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SUMMARY

Meiosis produces gametes through a specialized,
two-step cell division, which is highly error prone in
humans. Reductional meiosis I, where maternal and
paternal chromosomes (homologs) segregate, is fol-
lowed by equational meiosis II, where sister chroma-
tids separate. Uniquely during meiosis I, sister ki-
netochores are monooriented and pericentromeric
cohesin is protected. Here, we demonstrate that
these key adaptations for reductional chromosome
segregation are achieved through separable control
of multiple kinases by the meiosis-I-specific budding
yeast Spo13 protein. Recruitment of Polo kinase to
kinetochores directs monoorientation, while inde-
pendently, cohesin protection is achieved by con-
taining the effects of cohesin kinases. Therefore,
reductional chromosome segregation, the defining
feature of meiosis, is established by multifaceted
kinase control by a master regulator. The recent
identification of Spo13 orthologs, fission yeast
Moa1 andmouseMEIKIN, suggests that kinase coor-
dination by a meiosis I regulator may be a general
feature in the establishment of reductional chromo-
some segregation.

INTRODUCTION

Unlike mitosis, meiosis requires two rounds of chromosome

segregation without intervening DNA replication. Meiosis I is

distinctive because homologs, rather than sister chromatids,

are segregated, requiring adaptations to the chromosome

segregation machinery (Marston, 2014). Firstly, homologous

chromosomes recombine to create linkages (chiasmata) that

bias their stable attachment to microtubules from opposite spin-

dle poles. Secondly, sister kinetochores monoorient, meaning

that they face the same, rather than opposite, spindle poles.

Lastly, cohesin, which holds sister chromatids together, is

cleaved in two steps. During meiosis I, cohesin cleavage on

chromosome arms allows homolog segregation, but cohesin
526 Developmental Cell 49, 526–541, May 20, 2019 ª 2019 The Auth
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protection in the region around centromeres (called pericentro-

meres) holds sister chromatids together until meiosis II.

Cohesin comprises three core subunits, Smc1, Smc3, and

Scc1, and accessory subunits Scc3 and Pds5 (Marston, 2014).

Upon proper attachment of all chromosomes to the spindle,

securin (Pds1) is destroyed, liberating separase (Esp1), which

cleaves Scc1, triggering chromosome segregation. During

meiosis, Rec8 replaces Scc1 (Buonomo et al., 2000; Watanabe

and Nurse, 1999) and its cleavage by separase during

both anaphase I and II requires prior Rec8 phosphorylation.

In budding yeast, three kinases phosphorylate Rec8: CK1d

(Hrr25), Dbf4-dependent kinase (DDK) Cdc7 (Katis et al., 2010),

and Polo kinase (Cdc5) (Brar et al., 2006), although the contribu-

tion of Cdc5 to cohesin cleavage is under debate (Katis et al.,

2010; Attner et al., 2013). During meiosis I, shugoshin (Sgo1)

recruits protein phosphatase 2A (PP2A) to the pericentromere

to counteract this phosphorylation and prevent Rec8 cleavage

(Katis et al., 2004a; Kitajima et al., 2004, 2006; Lee et al., 2008;

Marston et al., 2004; Riedel et al., 2006; Tang et al., 2006).

Rec8 deprotection in anaphase II requires Hrr25-dependent co-

hesin phosphorylation and Sgo1 inactivation (Arg€uello-Miranda

et al., 2017; Jonak et al., 2017).

Cohesin also promotes sister kinetochore monoorientation in

fission yeast, A. thaliana, and C. elegans, but not budding yeast

(Chelysheva et al., 2005; Monje-Casas et al., 2007; Severson

et al., 2009). In fission yeast, Rec8-containing cohesin is thought

to juxtapose sister centromeres to create a geometry that favors

sister kinetochore monoorientation (Sakuno et al., 2009; Yoko-

bayashi et al., 2003). In contrast, in budding yeast, a dedicated

complex calledmonopolin directs sister kinetochore monoorien-

tation. Monopolin consists of the meiosis-specific Mam1 protein

(Tóth et al., 2000), the nucleolar proteins Lrs4 and Csm1 (Ra-

bitsch et al., 2003), and Hrr25 (Petronczki et al., 2006), which

together form a V-shaped structure thought to fuse sister kinet-

ochores to form a common microtubule attachment surface

(Corbett et al., 2010; Sarangapani et al., 2014).

Re-programming of the chromosome segregation machinery

to segregate homologs requires synchronized establishment of

sister kinetochore monoorientation and cohesin protection.

This predicts the existence of a master regulator that can

drive these two adaptations, essentially converting mitosis

into meiosis. An attractive candidate is the budding yeast

meiosis-I-specific Spo13 protein. Cells lacking SPO13 undergo
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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a single meiotic division, show monoorientation defects, and fail

to protect cohesin (Katis et al., 2004b; Klapholz and Esposito,

1980; Lee et al., 2004; Shonn et al., 2002; Galander et al.,

2019). Accordingly, Spo13 is required for monopolin localization

at kinetochores (Katis et al., 2004b; Lee et al., 2004) and is impli-

cated in ensuring the proper pericentromeric localization of Sgo1

(Kiburz et al., 2005). Functionally orthologous fission yeast Moa1

and mouse MEIKIN are similarly present only in meiosis I (Kim

et al., 2015). All three proteins bind Polo kinase and its recruit-

ment to centromeres by fission yeast Moa1 and mouse MEIKIN

has been suggested to facilitate monoorientation and cohesin

protection (Kim et al., 2015; Matos et al., 2008; Miyazaki

et al., 2017).

Here, we reveal how budding yeast Spo13 directs both sister

kinetochore monoorientation and cohesin protection to define

the meiotic chromosome segregation pattern. We show that

recruitment of Polo kinase Cdc5 to kinetochores by Spo13 is crit-

ical for monoorientation but not cohesin protection. Instead,

Spo13 protects cohesin by restricting the effects of the cohesin

kinases Hrr25 and DDK, thereby both limiting cohesin phosphor-

ylation and promoting retention of the Sgo1 cohesin protector.

Overall, Spo13 orchestrates coordinated temporal and spatial

control on key meiotic kinases to establish the meiotic segrega-

tion pattern.

RESULTS

Spo13 Recruits Cdc5 to Centromeres
To test if Spo13, like Moa1 and MEIKIN, recruits Polo kinase to

centromeres, we analyzed chromosomal Cdc5 by chromatin

immunoprecipitation and qPCR (ChIP-qPCR). Cdc5 enrichment

at centromeric, but not pericentromeric or arm sites, was signif-

icantly reduced in spo13Dmetaphase-I-arrested cells and in the

spo13-m2 mutant, which is deficient in binding Cdc5 (Matos

et al., 2008) (Figure 1A). Cellular Cdc5 levels (Figure S1A) and

metaphase I arrest efficiency (Figure S1B), known to be less

robust in spo13D cells (Katis et al., 2004b), were comparable.

Reduced centromeric Cdc5 was also not an indirect conse-

quence of the loss of monoorientation in spo13D and spo13-

m2 cells because Cdc5 and Spo13 associate with centromeres

normally in the absence of the monopolin component Mam1

(Figures S1C and S1D).

Consistently, overexpression of SPO13, but not spo13-m2,

from the copper-responsive CUP1 promoter increased Cdc5,

though not Spo13, levels at centromeres (Figures 1B and 1C).

Both Spo13 and Cdc5 levels were increased at a chromo-

somal arm site and cellular Cdc5 levels were also modestly

elevated upon SPO13 overexpression (Figure S1E), suggesting

that stabilization of Cdc5 enhances its chromosomal associa-

tion. However, less Spo13-m2 associated with centromeres,

compared to Spo13, even when over-produced (Figures 1C

and S1E), suggesting co-dependence of Spo13 and Cdc5 for

their centromeric localization. We conclude that centromeric

enrichment of Cdc5 depends on its association with Spo13.

Spo13 Associates with Kinetochores and Cohesin-
Rich Sites
Spo13 accumulates throughout the nucleus prior to metaphase I

and is also found associated with chromosomes at centromeres
and cohesin arm sites before being degraded in anaphase I (Fig-

ure S1F; Katis et al., 2004b; Sullivan and Morgan, 2007). To

determine Spo13 dependence on cohesin (Rec8), we performed

calibrated Spo13-3Flag ChIP followed by sequencing (ChIP-seq)

in prophase-arrested cells. Total cellular levels of Spo13 and the

most prominent Spo13 peaks at centromeres were independent

of Rec8 (Figures 1D, 1E, S1G, and S1H). Smaller, Rec8-depen-

dent Spo13 peaks were found at non-centromeric sites occu-

pied by Rec8. Average Spo13 signal around all centromeres

was narrower in rec8D cells thanwild type (Figure 1E) and the dif-

ference of the profiles around CEN1 (Figure 1D) revealed a

bimodal peak, reminiscent of the Rec8 peak. Therefore, Spo13

localization to chromosome arms and pericentromeres depends

on cohesin, while Spo13 association with centromeres is cohe-

sin independent.

