with

low CH4 emission rates has often been observed [5, 14–18]. Such a lag phase may reflect the

time required for substrates of methanogenesis to reach a threshold concentration supporting

growth, or the time required for development of an adapted methanogenic community. Some

studies have highlighted the importance of residual aged manure in a storage acting as an inoc-

ulum, which suggests that community development is central for the temporal dynamics of

CH4 emissions [19–21]. Thus, short-term changes due to temperature variation may reflect

the activity of an existing methanogenic community, while long-term changes include the

effects of successional changes of the community. Recent measurements of CH4 production

rates in manure and digestate at temperatures between 5 and 52˚C [22] highlight the difference

between short- and long-term responses. These measurements show that the short-term

(hours to days) response to a change in temperature is generally a shift away from the opti-

mum of the active methanogenic community, but over time the activity at the new tempera-

ture will increase (Fig 1). Although some of the long-term differences in CH4 production were

undoubtedly due to changes in substrate availability, considering them would tend to magnify

the differences between short- and long-term responses. The general trend shown in Fig 1 is

typical in studies of temperature change during anaerobic digestion [23–26].

The distinction between short- and long-term temperature responses was recently quantita-

tively addressed through development of an anaerobic digester model that included gradual
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changes in the temperature optimum of kinetic parameters for a single population of metha-

nogens [27]. However, an empirical approach was used that does not explicitly represent the

underlying mechanism. Gene sequencing has revealed that temperature changes shift the rela-

tive abundance of taxonomic groups of methanogens, indicating that changes in CH4 produc-

tion rates are due to selective growth of adapted methanogenic populations, rather than

adaptation of an already established consortium [24, 28, 29]. Presumably the response to envi-

ronmental stresses other than temperature also varies among methanogenic populations [30–

32], and accordingly models need to include multiple groups of methanogens with different

responses to temperature, and perhaps other stressors, in order to accurately predict both lag

phases and the difference between short- and long-term response to changes in temperature

and the chemical environment. This discussion also highlights an important challenge for pre-

diction of CH4 emission: measurements of short-term temperature responses in the labora-

tory, however careful, may not reflect long-term seasonal or geographic responses that are

important for total CH4 emissions.

Besides methanogens, there is evidence that sulfate reducing bacteria can affect CH4 emis-

sion by competing for substrate (acetate or hydrogen) [33, 34], or by the production of inhibi-

tory hydrogen sulfide (H2S) [35, 36]. This is particularly important for acidification of liquid

manure with sulfuric acid, where prolonged suppression of CH4 emission has been observed,

Fig 1. Example of short- and long-term responses of methane production to temperature change. Differences

between short- and long-term response to temperature change measured by Elsgaard et al. [22]. Labels identify source:

C = cattle manure (from barn), D = fresh digestate (directly from anaerobic digester), S = stored (> 1 month)

digestate. Red arrows show short-term effects (differences between samples from the same source when incubated for

17 hours), and blue arrows apparent long-term effects (differences for samples stored for short and long time (weeks or

months) at the same temperature)).

https://doi.org/10.1371/journal.pone.0252881.g001
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even when pH returned to or remained at near-neutral [15, 37]. In the absence of suitable elec-

tron acceptors, processes other than methanogenesis are not expected to play a major role

beyond fermentation in this anaerobic environment [38]. Although sulfate may be used to oxi-

dize ammonia [39], it is unlikely that this autotrophic process is important in organic-rich

slurry. At the slurry-air interface, there is a potential for production of nitrous oxide (N2O)

through nitrification and denitrification [40], as well as for bacterial methane oxidation [41,

42], but in both cases this depends on the development of a partly dry surface crust. While the

model described below includes oxidation of organic matter in the surface layer, a crust repre-

sents a different environment that is outside the scope of the presented model. Still, these pro-

cesses are part of a complete assessment of greenhouse gas emission from livestock operations.

Existing mechanistic models of organic matter degradation in anaerobic digesters describe

biochemical pathways in detail, but are difficult to apply to highly variable manure environ-

ments due to lack of data. For example reported hydrolysis rate constants for slurry vary

between 0.004 and 0.13 d-1 [43–45], possibly due to effects of feeding practice, manure man-

agement, or manure age [43, 46]. The main substrates for methanogenesis in slurry are volatile

fatty acids (VFAs) and hydrogen [47, 48], but hydrogen is mainly derived from VFA oxidation

[49, 50], and its regulatory role may be exaggerated [51]. Consequently, some models and sim-

plified versions of detailed models merge hydrogen and VFA consumption kinetics to more

simply represent organic matter degradation pathways [8, 11].

The considerations presented above strongly support the need for a new approach to pre-

dict CH4 emission from stored manure that describes both short- and long-term responses to

management and storage conditions—including temperature and substrate availability—more

accurately than current models. We propose that these responses can be accurately described

using a simple dynamic model that includes multiple methanogenic populations with different

temperature responses. Both inhibition and competition can easily be incorporated into this

framework. The objective of the study was to develop and implement this approach as a new

mechanistic model that can be used to better understand and predict of CH4 emission from

slurry storage environments, including pits or channels inside barns and outside storage

facilities.

Methods

The new model presented in this paper predicts slurry organic matter transformation to CH4

using chemical oxygen demand (COD) as the base unit, though with conversion to a volatile

solids (VS) basis for convenience. Carbon dioxide (CO2) production is also predicted, for a

complete mass balance (or carbon balance) and also because it is a greenhouse gas. The essen-

tial model components are given below; further justification for these choices are presented in

a related review [52].

1. Organic matter (volatile solids) includes three degradable components (particulate mate-

rial, volatile fatty acids (VFAs), and microbial biomass) and a single non-degradable com-

ponent, which is assumed to be completely conserved.