Kinetochore-Bound Cdc5 Is Sufficient for
Monoorientation
To determine whether kinetochore recruitment of Cdc5 under-

lies Spo13 function in monoorientation and cohesin protec-

tion, we artificially targeted Cdc5 to kinetochores (Cdc5-Kt;

Figures 2A and S2A). To assay kinetochore monoorientation,

we visualized heterozygous CEN5-tdTomato foci, which split

into two distinct foci during metaphase I if monoorientation

is defective. While rarely observed in wild-type cells (<1%),

split CEN5-tdTomato foci are observed in approximately

30% of spo13D metaphase-I-arrested cells. Remarkably,

Cdc5-Kt reduced this fraction by more than half (Figure 2B).

Lrs4 hyperphosphorylation, which correlates with monopolin

localization to kinetochores and is lost in the absence of

SPO13 and in spo13-m2 (Matos et al., 2008), was also

partially rescued by Cdc5-Kt in spo13D cells (Figure 2C).

Therefore, Spo13-mediated recruitment of Cdc5 to kineto-

chores promotes Lrs4 phosphorylation and sister-kinetochore

monoorientation.

To further assay the effect of Cdc5-Kt, we established a live-

cell sister kinetochore monoorientation and cohesin protection

assay. We followed heterozygous fluorophore-labeled CEN5

foci through meiosis I. Depending on whether or not monoorien-

tation is established and/or pericentromeric cohesin is retained,

three different scenarios result when cells enter anaphase I

(Figure 2D). First, in wild-type cells, a single CEN5 focus segre-

gates to one of the spindle poles. Second, if monoorientation

is lost, splitCEN5 foci remain in close proximity (<2 mm) because

protected pericentromeric cohesin holds sister chromatids

together. Third, in cells defective for both monoorientation and

sister chromatid cohesion, CEN5 foci separate over a greater

distance (>2 mm). We categorized cells based on the distance

between CEN5 foci in anaphase I (as assessed by release of

Cdc14 from the nucleolus or by Pds1 disappearance; Figure 2D).

The majority (�64%) of spo13D cells fail to co-segregate CEN5

foci during anaphase I, but remarkably Cdc5-Kt (Figure 2E),

though not kinase-defective Cdc5N209A-Kt (Figure S2B), almost

completely restored sister chromatid co-segregation. Cdc5-Kt

also suppressed the high frequency of sister kinetochore bio-

rientation in spo13D spo11D cells caused by the absence of

homolog-linking chiasmata (Figure 2E). Hence, enrichment of

Cdc5 kinase at kinetochores is a crucial function of Spo13 in

monoorientation.
Developmental Cell 49, 526–541, May 20, 2019 527
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Figure 1. Cdc5 Localization to Centromeres Depends on Spo13

(A) Enrichment of Cdc5-3V5 during metaphase I.

(B and C) Effect of SPO13 overexpression on Cdc5-3V5 (B) and Spo13-3Flag (C) enrichment in metaphase I.

(A–C) Mean ChIP-qPCR values from four biological replicates with standard error bars (n.s., not significant, *p < 0.05, **p < 0.01).

(D and E) Spo13-3Flag ChIP-seq and Rec8-3Ha ChIP-seq from prophase-arrested wild-type and rec8D cells. (D) Close-up of CEN1 pericentromere. (E) Median

Spo13-3Flag signal averaged within a 6 kb region surrounding the centromere.

See also Figure S1.
Cdc5-Kt Rescues Sister Chromatid Co-segregation
Independently of Monopolin
Partial Lrs4 hyperphosphorylation inCDC5-Kt spo13D cells (Fig-

ure 2C) suggested that Cdc5-Kt may promote monoorientation

by restoring recruitment of monopolin, which requires Spo13

for its localization at kinetochores (Katis et al., 2004b; Lee et al.,

2004). Surprisingly, although Cdc5-Kt enhanced centromeric

Mam1 recruitment, it did so only in the presence of SPO13 (Fig-

ure 2F), suggesting that Cdc5-Kt promotes monoorientation

independently ofmonopolin recruitment to kinetochores. Indeed,

remarkably, Cdc5-Kt did not require the Mam1, Lrs4, or Csm1

components of monopolin to promote monoorientation in meta-

phase-I-arrested cells (Figures S2C–S2E) or for sister chromatid

co-segregation in anaphase I (Figures2G,S2F, andS2G), regard-

less of the presence of Spo13. Therefore, Spo13-dependent

recruitment of Cdc5 to kinetochores directs sister chromatid

co-segregation through a mechanism independent of monopo-

lin-dependent sister kinetochore crosslinking.

We asked if these effects were specific to Cdc5 by tethering

Hrr25 (Figure S2H), a kinase component of monopolin that is re-

cruited to kinetochores by Mam1 (Petronczki et al., 2006). While

Hrr25-Kt did not prevent sister CEN5 foci separating at meta-
528 Developmental Cell 49, 526–541, May 20, 2019
phase I (Figure S2I), it partially restored the co-segregation of sis-

ter chromatids in anaphase I inmam1D andmam1D spo13D, but

not spo13D cells (Figure S2J), confirming the functionality of

Hrr25-Kt. This suggests that Hrr25 may play its most critical

role in monoorientation during anaphase I and demonstrates

the specific requirement for Cdc5 recruitment to kinetochores

by Spo13.

We also tested the effect of Cdc5-Kt on the segregation of ho-

mologs to opposite poles during meiosis I. Imaging homozygous

CEN5-tdTomato foci revealed homolog co-segregation in a frac-

tion (�18%) of Cdc5-Kt cells, which increased to �50% in the

absence of Mam1 and/or Spo13 (Figure 2H). Therefore, while

Cdc5-Kt nearly always (>95%) directs sister kinetochore co-

segregation during meiosis I, even in the absence of monopolin

(Figure 2G), the effect on homolog co-segregation is more

modest and, interestingly, is suppressed by the presence of mo-

nopolin. Although the reasons for these observations remain

unclear, forcing Cdc5 to kinetochores in an unregulated manner

may enhance its effect, such that not only sister kinetochores but

also homologous kinetochores are co-oriented. We conclude

that monopolin and kinetochore-associated Cdc5 play distinct

roles in ensuring proper kinetochore orientation during meiosis I.
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Figure 2. Cdc5-Kt Restores Sister Chromatid Co-segregation to Monoorientation Mutants

(A) Schematic representation of Cdc5-Kt.

(B) Mean number of metaphase-I-arrested cells with two distinct tdTomato foci from three experimental replicates with standard error bars (n = 200).

(legend continued on next page)
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Cdc5-Kt Promotes Pericentromeric Cohesin Retention
but Is Insufficient for Sister Chromatid Cohesion
To test whether centromeric Cdc5 is required for cohesin protec-

tion, we asked whether spo13-m2would permit sister chromatid

segregation during meiosis I inmam1Dmutants. Because of the

loss of monoorientation, mam1D cells biorient sister kineto-

chores in meiosis I, but sister chromatid segregation is pre-

vented because centromeric cohesion persists (Tóth et al.,

2000). In contrast to spo13Dmam1D cells, which separate sister

chromatids in anaphase I (Figure 2G), spo13-m2 mam1D double

mutants largely retain sister chromatid cohesion, similar to

mam1D single mutants (Figure S3A). However, unlike spo13D,

spo13-m2 cells show only minor monoorientation defects (Fig-

ure S3A), and residual Spo13-Cdc5 interaction in this mutant

(Matos et al., 2008) means a potential role for kinetochore-

recruited Cdc5 in cohesion protection could not be ruled out.

As an alternative approach, we asked whether Cdc5-Kt

allows retention of pericentromeric cohesin in anaphase I

spo13D cells by imaging Rec8-mNeonGreen (mNG). Faint

Rec8-mNG foci that co-localize with the kinetochore marker

Dsn1-tdTomato persist in wild-type anaphase I cells, but

not in spo13D cells, indicating a failure to protect cohesin

(Figures S3B and S3C). However, Cdc5-Kt restored pericen-

tromeric Rec8 foci in 52% of anaphase I spo13D cells (Fig-

ures S3B and S3C) and increased pericentromeric Rec8 in-

tensity in wild-type and spo13D backgrounds (Figure S3D).

The rescue of the monoorientation defect of spo13D cells

by Cdc5-Kt (Figure 2E) precludes assaying cohesion directly

in the live-cell assay (Figure 2D). Instead, centromeric cohe-

sion functionality can be inferred by scoring CEN5 foci sepa-

ration after anaphase I (Figures S3E and S3F). Wild-type and

pCLB2-SGO1 controls split heterozygous CEN5 foci soon af-

ter the first round of Cdc14 release in response to meiosis II

spindle tension (Figures S3E and S3F). We also observed

split CEN5 foci in 78% of spo13D cells (Figures S3E and

S3F). Because meiosis II spindles do not form in spo13D cells

(Figure S3G), this post-anaphase I CEN5 foci separation must

be the result of cohesion defects, rather than spindle tension.