2. A single first-order expression for disintegration/hydrolysis and fermentation is used,

reflecting the assumption that hydrolysis (but typically not fermentation) may limit the rate

of CH4 production in slurry [43, 44, 53].

3. A Monod expression with VFAs as substrate is used for calculating microbial activity. This

approach was chosen because Monod parameters are most frequently reported in the litera-

ture [11].
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4. Multiple methanogen groups and one group of sulfate reducers, all with individual

responses to temperature, are defined in order to capture microbial dynamics and short-

and long-term changes in activity in response to temperature changes.

5. Management options that control slurry production- and removal rates are integrated to

account for microbial adaptation in outside storages or in-house pits or channels.

6. Microbial inhibition factors are included for pH, free ammonia (NH3 (aq)) and ammonium

(NH4
+), and hydrogen sulfide (H2S).

Model processes and algorithms

A flow diagram of the key processes included in the model are shown in Fig 2, and Table 1

summarizes processes and rates expressions.

Disintegration and hydrolysis of particulate material are considered rate limiting for subse-

quent degradation. Hence, combined disintegration, hydrolysis, and fermentation of degrad-

able particulate material to VFAs is calculated with first order kinetics [43–45] (Eq 1).

dSp

dt
¼ � a � Sp � Rþ

Xk

i¼1
ðkd;i � XiÞ þ Fin � CSp ;in

ð1Þ

In Eq 1, α is the first-order rate constant (d-1), Sp is degradable particulate material in units

of substrate COD (gCOD-S), and t is time (d). Surface respiration rate, R (gCOD-S m-2 d-1),

Fig 2. Flow diagram of model concept. Black lines indicate flows of organic matter, black dashed lines indicate flows

of decayed microbial biomass. Red dashed lines indicate factors that inhibit microbial conversion processes (green

boxes). Temperature affects all conversion processes, as well as chemical speciation.

https://doi.org/10.1371/journal.pone.0252881.g002
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reduces Sp but model predictions suggest it is only significant when the slurry depth is a few

mm. Dead microbial biomass from any defined microbial group (i) is reintroduced as Sp,

where kd,i (d-1) is the decay rate constant of the microbial groups. Xi represents the active bio-

mass (gCOD-B) of microbial group i, with a total of k groups, all methanogens except for 1 sul-

fate reducer. Fin is the slurry production rate (kgslurry d-1), and CSp,in is the Sp concentration of

the introduced slurry (gCOD-S kgslurry
-1). Hydrolysis of Sp yields VFAs (gCOD-S), which in turn

is consumed by microbial groups (Eq 2).

dVFA
dt
¼ a � Sp �

Xk

i¼1
ri þ Fin � CVFA;in ð2Þ

Here, ri is the VFA utilization rate (gCOD-S d-1), which follows Monod kinetics, and CVFA,in

is the VFA concentration (gCOD-S kgslurry
-1) in the introduced slurry. The VFA utilization rate

of each methanogen group ri is linked to the active biomass (Eq 3) [38].

ri ¼ �
qmax;i � CVFA

KS;i þ CVFA
� Xi �

Y4

j¼1
Ii;j ð3Þ

Here qmax is the temperature-dependent maximum specific substrate utilization rate

(gCOD-S gCOD-B
-1 d-1), KS is the half-saturation constant (gCOD-S kgslurry

-1), and CVFA is the con-

centration of VFAs in the slurry (gCOD-S kgSslurry
-1), and Xi represents the active methanogen

biomass of group i. Ii,j is a dimensionless inhibition term with a value between 0 and 1 that rep-

resents the sensitivity of group i to inhibitor j with a total of 4 potential inhibitors (Table 2).

Table 1. Petersen matrix of model state variables (following [61], based on [62]). See S3 Appendix for parameter descriptions and default values.

Component! j 1 2 3 4 5 6 7 8 Rate expression

i Process # c Sp VFAs SO4
2- sulfide CH4 CO2 Xi Xsr

1 Hydrolysis &

fermentation

-1 1 α � Sp

2 Methanogenesis

of Xi
a

-1 PCH4
PCO2 ; anaer Yi

qmax �CVFA
KSþCVFA

� Xi � Ii

3 Sulfate reduction

of Xsr
a

-1 fCOD–S,

sulfur
b

fCOD–S,

sulfur
b

PCO2 ; sr Ysr qmax �CVFA
KSþCVFA

�
CSO4

KS;SO4
þCSO4

Xsr � Isr

4 Surface

respiration

-1 PCO2 ; aer kL;O2
� area � ð0:208kH;O2

� 0Þ

5 Hydrogen sulfide

emission

-1 kLH2S
� area � ðCH2S

� 0Þ

6 Decay of Xi
a 1 -1 kd,i � Xi

7 Decay of Xsr
a 1 -1 kd,sr � Xsr

8 Slurry addition Fin Fin Fin Fin Fin Fin Fin Csi,in or CXi,in

Degradable

organic

matter

(gCOD-S)

Volatile

fatty acids

(gCOD-S)

Sulfate

(gSO4 � sulfur
)

Sulfide

(gH2S� sulfur
)

Methane

(gCH4
)

Carbon

dioxide

(gCO2
)

Methanogen

populations

(gCOD-B)

Sulfate

reducer

populations

(gCOD-B)

rate units

i = 1–4 (gCOD-S d-1)

i = 5 (gH2S� sulfur d� 1 )

i = 6,7 (gCOD-B d-1)

i = 8 (gCOD-S, gCOD-B,

gH2S� S
; gSO4 � S

, gTAN) d-1

a Can represent any number of microbial groups.
b Unit conversion factor.
c Slurry and components removal are not included in this table since these do not occur by rate. Instead see Eqs 8–11.

https://doi.org/10.1371/journal.pone.0252881.t001
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The substrate utilization rate for sulfate reducers, rsr, follows a double Monod expression (Eq

4) [36].

rsr ¼ �
qmax � CVFA

KS þ CVFA
�

CSO4

KS;SO4
þ CSO4

Xsr �
Y4

j¼1
Isr;j ð4Þ

where CSO4
and KS;SO4

are the concentration of SO4
2- (gSO4 � S

kg� 1

slurry) and the half-maximum

SO4
2- saturation constant (gSO4 � S

kg� 1

slurry), respectively. (Note that charges on chemical species

are omitted in subscripts for clarity in text and tables, e.g., SO4 for sulfate.) Xsr represents the

biomass of active sulfate reducing bacteria. Sulfate is reduced to sulfide in a 1:1 molar ratio,

and loss of H2S to the air is proportional to the slurry surface area (A). Microbial growth of

any group is linked to ri through the biomass/substrate yield coefficient Yi (gCOD-B gCOD-S
-1),

and the biomass decay follows first order kinetics (Eq 5).

dXi

dt
¼ Yi � ri � kd;i � Xi þ Fin � CXi;in ð5Þ

CXi,in is the concentration of active microbial biomass (gCOD� B kg� 1

slurry) in the fresh slurry.

Methane production is linked to substrate utilization r for methanogens using a CH4 produc-

tivity coefficient, PCH4
ðgCH4

g� 1
COD� S), so CH4 production rate (gCH4

d� 1
) is given by Eq 6.

dCH4

dt
¼ PCH4

�
Xk� 1

i¼1
ri ð6Þ

The CO2 production is linked to microbial activity through productivity coefficients (gCO2

gCOD-S
-1) in Eq 7.

dCO2

dt
¼ PCO2 ;anaerobic

�
Xk� 1

i¼1
ri þ PCO2 ;sr

� rsr þ PCO2; aerobic � R ð7Þ

Because PCO2 ;anaerobic
includes CO2 from both fermentation and methanogenesis, it is only

accurate when the system is in steady state, or as a cumulative response, and less so during

VFA accumulation.

Table 2. Equations used for inhibition factors.

Inhibition

factor

Expression Description Reference

INH3
1; CNH3

� KINH3;min

e
� 2:77259�

CNH3 � KINH3;min

KINH3;max � KINH3;min

 !2

; CNH3
> KINH3;min

8
>>><

>>>:

Inhibition factor for ammonia, where KINH3 ;min and KINH3 ;max are the NH3

concentration at which inhibition starts and reach maximum, respectively

[63]

INH4
1; CNH4

� KINH4 ;min

e
� 2:77259�

CNH4 � KINH4;min

KINH4;max � KINH4;min

 !2

; CNH4
> KINH4 ;min

8
>>><

>>>:

Inhibition factor for ammonium, where KINH4 ;min and KINH4 ;max are the NH4
+

concentrations at which inhibition starts and reach 100% inhibition, respectively

[63]

IpH 1þ2�100:5ðpHL � pHU Þ

1þ10ðpH� pHU Þþ10ðpHL � pHÞ
Inhibition factor for pH, with upper (pHU) and lower (pHL) pH limits at which

50% inhibition occurs.

[8]

IH2S 1 �
CH2S

KIH2S
; CH2S � KIH2S

0; CH2S > KIH2S

8
><

>:

Inhibition factor for H2S, where KIH2S
is the H2S concentration at which 100%

inhibition occurs.

[36]

I INH3
� INH4

� IpH � IH2S
Joint inhibition factor [11]

https://doi.org/10.1371/journal.pone.0252881.t002
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Slurry is added at a constant rate until the storage reaches maximum capacity (Eq 8), at

which time slurry is removed, resulting in a new level (Eq 9).

dMm

dt
¼ Fin ð8Þ

M0

m ¼ Mm � fresid ð9Þ

Slurry removal is instantaneous and occurs exactly when slurry mass Mm equals Mm,max.

M0
m is the slurry mass after removal, and fresid is the fraction of slurry retained in the channel

after removal. The total mass of Sp, VFAs, SO4
2-, TAN, and H2S are similarly reduced.

Methanogen enrichment in residual slurry is probable in the light of documentation that

methanogenic biofilms form on various materials under a range of environmental conditions

[54–56]. To account for this, a microbial enrichment factor aenrich, representing the increase in

the odds of retention for a single microorganism relative to the odds for conservative compo-

nents, was used (Eqs 10 and 11). An aenrich value of zero implies no enrichment.

fresid;Xi ¼
e
ln fresid

1� fresid

� �
þaenrich

1þ e
ln fresid

1� fresid

� �
þaenrich

ð10Þ

X0i ¼ Xi � fresid;Xi ð11Þ

Here, fresid,Xi is the fraction of a single population retained after slurry removal and X0i is the

microbial biomass (gCOD-B) of this group after slurry removal.

Temperature sensitivity of qmax and α is based on the Cardinal Temperature Model

(CTM1) [57, 58] shown for qmax in Eq 12.

qmax ¼ qmax;opt
ðT � TmaxÞ � ðT � TminÞ

2

ðTopt � TminÞ � ½ðTopt � TminÞ � ðT � ToptÞ � ðTopt � TmaxÞ � ðTopt þ Tmin � 2 � TÞ�
ð12Þ

qmax is calculated for each microbial population (group) by selecting the following temperature

constraints on substrate utilization; minimum temperature of substrate utilization, Tmin (˚C),

maximum temperature of substrate utilization, Tmax (˚C), the optimum temperature of sub-

strate utilization, Topt (˚C), the temperature of the slurry material, T (˚C), and the maximum

substrate utilization rate at Topt, qmax,opt (gCOD-S gCOD-B
-1 d-1). Traditionally, temperature

effects on metabolic processes are described with a double Arrhenius expression [59]. The

CTM1 model predicts a similar response and uses intuitive temperature inputs (Tmax, Tmin,

Topt and T), which allows for easy tuning of microbial growth characteristics. KS decreases

with temperature according to an exponential function [60] (Eq 13).