Cdc5-Kt neither delayed the appearance of split foci nor

reduced their frequency (88%) in the absence of SPO13 (Fig-

ure S3F). Therefore, although Cdc5-Kt increases pericentro-

meric Rec8-mNG in anaphase I spo13D cells, cohesion de-

fects persist. We conclude that Spo13 functions other than

Cdc5 recruitment to kinetochores are important for cohesion

protection.

Cohesin-Associated Cdc5 Promotes Cohesion Loss
Paradoxically, Cdc5-dependent phosphorylation of Rec8 was

reported to be important not for its protection but for its cleavage
(C) Immunoblot analysis of Lrs4-6Ha, Cdc5-GFP, and Kar2 loading control. Arro

(D) Assay for monoorientation and cohesion defects with representative images b

SPBs in anaphase I.

(E) Frequency of heterozygous CEN5 distance categories from (D) after live-cell

points after initial Cdc14 release was measured (n = 50).

(F) Mean enrichment of Mam1-3Flag in metaphase I from six experimental replic

(G) CEN5 distance categories determined as in Figure 2E.

(H) Frequency of homozygousCEN5-tdTomato foci segregating (gray), co-segreg

round of Cdc14 release (n = 50).

See also Figure S2.
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(Attner et al., 2013; Brar et al., 2006). Indeed, in Cdc5-depleted

cells, the slower migrating forms of Rec8 that appear after pro-

phase I exit in wild-type cells are largely absent (Figure 3A) and

the fastest migrating form (Figure 3A, arrowheads), which likely

corresponds to unphosphorylated, protected Rec8 at pericen-

tromeres persists. Consistent with this interpretation, the fastest

migrating, presumed protected, Rec8 species rapidly disap-

pears in cells depleted of the cohesin-protector Sgo1, even

when Cdc5 is also depleted (Figure 3B, arrowheads). Thus,

Cdc5 may not be essential for cohesin protection.

To directly determine the effect of Cdc5-directed Rec8 phos-

phorylation on cohesin retention and sister chromatid cohesion,

we tethered Cdc5-GBP to Rec8-GFP (henceforth Cdc5-Coh).

Cohesin loading prior to prophase I is comparable in Cdc5-

Coh and wild-type cells (Figures S3H and S3I). However, upon

nuclear division at anaphase I, distinct pericentromeric Rec8-

GFP foci were absent from Cdc5-Coh cells. Instead, diffuse

nuclear signal was observed, even in the absence of SPO13

(Figures 3C and 3D), which likely represents cleaved Rec8-

GFP fragments bound to nuclear Cdc5-GBP rather than cohesin

conferring sister chromatid cohesion, since nuclear division

occurs. Consistently, kinetochore-proximal Rec8 intensity in

Cdc5-Coh cells was lower than in wild type but higher than in

spo13D cells (Figure 3E). Therefore, Cdc5-Coh promotes cohe-

sin removal in anaphase I, a conclusion reinforced by analysis of

CEN5 foci segregation: while Cdc5-Coh had no impact in a wild-

type background, it caused CEN5 foci to segregate to opposite

poles in virtually all spo13D cells (Figure 3F). Although it is un-

clear why Cdc5-Coh enhances sister chromatid biorientation

in spo13D cells, this confirms that cohesin-associated Cdc5

does not universally protect Rec8 and indicates a specific

role for kinetochore-bound Cdc5 in promoting sister kineto-

chore monoorientation. Cdc5-Coh also permitted mam1D

cells to segregate sister chromatids to opposite poles in

anaphase I, providing further evidence that Cdc5 promotes

cohesion loss (Figure 3G). Therefore, in contrast to kineto-

chore-bound Cdc5, which promotes retention of, albeit non-

functional, centromeric cohesin, cohesin-bound Cdc5 promotes

cohesion dissolution.

Sgo1-PP2A Localizes to Pericentromeres in
Metaphase I Independently of Spo13
Since Cdc5-Kt onlymodestly increased pericentromeric cohesin

in anaphase I spo13D cells and was insufficient for functional

cohesion, Spo13 must protect cohesion through other mecha-

nisms. Spo13 may promote localization of the Sgo1-PP2A cohe-

sin protector at pericentromeres (Kiburz et al., 2005), though

earlier reports found no impairment of Sgo1 localization in

spo13D cells (Katis et al., 2004b; Lee et al., 2004). Consistently,
w indicates hyperphosphorylated Lrs4-6Ha.

elow. Scale bars, 1 mm. Green arrows, nucleolar Cdc14; Cyan arrows, Cdc14 at

imaging. Maximum distance between two TetR-tdTomato foci within two time

ates, with standard error bars (*p < 0.05, **p < 0.01).

ating (purple), or failing to segregate (green) within two time points after the first
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Figure 3. Cohesin-Associated Cdc5 Promotes Cohesion Loss

(A and B) Immunoblot analysis of Rec8-3Ha and Kar2 loading control for wild-type (left) and Cdc5-depleted (right) cells (A) or for cells depleted of either Sgo1

alone (left) or both Sgo1 and Cdc5 (right) (B). Cells were released from prophase into a metaphase I arrest. Arrowhead indicates unphosphorylated Rec8.

(C–E) Time-lapse series of Rec8-GFP in Cdc5-Coh cells. (C) Representative images, arrows indicate pericentromeric cohesin. (D) Scoring for presence or (E)

average intensity of pericentromeric Rec8-GFP in anaphase I with standard error bars (n = 50).

(F and G) Heterozygous CEN5 distance categories as in Figure 2E for spo13D (F) or mam1D (G) cells carrying Cdc5-Coh.

See also Figure S3.
GFP-tagged Sgo1 or PP2A regulatory subunit, Rts1, showed

similar kinetochore-proximal localization in live wild-type and

spo13D cells progressing from prophase I into metaphase I (Fig-

ures 4A and 4B). Furthermore, Sgo1-6Ha ChIP-seq profiles were

virtually indistinguishable in wild-type and spo13D metaphase I

cells along a representative chromosome (Figure 4C), or

averaged across all pericentromeres (Figure 4D), and ChIP-

qPCR confirmed quantitatively similar levels (Figure 4E), despite

slightly reduced cellular Sgo1 levels in spo13D cells (Figure 4F).

Moreover, Sgo1 localization during metaphase I in spo13D cells

corresponds to the domain of pericentromeric cohesin where

Rec8 is known to be enriched and ordinarily protected in wild-

type cells (Figure 4C; Kiburz et al., 2005). We conclude that

meiotic cohesion loss in spo13D mutants cannot be explained

by de-localization of Sgo1 from the pericentromere in meta-

phase I.
Spo13 Deters Cohesin Phosphorylation
Rec8 cleavage in anaphase I requires its prior phosphorylation,

which is counteracted by Sgo1-PP2A at the pericentromere.

Since Sgo1-PP2A is localized normally in spo13D cells, Spo13

must either preclude the requirement for cohesin phosphoryla-

tion, or counteract cohesin phosphorylation in parallel to Sgo1-

PP2A. To distinguish between these possibilities, we compared

the extent of pericentromeric Rec8 phosphorylation in wild-type,

spo13D, andSPO13-overexpressing cells. To specifically isolate

the pericentromeric pool of Rec8, we immunoprecipitated Sgo1

and used mass spectrometry to analyze relative changes in

phosphorylation of co-precipitating Rec8. As a positive control,

we immunoprecipitated Sgo1-3A, which cannot bind PP2A

(Xu et al., 2009) and is therefore expected to increase pericentro-

meric Rec8 phosphorylation. Analysis of Sgo1’s interaction

partners confirmed its interaction with cohesin (unchanged
Developmental Cell 49, 526–541, May 20, 2019 531
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Figure 4. Cohesin Protection Is Set up in spo13D Mutants

(A and B) Representative images show co-localization of kinetochores (Mtw1-tdTomato) and either Sgo1-yEGFP (A) or Rts1-yEGFP (B) in wild-type and spo13D

live cells.

(C and D) Sgo1-6Ha ChIP-Seq in wild-type and spo13D cells 75 min after release from prophase I. (C) Comparison of Sgo1 and Rec8 localization along chro-

mosome 6. (D) Median composite Sgo1-6Ha signal surrounding all centromeres.

(E) Mean Sgo1 enrichment by ChIP-qPCR in spo13D mutants at metaphase I from four experimental repeats with standard error bars (*p < 0.05).

(F) Immunoblot analysis of Sgo1-6Ha and Pgk1 loading control on whole-cell extracts from (E).
in spo13D), specific loss of monopolin in spo13D, and loss

of PP2A in the sgo1-3A mutant, as expected (Figure S4A).