KS ¼ KS;coef � k1expð� k2 � TÞ ð13Þ

The processes described above all affect state variables of the model, which are summarized

in Table 1. Growth inhibition factors are presented in S2 Appendix. Temperature-dependent

equations describing chemical speciation and air-slurry transfer of H2S and O2 are provided in

S2 Appendix.

Methanogenic groups

The proposed model can accept any number of methanogenic groups, but for simplicity it

should include only those necessary for reproducing important short- and long-term
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responses. Although this set may vary with application [31, 64], here we present a generic set

based on the short-term temperature response for cattle manure presented by Elsgaard et al.

[22], along with pure culture results from Jabłoński et al. [65]. Elsgaard et al. [22] studied CH4

production rates from slurry and digestate during incubation for up to two days at tempera-

tures between 5 and 52˚C and found methanogenic activity over the whole temperature range.

Considering that the average temperature growth interval of methanogenic species in the data-

base compiled by Jabłoński et al. [65] is only 25˚C (n = 104), observation of CH4 production

over 47˚C by Elsgaard et al. [22] suggest that multiple methanogen groups were present and

active in the manure materials. Fig 3a shows the increased modelling accuracy achieved with

multiple methanogen groups using temperature response profiles selected based on methano-

genic community analysis studies of cattle slurry [48, 64, 66–68] and the methanogenic data-

base [65]. At least five groups (red full line, with default parameter values for m1, m2, m3, m4,

and m5) are required to match measured CH4 production over the whole temperature range.

Thus, five groups that approximately represent individual methanogen species (with the

exception of m4) were selected as the default set.

Although a single methanogen group could probably capture observed short-term

responses, it is necessary to include multiple groups of methanogens to account for general dif-

ferences between short- and long-term measurements (e.g., Fig 1). In Fig 3b the differences

between a single and multiple methanogen groups in terms of short-and long-term effects are

clearly demonstrated. The expected difference between short- and long-term responses is

achieved only with multiple groups (black, with default parameter values for m1, m3, and m5).

A single methanogen group, even with an extremely wide temperature growth interval, shows

only minor differences in short vs long-term effects on CH4 production after a temperature

change. On the other hand, with multiple methanogenic groups there is a large difference,

where the short-term effect is a drop of CH4 emission followed by an increase and stabilization

period in the long-term. This response is consistent with observations in multiple experiments

[5, 14–17, 69] and confirms the importance of including multiple methanogen groups for

accurate modelling of CH4 emission of slurry storage systems.

Fig 3. Number of methanogen groups. (a) Predicted CH4 production of single (dashed colored lines) and multiple (solid

lines) methanogen groups as compared to observed CH4 production in cattle slurry by Elsgaard et al 2016 (circles). (b)

Predicted short- and long-term responses to temperature change for different sets of methanogen groups. Note: Lines are

shifted up or down by 0.01 for clarity.

https://doi.org/10.1371/journal.pone.0252881.g003
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Model parameters

Based on Fig 3, five methanogen groups (m1—m5) were chosen as default. Temperature

optima of these groups are based on individual species: Methanolobus psychrophilus (m1),

Metahnosarcina solegelid (m2), Metahnobrevibacter/Methanocorpusculum sp. (m3), and

Methanosarcina thermophilia (m5). The final group (m4) is not based on a known species, but

instead has an optimum temperature equidistant between that of m3 and m5. The qmax,opt of

each group was calculated from its optimum growth temperature shown in Fig 4a, by assum-

ing a linear increase from 0 gCOD-S gCOD-B
-1 d-1 at 0˚C to 8 gCOD-S gCOD-B

-1 d-1 at 40˚C. In

comparison, by default ADM1 uses 8 gCOD-S gCOD-B
-1 d-1 at 35˚C [11]. The temperature

dependent qmax for individual populations (Fig 3a) is calculated using qmax,opt according to Eq

12. For all methanogen groups, biomass yield Yi was fixed at 0.05 gCOD-B gCOD-S
-1, equal to the

recommended value for acetoclastic methanogen in ADM1 [10] and the mean value from the

literature review presented by Weinrich [70, 71] (n = 37 measurements). The qmax,opt and Yi of

the optional sulfate reducer group, sr1, were calculated based on the relative qmax,opt and Yi dif-

ference between typical acetoclastic methanogens and acetoclastic sulfate reducers [38].

Hydrogenotrophic methanogens such as Methanobrevibacter and Methanocorpusculum (m3)

are highly abundant in fresh manure and in the animal intestinal tract [48, 65, 72, 73], and

hence the m3 active biomass concentration in the produced slurry is by default an order of

magnitude greater than for any other methanogen group (0.01 vs 0.001 gCOD-B kgSlurry
-1). The

Ks was calculated using Eq 13, where KS,coef by default is 1, but can be modified for individual

microbial groups to reflect differences in substrate affinity for e.g. acetoclastic methanogens,

hydrogenotrophic methanogens [74–76] and sulfate reducers [33, 34]. For the same reasons,

inhibition constants can be specified for individual microbial groups [36, 77]. The temperature

dependent disintegration/hydrolysis/fermentation rate constant, α, was calculated from Eq 12

with default αopt = 0.02 d-1 at Topt = = 50, Tmin = = 0, and Tmax = = 60˚C. Productivity coeffi-

cients for CH4 and CO2 were calculated based on microbial stoichiometry (see S1 Appendix)

[38, 78]. The default value of a mass transfer coefficient for O2 was based on respiration rates

measured by Markfoged [79], and for H2S, was estimated by assuming depletion occurred

Fig 4. Default temperature responses. (a) Temperature dependence of maximum substrate utilization rates (qmax) of default

methanogen groups in the model (m1 to m5). (b) Steady-state microbial biomass as a function of temperature for default

parameter values. The residual fraction of slurry (fresid) was set to 0.95 in this simulation.

https://doi.org/10.1371/journal.pone.0252881.g004
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within a 1 cm film at the surface. The complete list of default parameter values and input vari-

ables are found in S3 Appendix.

Fig 4b shows the model-predicted steady state abundance of the default microbial groups as

a function of temperature. The steady state active methanogen biomass smoothly increases

with temperature above about 10˚C, despite shifting dominance among methanogen groups.

This correlation is an indirect consequence of higher qmax and α with increasing temperature.

However, low qmax below 10˚C translates into very limited growth of m1, which is consistent

with small CH4 emissions reported at low temperatures [6, 22]. Above 10˚C the total methano-

gen biomass curve resembles the shape of the hydrolysis rate curve (Eq 12), because hydrolysis

(i.e., substrate availability and not maximum methanogen growth rates) is rate limiting in this

simulation, due to the emptying interval and residual fraction (see “Model behavior” section).

Model behavior and application

The model was implemented in the R language [80] as a function, and is available as an add-

on package from GitHub at https://github.com/sashahafner/ABM. A vignette included with

the package provides an introduction to the use of the model. The abm() function in this pack-

age (version 1.18.0) was used to generate results shown in this work.

Effects of slurry retention time, temperature change, and pH were explored in order to

show the behavior of the model. Simulations were generally run using the default parameter

settings, with a slurry production rate of 1000 kg d-1 and a slurry storage capacity of 33333 kg,

equivalent to conditions of a slurry channel or pit receiving fresh excreta, and being emptied

(except for a 10% residual fraction) every 30 days. The default temperature is 20˚C and pH is

7. Below, deviations from default parameters are explicitly stated and listed in S3 Appendix. In

addition, we present a sensitivity analysis, and a comparison of model simulations to measure-

ments from a farm scale experiment. To show the capability of the model to describe CH4

emissions from real livestock production facilities, we compared model simulations to data

from Kariyapperuma et al. [6], who measured CH4 emission from an outside slurry storage

tank with a maximum capacity of about 2700 m3. The slurry storage tank periodically received

manure from a pre-storage underneath a barn with approximately 200 cows. For additional

details on the manure management see [6]. The dataset lacked information about the initial

and subsequently introduced slurry composition, and instead we made qualified guesses and

ran multiple simulation scenarios to assess model performance. The dataset included time

series of organic matter concentration in units of VS, and hence conversion to degradable par-

ticulate material (COD units) was needed to make it compatible with the model input unit.

Since COD measurement is error-prone for particulate materials [81], use of a conversion fac-

tor to estimate COD from VS is preferable to direct measurement. The degradable fraction of

VS (VSd) in cattle slurry was set to 0.42, based on the average of two studies [82, 83]. The

COD-to-VS ratio was estimated at 1.42 gCOD-S/gVS for cattle slurry based on average slurry

composition [82] and calculated oxygen demand [38] (S1 Appendix). We assumed that half

the VSd had been degraded at the start of the measurements, based on recent estimates sug-

gesting that 28% of VSd in cattle slurry from barns is consumed over a collection period of 30

days [84], and the much longer retention time in Kariyapperuma [6]. The model inputs for the

simulation are provided in S4 Appendix. Measured temperature and slurry mass data were lin-

early interpolated to provide daily values for simulations. The dataset consisted of seasonal

campaigns with daily measurements of temperature and slurry mass during two years. Gap-

filling to obtain a complete dataset covering 730 days was done by referring to corresponding

data from a second measurement year (e.g., because temperature data was missing for spring

2010, we used measurements from spring 2011) (S4 Appendix). This extended dataset was
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used as model input, and then CH4 emission was simulated for five consecutive 730-day peri-

ods to ensure stable predictions. The fifth simulation round was compared to CH4 emissions

measured by Kariyapperuma et al. [6].

Results and discussion

Model behavior

In this section effects of residual slurry and methanogen enrichment, temperature changes,

and pH on predicted CH4 production are presented in order to show the behavior of the

model.

Residual fraction and methanogen enrichment. The residual fraction of slurry after

export and the enrichment of active methanogens in the residue are expected to enhance

methane production from fresh excreta. Fig 5 shows predicted effects of varying the residual

fraction of slurry between 1 and 50% with or without enrichment of methanogens in the resi-

due. Total methanogen biomass (Fig 5a) and CH4 production (Fig 5b) were correlated, and

both quantities were substantially reduced when the slurry channel was emptied to 0.5%

(fresid = 0.005) as compared to 10% or 50% (fresid = 0.1 or 0.5). The differences could be partially

explained by the average amount of slurry in the tank, but was primarily a result of the smaller

methanogen population being retained when the residual slurry fraction was low. Changing

the microbial enrichment factor (aenrich) significantly impacted methanogen biomass only for

the lowest residual fraction fresid = 0.005. At fresid = 0.5, and fenrich = 5, methanogen retention

was effectively close to 100%, resulting in complete consumption of available VFAs, and

hydrolysis limiting CH4 production, which explains why CH4 production was almost identical

for fenrich = 5 and 0. Altogether, the results in Fig 5 demonstrate that a substantial CH4 reduc-

tion can be expected by near-complete emptying of the slurry channel.