While Rec8 phosphopeptides were not detectably enriched

in the sgo1-3A mutant over wild type, we observed a depletion

of unphosphorylated Rec8 peptides (Figures 5A, 5B, S4B,
532 Developmental Cell 49, 526–541, May 20, 2019
and S4C), suggesting that Rec8 hyperphosphorylation pre-

cludes phosphopeptide detection. The changes in Rec8 phos-

phopeptides in spo13D were modest: while unphosphorylated

Rec8 peptides were comparable in abundance to wild type,

Rec8 phosphopeptides were mildly enriched over wild type
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Figure 5. Cohesin Phosphorylation Is Required for Loss of Sister Chromatid Cohesion in spo13D Cells

(A and B) Average per residue ratio of log2(fold enrichment over wild type) of Rec8 non-phospho- (A) and phosphopeptides (B) in three replicate Sgo1 immu-

noprecipitates from cells harvested 75 min after release from prophase (metaphase I). Error bars represent standard deviation (*p < 0.05, one sample t test).

(C) Immunoblot analysis of Rec8-3Ha and Kar2 loading control.

(D–G) Effect of SPO13 deletion on localization of Rec8-GFP and phosphomutant variants. (D) Representative images from time-lapse series. Scale bars, 1 mm.

Arrows indicate pericentromeric Rec8-GFP. (E) Scoring and (F) intensity of pericentromeric Rec8-GFP with standard error bars. (G) Heterozygous CEN5-GFP

distances as in Figure 2E using Pds1-tdTomato as anaphase I marker.

See also Figure S4.
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Figure 6. Inhibition of Cohesin Kinases Prevents Cohesion Loss in spo13D Mutants in an Sgo1-Dependent Manner
(A) Immunoblot shows Hrr25-V5 co-immunoprecipitates with Spo13-3Flag.

(B) Immunoblot analysis of Spo13-3Flag and Kar2 loading control after release from prophase into a metaphase I arrest.

(legend continued on next page)
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(Figures 5A, 5B, S4B, and S4C). However, SPO13 overexpres-

sion did not detectably alter the abundance of either phosphor-

ylated or unphosphorylated Rec8 peptides (Figures 5A, 5B, S4B,

and S4C). Western blot analysis of Rec8 mobility in cells pro-

gressing from prophase I into a metaphase I arrest confirmed

that the faster migrating, unphosphorylated, and presumed

pericentromeric form of Rec8 disappeared more quickly in

spo13D cells than wild type (Figure 5C). Taken together, these

findings are consistent with the idea that Spo13 deters cohesin

phosphorylation.

Restricting Rec8 Phosphorylation Prevents Cohesin
Loss in spo13D Cells
We tested whether reducing Rec8 phosphorylation can pre-

vent cohesin loss during anaphase I by mutating only a subset

of phosphorylation sites, thereby reducing overall phosphory-

lation but not completely abrogating cleavage. We mutated

11 previously identified and 3 putative Cdc5-dependent phos-

phorylation sites (Brar et al., 2006) to alanine (henceforth called

Rec8-poloA) and used a non-phosphorylatable, and therefore

uncleavable, version of Rec8 (Rec8-24A) (Katis et al., 2010)

as a control. A separase biosensor (Yaakov et al., 2012),

comprising a fragment of Rec8-GFP tethered to a chromo-

somal arm site (Figure S4D), confirmed that while the Rec8-

24A mutations blocked cleavage, Rec8-poloA was cleaved

in a manner indistinguishable from wild-type Rec8 in both

wild-type and spo13D cells (Figures S4E–S4H). Next, we fol-

lowed GFP-tagged Rec8 and phosphomutant variants through

meiosis in otherwise wild-type or spo13D cells (Figure 5D). As

expected, at anaphase I, Rec8-GFP persisted in the vicinity of

the kinetochores in wild type but disappeared in spo13D cells

(Figures 5D and 5E). In contrast, non-phosphorylatable rec8-

24A prevented bulk cohesin cleavage whether or not Spo13

was present (Figures 5D and 5E). Interestingly, while the bulk

of Rec8-poloA-GFP was lost from chromosomes, a small

pool was retained in the pericentromere, even in spo13D cells,

albeit transiently (Figures 5D and 5E). Consistently, the signal

intensity of pericentromeric Rec8-poloA-GFP in spo13D

anaphase I cells was comparable to that of either Rec8-GFP

or Rec8-poloA-GFP in wild-type anaphase I cells (Figure 5F).

Nevertheless, the transiently retained Rec8-poloA-GFP in

spo13D cells could not prevent sister chromatid segregation

during anaphase I, though the non-phosphorylatable Rec8-

24A could (Figure 5G). The delay in pericentromeric cohesin

cleavage in rec8-poloA cells lacking SPO13, despite timely

loss of arm cohesin, suggests that it is the synergistic effects

of the Rec8-poloA mutations and pericentromeric Sgo1-

PP2A that impair cohesin cleavage. This indicates that a

threshold level of Rec8 phosphorylation is required for its

cleavage and that Sgo1-PP2A and Spo13 synergize to coun-

teract this phosphorylation at the pericentromere.
(C–E) Inhibition of Hrr25 and Cdc7 in spo13D cells. (C) Representative time-lapse

of Rec8-GFP localization. (E) Intensity of pericentromeric Rec8-GFP with standa

(F) Heterozygous CEN5-GFP distance categorization upon Hrr25 and Cdc7 inhib

(G) Confirmation of hrr25-as1 inhibition. Time between rounds of Cdc14 release

quartile, whiskers indicate minimum and maximum values and the horizontal line

(H and I) Sister chromatid cohesion upon Hrr25 (H) and Cdc7 (I) inhibition require

See also Figure S5.
Spo13 Prevents Premature Cohesion Loss by Limiting
the Effects of the Cohesin Kinases
We hypothesized that Spo13 may ensure cohesin protection by

regulating the cohesin kinases. Indeed, Spo13 binds Cdc5 and is

inferred to interact with DDK, which itself is a Cdc5 binding factor

(Matos et al., 2008). Hrr25-3V5 also co-immunoprecipitates with

Spo13-3Flag, independent of Hrr25 recruitment to kinetochores

by Mam1 (Figure 6A; Petronczki et al., 2006). Furthermore, full

Spo13 phosphorylation depends not only on DDK and Cdc5

(Matos et al., 2008) but also on Hrr25 (Figure 6B). Therefore,

Spo13 associates with, and is likely to be phosphorylated by,

all three cohesin kinases.

We asked whether Spo13 prevents the cohesin kinases asso-

ciating with chromosomes. However, chromosomal levels of

Hrr25, Cdc7, or Cdc5 are not increased in spo13D cells (Figures

1A, S5A, and S5B). Rather, as expected, spo13D cells showed

decreased levels of Hrr25 at centromeres, similar to cells lacking

the monopolin subunit Mam1, which is known to recruit it (Fig-

ure S5A) and which itself is lost in spo13D cells (Katis et al.,

2004b; Lee et al., 2004; Figure 2F).

Next, we tested whether Spo13 can influence the ability

of the cohesin kinases to trigger phosphorylation-dependent

Rec8 cleavage using specifically inhibitable versions of

Hrr25 and Cdc7 (Hrr25-as1 and Cdc7-as3). During meiosis I,

Hrr25 and Cdc7 trigger cleavage of chromosomal arm cohesin

redundantly, so that inhibition of both kinases blocks all chro-

mosome segregation, while inhibition of a single kinase delays

Rec8 cleavage (Katis et al., 2010). We confirmed this using the

Rec8-GFP separase biosensor targeted to a chromosomal arm

site (where the phosphatase Sgo1-PP2A is absent) and further

found that deletion of SPO13 partially abrogated the cleavage

delay caused by inhibition of Cdc7 but not Hrr25 (Figure S5C).

As expected, inhibition of Hrr25 and Cdc7 also prevented

removal of all endogenous Rec8-GFP in wild-type and

spo13D cells (Figures 6C–6E). Surprisingly, however, Rec8-

GFP was undetectable in 44% of anaphase I cdc7-as3 mu-

tants and virtually all spo13D cdc7-as3 cells (Figure 6D). In

contrast, inhibition of Hrr25-as1 in spo13D increased the num-

ber of cells with detectable pericentromeric Rec8-GFP and its

average intensity in anaphase I (Figure 6E). We then examined

the effects of Hrr25 and Cdc7 kinase inhibition on cohesion

during anaphase I (Figure 6F). Both kinases are individually

required for monopolin function (Matos et al., 2008; Petronczki

et al., 2006), and inhibition of Cdc7, Hrr25, or both kinases

increased sister kinetochore biorientation to some extent;

however, centromeres separated only a short distance, indi-

cating that centromeric cohesion is preserved, even in the

spo13D background. Curiously, Hrr25 inhibition had only a mi-

nor effect on sister kinetochore biorientation in an otherwise

wild-type background. This is not due to a failure to inhibit

Hrr25 because meiosis II Cdc14 release, which specifically
images. Scale bars, 1 mm. Arrows indicate pericentromeric cohesin. (D) Scoring

rd error bars.

ition as in Figure 2E.

measured from the experiment in Figure 6H. Boxes represent first and third

shows the median.

s Sgo1. Heterozygous CEN5-GFP distances scored as in Figure 2E.
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requires Hrr25, was blocked (Figure 6G) and in spo13D cells,

sister chromatid segregation was prevented (Figure 6F). The

reason why Hrr25-as1 inhibition has a more modest effect on

monoorientation compared to mam1D remains unclear, but

Hrr25 kinase activity may have a regulatory role since it is

also not required for kinetochore fusion in vitro (Sarangapani

et al., 2014). Unexpectedly, given that Rec8-GFP was unde-

tectable in anaphase I (Figure 6D), cdc7-as3 also prevents sis-

ter chromatid segregation in spo13D cells. Therefore, remark-

ably, inhibition of a single cohesin kinase is sufficient to restore

cohesion to spo13D anaphase I cells. Depletion of Cdc5 in

spo13D cells also prevented sister chromatid segregation (Fig-

ures S5D and S5E). However, this is partially overcome by

abolishing recombination upon deleting SPO11 (Figures S5D

and S5E), indicating that the perceived sister chromatid cohe-

sion in spo13D pCLB2-CDC5 cells is in part due to the require-

ment for Cdc5 to resolve DNA joint molecules (Clyne et al.,

2003; Matos et al., 2011). Furthermore, the faster migrating un-

phosphorylated Rec8 isoforms, likely the pericentromeric pool,

do not persist in cells lacking both Sgo1 and Cdc5 (Figure 3B).