Temperature effects. The implementation of temperature sensitive methanogen groups

allowed for simulating effects of gradual (seasonal) temperature changes, as well as transient

and prolonged effects of rapid temperature change (i.e. slurry export from a barn to an outside

storage, or from the animal tract to a slurry channel or pit). Fig 6a shows methanogen groups

Fig 5. Predicted effects of residual slurry fraction on methanogens and methane production. (a) Total methanogen

biomass and (b) Cumulative CH4 emission as affected by the residual fraction (fresid) of slurry after slurry removal assuming a

high degree of microbial enrichment (aenrich), or no enrichment.

https://doi.org/10.1371/journal.pone.0252881.g005
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responding to a seasonal change in slurry temperature (temperatures from Kariyapperuma

et al. [6]). It was predicted that at high residual slurry fraction (fresid = 0.95) the methanogen

biomass (Fig 6a) and CH4 emission (Fig 6c) will peak when the temperature peaks, but the

response to the temperature change was not immediate neither with increasing nor decreasing

temperature. The delay reflects the time required for a change in microbial biomass. On the

other hand, significant hysteresis was observed when the residual fraction was low (fresid = 0.1),

with methanogen biomass and CH4 emission peaking 1–2 months after the temperature. A

similar delay was seen in Kariyapperuma et al. [6], where relatively large portions of manure

were added and removed, similar to the use of a small residual fraction. In Fig 6c, a large CH4

emission spike was predicted in response to increasing temperature, which reflects the rapid

consumption of VFAs that had accumulated during the preceding cold period. This result

reflects a low sensitivity of hydrolysis and fermentation to decreasing temperature in the

Fig 6. Predicted temperature effects on methanogens and methane production. (a) Methanogen biomass and (c) CH4

emission during gradual slurry temperature changes as predicted with a high and low residual slurry fraction in the storage (fresid).

(b) Methanogen biomass and (d) CH4 emission during short- and long-term temperature changes using a large residual fraction

of slurry (fresid) of 0.95.

https://doi.org/10.1371/journal.pone.0252881.g006
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model, compared to methanogenesis, although in reality this dynamic may be more complex.

However, the accumulation of VFAs after rapid temperature changes has been observed in

multiple studies [24, 27, 85]. In Fig 6b and 6d the effects of an instantaneous temperature

decrease lasting 10 or 300 days are shown. Methanogen numbers declined only slightly during

a 10-day temperature decrease (Fig 6b), resulting in a significant CH4 spike once the tempera-

ture was raised again (Fig 6d). In contrast, during a 900-day temperature decrease, m3

completely disappeared, resulting in a longer period of low CH4 production when the temper-

ature later increased. Concomitantly, while a surplus of VFA substrate was transiently available

after the temperature increase (Fig 6d), m4 grew alongside m3, but as VFAs were depleted, m4

was outcompeted again. In reality both m3 and m4 may need to acclimatize to the environ-

ment before consuming VFAs, which in the model could be accounted for by implementing a

lag phase where CH4 production from a single methanogen population is temporarily halted

in order to adjust cellular metabolism to new conditions, before resuming CH4 production.

This mechanism, however, seems very difficult to describe with equations relating to actual

biochemical processes due to complexity and lack of knowledge about the lag phase [86].

The new model effectively assumes a linear temperature dependency of long-term CH4 pro-

duction rate (under non-limiting conditions), an assumption also made in other models [27,

51, 87]. However, for short-term dynamics of CH4 emissions there is solid evidence for an

Arrhenius-like temperature dependency of hydrolysis and methanogenesis [22, 45, 58], and

the long-term link between temperature and CH4 production rate remains to be studied sys-

tematically, particularly in the psychrophilic temperature range where slurry is often stored.

Acidification. Acidification to suppress ammonia volatilization has been shown to reduce

CH4 emissions from cattle and pig slurry by 70–90% [15, 31, 37]. Fig 7 shows the predicted

response to an instantaneous drop in pH, as in acidification in a storage tank. The immediate

reduction in pH resulted in net microbial decay (Fig 7a) while immediately reducing CH4

emissions (Fig 7b). The apparent dominance of the m3 group during low pH was a conse-

quence of its naturally higher abundance in the fresh slurry that was added each day. Once pH

increased, the methanogens recovered and CH4 emissions rose again. However, in practical

slurry management systems, the pH drop is typically achieved by sulfuric acid treatment,

which inevitably raises the SO4
2- concentration to a level where sulfate reducing bacteria gain a

thermodynamic advantage over methanogens. Therefore the model includes an optional

Fig 7. Predicted pH effects on methanogens and methane production. (a) Methanogen biomass and (b) CH4 emission

responses to pH changes. The residual fraction of slurry (fresid) was set to 0.95.

https://doi.org/10.1371/journal.pone.0252881.g007
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sulfate reducer group (sr1) as demonstrated in S5 Appendix. Inclusion of sr1 decreased the

magnitude and delayed by several months the CH4 peak after the pH was raised again. This

response resulted primarily from increased competition between methanogen groups and sr1

for VFA substrate when SO4
2- was abundant, reflecting the known competition between the

two groups [88]. A simulation with sr1 is probably more realistic for modelling acidification of

slurry with sulfuric acid, but has the disadvantage of introducing additional parameters with

associated uncertainty.

Similar to the effect of pH, the inhibiting effects of total ammoniacal nitrogen (TAN) and

H2S were modelled by factoring a term directly onto the substrate utilization rate. An example

of TAN inhibition is presented in S6 Appendix.

Sensitivity analysis

Cumulative CH4 production was most sensitive to the hydrolysis rate constant parameter, αopt,

and the temperature input variable, T (Fig 8a and 8b). The model response is relatively insensi-

tive to increases in the Monod parameters, but sensitive to decreases in the yield (Yi) and maxi-

mum substrate utilization rate (qmax,opt). It is important to state that non-default parameters

may significantly change model sensitivity to other parameters. Hydrolysis remains the least

well-defined step in anaerobic digestion [43], and it can be considered the most critical input

for the model performance. Significant effort should therefore be made to determine αopt.