This indicates that Cdc5 is not essential for phosphorylation of

the pericentromeric pool of cohesin. Together, these observa-

tions demonstrate that reducing cohesin phosphorylation by

inhibition of individual cohesin kinases, Hrr25 and DDK, is suf-

ficient to prevent sister chromatid separation in the absence

of SPO13.

Sgo1-PP2A and Spo13-Dependent Regulation of
Cohesin Kinases together Protect Pericentromeric
Cohesin
Our findings suggest that Spo13 regulates cohesin cleavage by

counteracting the effects of the cohesin kinases, thereby syner-

gizing with Sgo1-PP2A to maintain pericentromeric cohesin

phosphorylation below a threshold important for its cleavage.

If this idea were correct, inactivation of the Sgo1-PP2A phos-

phatase would be expected to restore pericentromeric cohesin

cleavage in spo13D cells where a single kinase is inhibited.

Indeed, Hrr25 or Cdc7 inhibition blocked sister chromatid

segregation in spo13D mutants only in the presence of Sgo1

(Figures 6H and 6I). Similarly, depletion of Sgo1 allows spindle

elongation and sister chromatid segregation in pCLB2-CDC5

cells (Brar et al., 2006). Since Sgo1 is restricted to the pericen-

tromere, the relevant cohesion that prevents sister chromatid

segregation in spo13D hrr25-as1 and spo13D cdc7-as3 cells

must also reside in the pericentromere. Importantly, this con-

firms that endogenous Sgo1 is functional in cells lacking

Spo13, at least in the absence of cohesin kinase activity, rein-

forcing the conclusion that Spo13 and Sgo1-PP2A protect
Figure 7. Contribution of Post-Metaphase I Sgo1 Loss to Defective Co

(A and B) Time lapse of Sgo1 returning to the pericentromere after anaphase I ons

after initial Cdc14 release.

(C–E) Sgo1 tethering to Rec8. (C) Representative images. Scale bars, 1 mm. A

cohesin in anaphase I was scored in 50 cells. (E) Average intensity of pericentrom

(F and G) Sister chromatid cohesion upon tethering of Sgo1 to Rec8. (F) Repres

tromeric cohesin. (G) Categories of heterozygous CEN5-GFP at anaphase I onset

within two time points after bulk Rec8 cleavage for 50 cells per strain.

(H) Model for regulation of meiosis I chromosome segregation by Spo13. For de

See also Figures S6 and S7.
pericentromeric cohesin through parallel and non-redundant

pathways. Together, these results indicate that Spo13 counter-

acts Rec8 phosphorylation by cohesin kinases to prevent its

cleavage.

Spo13 Influences Sgo1 through Control of Cohesin
Kinases
Our data indicate that the cohesin kinases promote cohesion

loss in spo13D cells by directly phosphorylating Rec8 to pro-

mote its cleavage. However, Hrr25 is also known to promote

Sgo1 removal from chromosomes during meiosis II (Arg€uello-

Miranda et al., 2017), so Spo13-dependent regulation of the

cohesin kinases might additionally be important for mainte-

nance of Sgo1-PP2A function during meiosis I. Indeed, inhibi-

tion of either hrr25-as1 or cdc7-as3, or depletion of Cdc5,

increased total cellular Sgo1 levels and its association with

centromeres (Figures S6A–S6E). Curiously, and for reasons

that are unclear, centromeric Sgo1 levels in hrr25-as1 cdc7-

as3 double mutants are comparable to wild type (Figure S6A),

suggesting that these kinases influence Sgo1 localization both

positively and negatively. If Spo13 counteracts the effects

of cohesin kinases, then its overproduction would be ex-

pected to both increase chromosomally associated Sgo1

and enhance cohesin protection in meiosis I. Indeed, centro-

meric Sgo1 levels (Figure S6F) and the intensity of pericentro-

meric Rec8-GFP in anaphase I were increased upon SPO13

overexpression, with the latter being dependent on the pres-

ence of Sgo1 (Figures S6G and S6H).

Our findings implicate Spo13 in restricting cohesin kinases,

which in turn negatively regulate Sgo1 association with chromo-

somes (Figures S6A–S6E; Arg€uello-Miranda et al., 2017), yet

Sgo1-PP2A is normally localized in spo13D metaphase I cells

(Figure 4). Since cohesin cleavage occurs only at anaphase I

onset, we reasoned that the effects of SPO13 deletion on

Sgo1-PP2A might only be apparent at this stage. In wild type,

pericentromeric Sgo1-mNG is detected in metaphase I, greatly

reduces in intensity at anaphase I onset, re-accumulates during

metaphase II, and disappears during anaphase II (Figures 7A and

7B). In contrast, Sgo1 permanently disappears at anaphase I

onset in spo13D cells (Figures 7A and 7B). Remarkably, inhibition

of Hrr25-as1, but not Cdc7-as3, caused the reappearance of

Sgo1 at pericentromeres after anaphase I onset in spo13D cells

(Figures 7A, 7B, S6I, and S6J). Sgo1 reappearance in anaphase I

does not require the persistence of pericentromeric cohesin

since it also occurred in spo13D hrr25-as1 cells expressing

non-protectable Rec8-18D (Figures S6K and S6L). We conclude

that Hrr25 removes Sgo1 from chromosomes upon anaphase I

onset in spo13D cells.
hesion in spo13D Cells

et. (A) Representative images. (B) Scoring of Sgo1 localization in 50 cells for 4 h

rrows indicate pericentromeric cohesin. (D) The presence of pericentromeric

eric Rec8-GFP with standard error bars.

entative images from time-lapse. Scale bars, 1 mm. Arrows indicate pericen-

scored by measuring the maximum distance between two TetR-tdTomato foci

tails, see text.
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Cohesin-Tethered Sgo1 Restores Pericentromeric
Cohesin, but Not Cohesion, to spo13D Cells
To determine whether premature Sgo1 removal causes

cohesin loss in spo13D cells, we used a version of Sgo1 lacking

its recognition site for APC/CCdc20-dependent degradation

(Eshleman and Morgan, 2014), which persists at pericentro-

meres during anaphase I (Figures S7A and S7B), and imaged

Rec8-GFP throughout meiosis (Figure S7C). Interestingly,

weak pericentromeric Rec8-GFP foci were detected in 38% of

spo13D sgo1Ddb cells (Figure S7D), although the intensity was

barely increased over that observed in spo13D cells (Figure S7E).

Despite this apparent retention of pericentromeric cohesin in

spo13D sgo1Ddb cells, we found that sister chromatid segrega-

tion frequency was nearly identical to that observed in spo13D

cells (Figure S7F). These results suggest that preventing Sgo1

degradation during anaphase I is insufficient to restore sister

chromatid cohesion to spo13D cells.

While Sgo1Ddb persisted at pericentromeres and marginally

increased Rec8 levels during anaphase I, it may be subject to

Hrr25-dependent removal and not be robustly associated with

cohesin, explaining why it is incapable of restoring sister chro-

matid cohesion. As a complementary approach, we irreversibly

forced Sgo1-cohesin interaction using the GFP-GBP tethering

system, therefore ensuring continued Rec8-Sgo1 interaction at

anaphase I onset. Strikingly, forcing Rec8-Sgo1 interaction re-

sulted in Rec8-GFP retention at the pericentromere in all

spo13D anaphase I cells, with signal intensity comparable to

that of wild-type cells (Figures 7C–7E). The majority of this signal

corresponds to uncleaved Rec8, since tethering Sgo1-3A, which

cannot bind PP2A or prevent cohesin cleavage, increased

pericentromeric Rec8-GFP intensity only modestly during

anaphase I (Figures S7G–S7I).

Surprisingly, forcing Rec8-Sgo1 interaction in spo13D mu-

tants did not prevent the segregation of heterozygous CEN5-

tdTomato foci to opposite poles in anaphase I, despite the

presence of cohesin (Figures 7F and 7G). The persistence of

pericentromeric cohesin that does not provide sister chromatid

cohesion in spo13D cells with forced Rec8-Sgo1 interaction

(Figures 7F and 7G) is reminiscent of the behavior of spo13D

cells expressing rec8-poloA (Figures 5D–5G) or CDC5-Kt (Fig-

ures S3B–S3F). Equally, tethering of Sgo1 to the kinetochore

component Nkp1 did not prevent sister chromatid segregation

in anaphase I spo13D cells (Figure S7J). Overall, these findings

show that preventing Hrr25-dependent Sgo1 removal from peri-

centromeres during anaphase I alone is insufficient to restore

sister chromatid cohesion, although pericentromeric cohesin

persists. We conclude that Spo13-dependent control of cohesin

kinases protects pericentromeric cohesion both by preventing

cohesin phosphorylation and by maintaining Sgo1-PP2A func-

tion in anaphase I.

DISCUSSION

Establishment of the reductional meiosis I chromosome segre-

gation pattern requires a number of seemingly unrelated modifi-

cations to the chromosome segregation machinery. Intriguingly,

accumulating evidence suggests that a central, meiosis-spe-

cific, regulatory protein establishes at least two of these pro-

cesses: sister kinetochore monoorientation and cohesin protec-
538 Developmental Cell 49, 526–541, May 20, 2019
tion. These key meiosis I regulators, which essentially convert

mitosis intomeiosis I, include fission yeast Moa1,mouseMEIKIN

(Kim et al., 2015; Miyazaki et al., 2017), and budding yeast

Spo13. Here, we have shown that while Spo13 elicits both sister

kinetochore monoorientation and pericentromeric cohesion

through regulation of key meiotic kinases, it does so via distinct

mechanisms (Figure 7H). Sister kinetochore monoorientation is

achieved by Spo13-dependent recruitment of Cdc5 to kineto-

chores. Pericentromeric cohesin protection is achieved by

controlling the cohesin kinases, thereby preventing cohesin

phosphorylation both directly and, by preventing Sgo1-PP2A

removal, indirectly. Overall, we reveal that Spo13 orchestrates

the action of key meiotic kinases to establish reductional chro-

mosome segregation in meiosis I.

Kinase Recruitment to Kinetochores—a Mechanism to
Bias toward Monoorientation?
The unifying feature of the meiosis I regulators, Spo13, Moa1,

and MEIKIN, is interaction with their respective Polo kinases

(Kim et al., 2015; Matos et al., 2008; Miyazaki et al., 2017). We

show that centromeric recruitment of Cdc5 by Spo13 is required

for sister kinetochore monoorientation. Tethering Cdc5 to kinet-

ochores in spo13Dmutants restored sister chromatid co-segre-

gation at anaphase I. Remarkably, Cdc5-Kt enforces sister

chromatid co-segregation independently of monopolin-directed

kinetochore fusion. Instead, kinetochore-localized Cdc5 may

bias sister kinetochores toward segregating to the same pole.

Rather than monopolin-based monoorientation, which is spe-

cific to budding yeast, inducing this bias might be the conserved

effect of Polo kinase recruitment to kinetochores by Spo13,

Moa1, and MEIKIN. How such a bias might be achieved is un-

clear, but kinetochore-associated human Plk1 stabilizes initial

kinetochore-microtubule attachments (Liu et al., 2012), and

perhaps a similar activity of Spo13-Cdc5 might support sister

kinetochore monoorientation. We note that since Cdc5-Kt also

induces homolog co-segregation in the absence of monopolin,

regulated recruitment of Cdc5 to kinetochores is likely to be

important. Indeed, while Cdc5-Kt is constitutively targeted to ki-

netochores during meiosis, in wild-type cells Spo13 is degraded

in anaphase I so specific kinetochore targeting of Cdc5 is

restricted to metaphase I (Sullivan and Morgan, 2007).

In budding yeast, monopolin-dependent sister kinetochore

fusion is the main requirement for sister kinetochore monoorien-

tation. While the kinetochore localization of monopolin is per-

turbed in spo13D cells (Katis et al., 2004b; Lee et al., 2004;Matos

et al., 2008), curiously, and despite a requirement for Cdc5 in re-

cruiting monopolin to kinetochores (Clyne et al., 2003), Cdc5-Kt

does not rescue monopolin association with kinetochores. This

suggests that Spo13 recruits or maintains monopolin at kineto-

chores in a Cdc5-independent manner. The kinetochore recruit-

ment of monopolin depends on its association with the core

kinetochore protein, Dsn1, an interaction that is likely to be regu-

lated by phosphorylation (Corbett et al., 2010; Plowman et al.,

2018; Sarkar et al., 2013). Spo13 also associates with, and influ-

ences, two further kinases, DDK and Hrr25, both of which are

required for monopolin association with kinetochores (Matos

et al., 2008; Petronczki et al., 2006). It is conceivable that as

we show for cohesin protection, Spo13 regulates sister kineto-

chore monoorientation by affecting multiple key kinases.



The Role of Cdc5 in Cohesin Removal
Previous reports have suggested that kinetochore recruitment

of Cdc5 is the key function of fission yeast Moa1 and mouse

MEIKIN in cohesin protection (Kim et al., 2015; Miyazaki et al.,

2017). In budding yeast, however, the role of Cdc5 in cohesin

function duringmeiosis has been controversial. While it is agreed

that Cdc5 binds to and phosphorylates cohesin, it was unclear

whether Cdc5-dependent cohesin phosphorylation contributes

to cohesin cleavage (Attner et al., 2013; Brar et al., 2006; Katis

et al., 2010). Indeed, conversely, at least in cells lacking the

meiosis-specific APC/C activator Ama1, Cdc5 promotes cohe-

sin protection (Katis et al., 2010). We have provided a possible

solution to this apparent paradox, as we demonstrate that

Cdc5 affects cohesin cleavage in different ways, depending on

its localization. Cohesin-tethered Cdc5 promotes loss of peri-

centromeric cohesion. Whether this is due to cohesin cleavage

or via the cleavage-independent cohesin removal pathway

mediated by Rad61/Wapl (Challa et al., 2016, 2019; Yu and

Koshland, 2005) remains to be determined. In contrast, kineto-

chore-bound Cdc5 enhances pericentromeric cohesin retention

in anaphase I, though this does not confer functional cohesion.

Therefore, while Spo13-dependent Cdc5 recruitment to kineto-

choresmay support centromeric cohesin protection, as reported

for fission yeast Moa1 and mouse MEIKIN (Kim et al., 2015;

Miyazaki et al., 2017), other functions of Spo13 are essential.

Cohesin Kinases Drive Premature Loss of
Pericentromeric Cohesion in spo13D Cells
The role of Spo13 and its functional homologs in cohesin protec-

tion has long been elusive. Although a function in localizing Sgo1

has been suggested (Kiburz et al., 2005; Kim et al., 2015; Miya-

zaki et al., 2017), we and others, could not find any evidence that

the centromeric localization of Sgo1 in metaphase I is altered in

the absence of Spo13 (Lee et al., 2004). Instead, we reveal that

cohesin kinases are the main driver of premature cohesin loss

in spo13D cells via a two-pronged mechanism, affecting both

cohesin itself and its protector, Sgo1-PP2A. Firstly, inhibition of

Hrr25 and Cdc7 or depletion of Cdc5, all restored sister chro-

matid cohesion in the absence of Spo13 and this was dependent

on Sgo1. The simplest interpretation of these data is that Spo13

and Sgo1-PP2A together ensure that Rec8 phosphorylation is

maintained at a level below that sufficient for Rec8 cleavage.

Since Sgo1 is restricted to the pericentromere, only Rec8

in this region will be below the phosphorylation threshold

required for cleavage. Secondly, inhibition of Hrr25 allows

Sgo1 reaccumulation after anaphase I onset in spo13D cells.

Therefore, Spo13-dependent Hrr25 restraint also promotes co-

hesin protection by maintaining Sgo1 at pericentromeres in

anaphase I cells. Interestingly, Hrr25-mediated Sgo1 removal

might explain the eventual cleavage of pericentromeric Rec8-

poloA, which transiently persists into anaphase I in spo13D cells

(Figures 5D–5F). While forcibly tethering Sgo1 to Rec8 partially

restored pericentromeric cohesin, it failed to support centro-

meric cohesion. Therefore, although Spo13-dependent reaccu-

mulation of Sgo1-PP2A likely facilitates cohesion protection, it

is not the only important effect of Spo13-dependent cohesin

kinase control.

Our findings also highlight an important paradox: how does

Spo13 antagonize the cohesin kinases in anaphase I, when
Spo13 is normally degraded (Sullivan and Morgan, 2007)?