Model application

In Fig 9 the model was applied to the case study of Kariyapperuma et al. [6] to show the quali-

tative responses of the model against real measurements. The simulation was run with differ-

ent hydrolysis rates (Fig 9a), which resulted in CH4 emission peaks of different magnitude,

with αopt = 0.02 matching best with measurements in terms of peak height. However, emis-

sions were predicted to occur much too soon. The substrate utilization rate (qmax,opt) was

reduced, which postponed the CH4 emission peaks to match better with data (Fig 9b). As sug-

gested in Fig 4b, methanogenesis is rate-limiting at low temperatures, explaining the observed

effect of reducing qmax,opt. There is a need for model validation in controlled experiments, and

Fig 8. Model sensitivity to parameters and input variables. Model output sensitivities to (a) parameters and (b)

input variables. Initial microbial biomass refers to changes in both the initial concentration of methanogens in the

slurry inoculum and the fresh influent slurry. For parameter values, see S3 Appendix.

https://doi.org/10.1371/journal.pone.0252881.g008
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with the necessary input data. The total concentration and relative fractions of degradable and

slowly degradable particulate material can be measured [82], but this is rarely done. Further-

more, emission studies on full-scale storages often report only the composition of slurry in the

storage and not information about the influent slurry composition [6, 89]. The new model pre-

sented here relies on characterization of the influent slurry composition to determine hydroly-

sis rate and CH4 potential, and we stress therefore the importance of accurately measuring

degradable particulate material and VFAs for accurate prediction of CH4 emission.

Conclusions

With multiple groups (populations) of methanogens, a mechanistic model of methane produc-

tion from animal manure or similar wastes can reproduce complex observed responses to tem-

perature, in particular, the distinctly different short- and long-term responses to temperature

change. The new model described here, implemented in the ABM R package, is a flexible tool

that can facilitate research on CH4 emission and its control. Accounting for temporary inacti-

vation of methanogens, methane oxidation, and possibly other processes may be necessary for

the most accurate predictions, and model extension is possible. An application of the model to

field data showed that detailed measurements of slurry organic matter composition will be

needed for model extension and future application at all scales.
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7. Baldé H, VanderZaag AC, Burtt S, Evans L, Wagner-Riddle C, Desjardins RL, et al. Measured versus

modeled methane emissions from separated liquid dairy manure show large model underestimates.

Agriculture, Ecosystems & Environment. 2016; 230: 261–270. https://doi.org/10.1016/j.agee.2016.06.

016

8. Angelidaki I, Ellegaard L, Ahring BK. A mathematical model for dynamic simulation of anaerobic diges-

tion of complex substrates: Focusing on ammonia inhibition. Biotechnology and Bioengineering. 1993;

42: 159–166. https://doi.org/10.1002/bit.260420203 PMID: 18612976

9. Hill DT. A comprehensive dynamic model for animal waste methanogenesis. Transactions of the ASAE.

1982; 25: 1374–1380.

10. Batstone DJ, Keller J, Angelidaki I. Anaerobic digestion model no. 1. IWA publishing; 2002.

11. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S V., Pavlostathis SG, Rozzi A, et al. The IWA Anaerobic

Digestion Model No 1 (ADM1). Water science and technology: a journal of the International Association

on Water Pollution Research. 2002; 45: 65–73. https://doi.org/10.2166/wst.2002.0292

12. Batstone DJ, Puyol D, Flores-Alsina X, Rodrı́guez J. Mathematical modelling of anaerobic digestion

processes: applications and future needs. Rev Environ Sci Biotechnol. 2015; 14: 595–613. https://doi.

org/10.1007/s11157-015-9376-4

13. Wade MJ. Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Pro-

cesses. Processes. 2020; 8: 888. https://doi.org/10.3390/pr8080888

14. Aguerre MJ, Wattiaux MA, Powell JM. Emissions of ammonia, nitrous oxide, methane, and carbon diox-

ide during storage of dairy cow manure as affected by dietary forage-to-concentrate ratio and crust for-

mation. Journal of Dairy Science. 2012; 95: 7409–7416. https://doi.org/10.3168/jds.2012-5340 PMID:

23021756

15. Petersen SO, Andersen AJ, Eriksen J. Effects of Cattle Slurry Acidification on Ammonia and Methane

Evolution during Storage. Journal of Environment Quality. 2012; 41: 88. https://doi.org/10.2134/

jeq2011.0184 PMID: 22218177

16. Sommer SG, Clough TJ, Balaine N, Hafner SD, Cameron KC. Transformation of Organic Matter and

the Emissions of Methane and Ammonia during Storage of Liquid Manure as Affected by Acidification.

Journal of Environmental Quality. 2017; 46: 514–521. https://doi.org/10.2134/jeq2016.10.0409 PMID:

28724090

17. Sokolov VK, VanderZaag A, Habtewold J, Dunfield K, Wagner-Riddle C, Venkiteswaran JJ, et al.

Dairy manure acidification reduces CH4 emissions over short and long-term. Environmental Technol-

ogy (United Kingdom). 2020; 0: 1–8. https://doi.org/10.1080/09593330.2020.1714744 PMID:

31920167

18. Masse D, Masse L, Claveau S, Benchaar C, Thomas O. Methane emissions from manure storages.

Transactions of the ASABE. 2008; 51: 1775–1781. Available: http://apps.isiknowledge.com/full_record.

do?product=WOS&search_mode=GeneralSearch&qid=27&SID=3D2i6D8f8eh1@d46nfl&page=

1&doc=2

19. Wood JD, VanderZaag AC, Wagner-Riddle C, Smith EL, Gordon RJ. Gas emissions from liquid dairy

manure: complete versus partial storage emptying. Nutrient Cycling in Agroecosystems. 2014; 99: 95–

105. https://doi.org/10.1007/s10705-014-9620-2
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75. Hao LP, Lü F, He PJ, Li L, Shao LM. Predominant contribution of syntrophic acetate oxidation to ther-

mophilic methane formation at high acetate concentrations. Environmental Science and Technology.