Hrr25 is required for meiosis II exit and this function must be in-

hibited in meiosis I (Arg€uello-Miranda et al., 2017). Our findings

that Spo13 interacts with Hrr25 and that inhibition of this kinase

specifically rescued multiple spo13D-associated phenotypes

leads us to speculate that Spo13 could act as an inhibitor of

Hrr25-mediated meiotic exit and that cohesin deprotection in

the absence of Spo13 might be an inevitable side effect of this

process occurring prematurely.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Ha (HA11) BioLegend Cat# MMS-101R; RRID: AB_291262

Mouse anti-Ha (12CA5) Roche Cat# 11583816001; RRID: AB_514505

Mouse anti-GFP Sigma Cat# 11814460001; RRID: AB_390913

Mouse anti-V5 Bio-Rad Cat# MCA1360; RRID: AB_322378

Mouse anti-FLAG M2 Sigma Cat# F1804; RRID: AB_262044

Rabbit anti-Kar2 Lab stock N/A

Rabbit anti-Pgk1 Lab stock N/A

Sheep anti-mouse HRP GE Healthcare Cat# NXA931; RRID: AB_772209

Donkey anti-rabbit HRP GE Healthcare Cat# NA934; RRID: AB_772206

Donkey anti-mouse IRDye 800CW Li-COR Biosciences Cat# 926-32212; RRID: AB_621847

Donkey anti-rabbit IRDye 680RD Li-COR Biosciences Cat# 926-68073; RRID: AB_10954442

Rat anti-tubulin Bio-Rad Cat# MCA77G; RRID: AB_325003

Donkey anti-rat FITC Jackson ImmunoResearch Cat# 712-095-153; RRID: AB_2340652

Chemicals, Peptides and Recombinant Proteins

b-estradiol Sigma E2758

Benzonase� Merck 71206-3

Chelex� 100 Bio-Rad 1422822

Proteinase K Life Technologies 25530049

Dynabeads ThermoFisher 10009D

PP1 Toronto Research Chemicals A602980

1-NM-PP1 Toronto Research Chemicals A603004

Trypsin Pierce 90057

High-Select� TiO2 Phosphopeptide

Enrichment Kit

ThermoFisher A32993

NuPage LDS Sample buffer ThermoFisher NP0008

Quick Blunting kit NEB E1201S

Klenow fragment NEB M0212S

Quick Ligation kit NEB M2200S

Phusion� High-Fidelity DNA polymerase NEB M0530S

AMPure XP beads Beckman Coulter A63881

Aprotinin Melford A2301

Chymostatin Melford C1104

Leupeptin (Hemisulphate) Melford L1001

E64 Melford E1101

Pepstatin A Melford P2203

Antipain, dihydrochloride Melford A0105

AEBSF hydrochloride 98% ACROS Organics 32811010

N-Ethylmaleimidine 99+% ACROS Organics 156100050

COmplete-EDTA-free tablets Roche 11873580001

Microcystin-L LKT Laboratories M3406

Glusulase Perkin Elmer NEE154001EA

Zymolyase AMS Biotechnology (Europe) 120491-1

p-phenylenediamine Sigma-Aldrich 695106

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

ChIP-seq data has been deposited on the Genome

Expression Omnibus (GEO) and can be accessed

using accession numbers

This study GSE112167 (Sgo1-6Ha), GSE112170 (Spo13-

3Flag) and GSE123546 (Rec8-3Ha).

The mass spectrometry proteomics data have

been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository.

This study PXD012627

Experimental Models: Organisms/Strains

Yeast strains used in this study n/a See Table S1

Oligonucleotides

Oligonucleotides used in this study for qPCR n/a See Table S3

Recombinant DNA

Plasmids generated in this study n/a See Table S2

Software

Image J plugin ‘‘DV_DotCounter’’ for analysis of

microscopy data is available on Github

This study and Galander

et al., 2019

https://doi.org/10.5281/zenodo.2553082)

Image J plugin ‘‘YeastLineProfiler’’ for analysis of

microscopy data is available on Github

This study and Galander

et al., 2019

https://doi.org/10.5281/zenodo.2560099

Other

NEXTflex-6 DNA Barcodes Perkin Elmer 514101
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Lead Contact, Adele L.

Marston (adele.marston@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast Strains and Plasmids
All yeast strains are SK1 derivatives and are listed in Table S1. Plasmids generated in this study are listed in Table S2. Gene deletions,

promoter replacements and gene tags were introduced using standard PCR-based methods. Specific depletion of proteins (Sgo1,

Cdc20, Cdc5) during meiosis was achieved by placement of genes under the mitosis-specificCLB2 promoter (Lee and Amon, 2003).

For prophase block-release experiments, strains carried pGAL1-NDT80, pGPD1-GAL4.ER (Benjamin et al., 2003). Strains carrying

rec8-24A (Katis et al., 2010), rec8-18D (Arg€uello-Miranda et al., 2017) and hrr25-as1 (Petronczki et al., 2006) were described previ-

ously. GFP binding protein (GBP) (Rothbauer et al., 2006), cdc7-as3 (Wan et al., 2006), RTS1-GFP (Katis et al., 2010) and separase

biosensor constructs (Yaakov et al., 2012) were kind gifts from Ulrich Rothbauer and Heinrich Leonhardt, Nancy Hollingsworth,

Wolfgang Zachariae and David Morgan, respectively. A yeast strain with rec8-poloA was generated from a synthetic gene construct

(GeneArt) which carries the mutations S136A, T173A, S179A, S197A, S199A, S215A, T249A, S285A, S386A, S387A, S410A, S421A,

S465A and S466A. Non-fluorescent GFP (nfGFP) was generated by introduction of the S65T and G67A mutations as described

(Kutrowska et al., 2007).

Growth Conditions
Cells were prepared for sporulation as described by Vincenten et al. (2015). Briefly, after cryostorage diploid cells were thawed on

YPG plates (1% yeast extract, 2% Bacto peptone, 2.5% glycerol, and 2% agar) for 16 h, before growing on 4% YPDA plates for

8-24 h (1% yeast extract, 2% Bacto peptone, 4% glucose, 2% agar and 0.3mM adenine). A small amount of culture was inoculated

into liquid YPDA (1% yeast extract, 2%Bacto peptone, 2%glucose and 0.3mMadenine) and grown for 24 h. Cultures were diluted to

OD600 = 0.3-0.5 in BYTA (1% yeast extract, 2% Bacto tryptone, 1% potassium acetate, 50mM potassium phthalate) medium and

grown for approximately 16 h. Cells were washed twice with sterile deionised water and resuspended in sporulation medium

(SPO; 0.3% potassium acetate, pH 7) at OD600 = 2.5. All growth steps were performed at 30�C. For prophase block-release, exper-

iments were performed as above except that 5-6 h after resuspension in SPO medium, b-estradiol was added to 1mM to induce

release from the prophase arrest, as outlined by Carlile and Amon (2008). To inhibit Hrr25-as1 and Cdc7-as3, cells were treated

with 5mM 1-NM-PP1 (Toronto Research Chemicals) and 20mM PP1 (Toronto Research Chemicals), respectively. In experiments

where at least one strain carried cdc7-as3, all strains also carried pGAL-NDT80 and GAL4-ER to enable synchronous release

from a prophase I arrest (Carlile and Amon, 2008) and PP1 (and 1-NM-PP1, if hrr25-as1 was also part of the experiment) was added
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at the same time as b-estradiol i.e. at prophase exit. In experiments where Hrr25-as1 was the only kinase to inhibit, 1-NM-PP1 was

added 1 h after resuspending cells in SPO. This procedure was followed because Hrr25-as1 inhibition does not impact meiotic pro-

gression until meiotic exit whereas Cdc7-as3 inhibition results in meiotic arrest either in S phase or prophase.

For overexpression experiments using the copper-inducible promoter, pCUP1, 50 mMCuSO4 was added to metaphase I-arrested

(pCLB2-CDC20) cells 4.5 h after resuspension in SPO medium. In case of prophase arrest/release experiments, 50 mM CuSO4 was

added 30 min prior to release with b -estradiol. For the experiments with the separase biosensor, cells were supplied with 100 nM

CuSO4 at the time of resuspension in SPO medium.