2011; 45: 508–513. https://doi.org/10.1021/es102228v PMID: 21162559

76. Batstone DJ, Karakashev D, Batstone DJ, Trably E, Angelidaki I. Acetate Oxidation Is the Dominant

Methanogenic Pathway from Acetate in the Absence of Methanosaetaceae. 2014; 72: 5138–5141.

https://doi.org/10.1128/AEM.00489-06 PMID: 16820524

77. Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry.

2013; 48: 901–911. https://doi.org/10.1016/j.procbio.2013.04.012

78. Hafner SD, Koch K, Carrere H, Astals S, Weinrich S, Rennuit C. Software for biogas research: Tools for

measurement and prediction of methane production. SoftwareX. 2018; 7: 205–210. https://doi.org/10.

1016/j.softx.2018.06.005

79. Markfoged R. Microbial Control of Gas-Exchange at Air-Manure Interfaces. Aarhus University. 2013.

80. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2021. https://www.R-project.org/

81. Raposo F, Borja R, Ibelli-Bianco C. Predictive regression models for biochemical methane potential

tests of biomass samples: Pitfalls and challenges of laboratory measurements. Renewable and Sus-

tainable Energy Reviews. 2020; 127. https://doi.org/10.1016/j.rser.2020.109890

82. Møller HB, Sommer SG, Ahring BK. Methane productivity of manure, straw and solid fractions of

manure. Biomass and Bioenergy. 2004; 26: 485–495. https://doi.org/10.1016/j.biombioe.2003.08.008

83. Møller HB, Sommer SG, Ahring BK. Biological Degradation and Greenhouse Gas Emissions during

Pre-Storage of Liquid Animal Manure. Journal of Environmental Quality. 2004; 33: 27–36. https://doi.

org/10.2134/jeq2004.2700 PMID: 14964355

84. Petersen SO, Olsen AB, Elsgaard L, Triolo JM, Sommer SG. Estimation of methane emissions from

slurry pits below pig and cattle confinements. PLoS ONE. 2016; 11: 1–16. https://doi.org/10.1371/

journal.pone.0160968 PMID: 27529692

85. Choorit W, Wisarnwan P. Effect of temperature on the anaerobic digestion of palm oil mill effluent. Elec-

tronic Journal of Biotechnology. 2007; 10: 376–385.

86. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, et al. Lag phase is a distinct growth

phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal

of Bacteriology. 2012; 194: 686–701. https://doi.org/10.1128/JB.06112-11 PMID: 22139505

PLOS ONE Methane emission model focusing on microbial groups

PLOS ONE | https://doi.org/10.1371/journal.pone.0252881 June 10, 2021 21 / 22

https://doi.org/10.1016/j.wasman.2019.09.036
https://doi.org/10.1016/j.wasman.2019.09.036
http://www.ncbi.nlm.nih.gov/pubmed/31586875
https://doi.org/10.1007/s002849910065
https://doi.org/10.1007/s002849910065
http://www.ncbi.nlm.nih.gov/pubmed/10706664
https://doi.org/10.1016/j.watres.2012.10.047
https://doi.org/10.1016/j.watres.2012.10.047
http://www.ncbi.nlm.nih.gov/pubmed/23206501
https://doi.org/10.13031/2013.25311
https://doi.org/10.18453/rosdok_id00002016
https://doi.org/10.18453/rosdok_id00002016
https://doi.org/10.1016/j.biortech.2021.125124
https://doi.org/10.1016/j.biortech.2021.125124
http://www.ncbi.nlm.nih.gov/pubmed/33910118
https://doi.org/10.1007/s00253-019-10239-w
http://www.ncbi.nlm.nih.gov/pubmed/31797006
https://doi.org/10.1128/mSystems.00038-18
https://doi.org/10.1128/mSystems.00038-18
http://www.ncbi.nlm.nih.gov/pubmed/30116788
https://doi.org/10.1007/s11157-008-9131-1
https://doi.org/10.1021/es102228v
http://www.ncbi.nlm.nih.gov/pubmed/21162559
https://doi.org/10.1128/AEM.00489-06
http://www.ncbi.nlm.nih.gov/pubmed/16820524
https://doi.org/10.1016/j.procbio.2013.04.012
https://doi.org/10.1016/j.softx.2018.06.005
https://doi.org/10.1016/j.softx.2018.06.005
https://www.R-project.org/
https://doi.org/10.1016/j.rser.2020.109890
https://doi.org/10.1016/j.biombioe.2003.08.008
https://doi.org/10.2134/jeq2004.2700
https://doi.org/10.2134/jeq2004.2700
http://www.ncbi.nlm.nih.gov/pubmed/14964355
https://doi.org/10.1371/journal.pone.0160968
https://doi.org/10.1371/journal.pone.0160968
http://www.ncbi.nlm.nih.gov/pubmed/27529692
https://doi.org/10.1128/JB.06112-11
http://www.ncbi.nlm.nih.gov/pubmed/22139505
https://doi.org/10.1371/journal.pone.0252881


87. Hashimoto A. Methane from swine manure: Effect of temperature and influent substrate concentration

on kinetic parameter (K). Agricultural Wastes. 1984; 9: 299–308. https://doi.org/10.1016/0141-4607(84)

90088-X

88. Oude Elferink JWHOE, Visser A, Pol LWH, Stams AJM. Sulfate reduction in methanogenic bioreactors.

FEMS Microbiology Reviews. 1994; 15: 119–136. https://doi.org/10.1111/j.1574-6976.1994.tb00130.x
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