METHOD DETAILS

Chromatin Immunoprecipitation
ChIP-qPCR and ChIP-seq were performed as previously described (Vincenten et al., 2015). Briefly, cells were harvested and washed

twice in TBS buffer (20 mM Tris-HCl pH7.5, 150 mM NaCl) and once in FA lysis buffer (100 mM HEPES-KOH pH7.5, 300 mM NaCl,

2 mM EDTA, 2% TritonX, 0.2%Na Deoxycholate) containing 0.1% SDS (FA lysis buffer/0.1% SDS). Cell pellets were resuspended in

300ml FA lysis buffer/0.5% SDS containing 1x cOmplete protease inhibitor (PI) cocktail (Roche) and 1mM PMSF and lysed using sil-

icon beads in FastPrep-24 homogeniser (MP Biomedicals). The mixture was centrifuged and washed once with FA lysis buffer/0.1%

SDS+PI/PMSF. Cells were resuspended in 500ml FA lysis buffer/0.1% SDS+PI/PMSF and disrupted in a Bioruptor Plus sonicating

water bath (Diagenode). Cell debris was removed by centrifugation. 500ml FA lysis buffer/0.1% SDS+PI/PMSF was added to the su-

pernatant. After a further round of centrifugation, 300ml FA lysis buffer/0.1% SDS+PI/PMSF were added to the supernatant and 10ml

of this solution was removed as Input. IP was performed overnight using 1ml of cell lysate and 7.5ml mouse anti-Ha (12CA5, Roche),

5ml mouse anti-Flag (M2, Sigma), 10ml mouse anti-V5 (SV5-Pk1, Bio-Rad) or 10ml mouse anti-GFP (Roche) together with 15ml of pre-

washed Protein G-conjugated Dynabeads (Life Technologies). After overnight incubation, IPs were washed in a tubemagnet succes-

sively with 1ml of each of CWB1 (FA lysis buffer/0.1% SDS/ 275 mM NaCl), CWB2 (FA lysis buffer/0.1% SDS/ 500 mM NaCl), CWB3

(10 mM Tris-HCl, pH 8, 0.25 M LiCl, 1mM EDTA, 0.5% NP-40, 0.5% Na Deoxycholate) and TE (10 mM Tris-HCl, pH 8, 1 mM EDTA).

Remaining wash buffer was removed and 200ml 10% Chelex 100 (Bio-Rad) solution was added to both IP and Input before boiling at

100�C for 10 min. 2.5ml proteinase K (10mg/ml; Life Technologies) was added and samples incubated at 55�C for 30 min before

boiling for a further 10 min at 100�C. Samples were centrifuged briefly and 130ml of supernatant removed for qPCR. qPCR was per-

formed in a 20ml Express SYBR GreenER (Life Technologies) reaction and run on a Roche Lightcycler. ChIP enrichment was deter-

mined as follows: DCT was calculated according to DCT = (CT(ChIP) � [CT(Input)� logE (Input dilution factor)]) where E represents the

specific primer efficiency value. % Enrichment was then calculated according to the formula E�DCT. qPCR was performed in tech-

nical triplicates from each of at least three or more independent biological replicates (cultures). The geometric mean of technical rep-

licates was used as the CT value in the above formula. Error bars represent standard error of the mean enrichment/input averaged

over biological replicates. Primers for qPCR analysis are listed in Table S3.

For calibrated ChIP-Seq with an internal reference, we modified the procedure described by Hu et al. (2015). Rather than Candida

glabrata, S. pombe carrying Rad21-6HA (strain spAM638) or Rad21-3FLAG (spAM1863) was used as the calibration genome. For

each IP, 100ml of S. pombe cells were grown in YES to OD595=0.25-0.3, fixed and frozen as described for S. cerevisiae.

S. pombe cell pellets were resuspended in 400mL of cold 1x FA lysis buffer/0.5% SDS+PI/PMSF and mixed with thawed

S. cerevisiae pellet (approximately 50ml cells OD600=1.8). Cells were processed as for ChIP-qPCR. However, instead of usingChelex,

ChIP-seq samples were eluted in TES and de-crosslinked by incubating 400ml of eluate with 40ml proteinase K (10mg/ml) over night.

Samples were cleaned up using the Promega Wizard Kit and eluted in 35ml dH2O.

ChIP-Seq libraries were prepared using NEXTflex-6 DNA Barcodes in DNA LoBind tubes (Eppendorf). Input and IP DNA blunt and

phosphorylated ends were generated using the Quick blunting kit (NEB), before addition of dA tails by Klenow enzyme. Adapters

were ligated using T4DNA ligase before consecutive selection of fragments >100bp then >150-200bp using AMPure beads. Libraries

were amplified by PCR using NextFlex PCR primers before two further rounds of AMPure purification to collect fragments 100-250 bp

in size. Library quality was assessed on a Bioanalyzer (Agilent) and quantified usingQubit before sequencing on aMiniSeq instrument

(Illumina). Calculation of Occupancy Ratio (OR) and data analysis was performed as described by Hu et al. (2015). Briefly, reads were

mapped to both the S. pombe calibration genome and S. cerevisiae experimental genome and the number of reads mapping to each

genome was determined. Occupancy ratio was then determined using the formula Wc*IPx/Wx*IPc where W=Input; IP=ChIP; c=cali-

bration genome (S. pombe) and x=experimental genome (S. cerevisiae). The number of reads at each position was normalized using

the OR and visualised using the Integrated Genome Viewer (Broad Institute).

Immunoprecipitation
Approximately 5g (co-immunoprecipitation) or 30g (IP for mass spectrometry) of yeast cells were lysed mechanically using a Retsch

RM100 electric mortar-grinder. Ground yeast were resuspended in H0.15 buffer (25mM Hepes (pH 8.0), 2mM MgCl2, 0.1mM EDTA

(pH 8.0), 0.5mM EGTA-KOH (pH 8.0), 15% glycerol, 0.1% NP-40, 150mM KCl) containing protease and phosphatase inhibitors

(CLAAPE (2000x stock in DMSO contains 10mg/ml each of Chymostatin, Leupeptin, Aprotinin, Antipain, Pepstatin A and E64– 2x

final), 2mM Pefabloc (AEBSF), 0.8 mM Na-orthovanadate, 0.2mM Microcystin LR, 1x Roche cOmplete EDTA-free protease inhibitor

cocktail, 2mM NEM, 4mM beta-glycerophosphate, 2mM Na pyrophosphate, 10mM NaF) and incubated with 40U/ml benzonase

(Novagen) at 4�C for 1h. Debris was removed by centrifugation and lysates were incubated for 2.5 h at 4�Cwith Protein GDynabeads,
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previously conjugated to mouse anti-Flag (M2, Sigma) or mouse anti-V5 (SV5-Pk1, Bio-Rad) and, for co-immunoprecipitation only,

blocked for 1 h in 5%milk. Beads were washed three times in H0.15 buffer before elution at 50�C for 15 min in NuPAGE LDS sample

buffer (ThermoFisher) with 5% b-mercaptoethanol.

Western Blotting
For western immunoblotting, samples were fixed in TCA, acetone-washed and whole cell extracts prepared by bead-beating in TE

containing protease inhibitors before running on SDS-PAGE and transferring to nitrocellulose membrane. Antibodies used were

mouse anti-Ha (HA11, Covance) at 1:1000 dilution, mouse anti-GFP (Roche) at 1:1000, mouse anti-V5 (SV5-Pk1, Bio-Rad) at

1:2000, mouse anti-Flag (M2, Sigma) at 1:1000, rabbit anti-Pgk1 (lab stock) at 1:10000, rabbit anti-Kar2 (lab stock) at 1:20000, sheep

anti-mouse-HRP (GE Healthcare) at 1:5000, donkey anti-rabbit-HRP (GE Healthcare) at 1:10000, donkey anti-mouse-IRDye 800CW

(LI-COR Biosciences) at 1:10000 and donkey anti-rabbit-IRDye 680RD (LI-COR Biosciences) at 1:10000. Quantitative western blot-

ting was performed using an Odyssey CLx Infrared Imaging System (LI-COR Biosciences) and quantified using ImageStudio 5.2.5

(LI-COR Biosciences).

Mass Spectrometry
Protein samples were run on a bis-tris gel, stained with Coomassie; bands were excised and de-stained with 50mM ammonium bi-

carbonate and acetonitrile (ACN) and proteins were digested with trypsin. In brief, proteins were reduced in 10mM dithiothreitol for

30 min at 37�C and alkylated in 55mM iodoacetamide for 20 min at ambient temperature in the dark. They were then digested over-

night at 37�Cwith 12.5ng/mL trypsin. Following digestion, peptideswere elutedwith 80%ACN+ 0.1%TFA solution and concentrated

until dry by vacuum. High-Select� TiO2 Phosphopeptide Enrichment Kit (Thermo Fisher) was used according to manufacturer’s in-

structions, with considerable sonication time needed to resuspend peptides in the Binding Buffer. Both the flow-through (containing

nonphosphopeptides) and the eluate were concentrated until dry by vacuum centrifugation. The flow-through sample was resus-

pended in 100mL 0.1% TFA and spun onto StageTips as described previously (Rappsilber et al., 2003). Peptides were eluted from

StageTips in 40mL of 80% ACN in 0.1% TFA and concentrated down to 1mL by vacuum. All samples were then prepared for LC-

MS/MS analysis by diluting them to 5mL with 0.1% TFA. LC-MS-analyses were performed on an Orbitrap Fusion� Lumos� Tribrid�
Mass Spectrometer (Thermo Fisher Scientific, UK) coupled on-line, to an Ultimate 3000 RSLCnano Systems (Dionex, Thermo Fisher

Scientific, UK). Peptides were separated on a 50cmEASY-Spray column (Thermo Fisher Scientific, UK) assembled in an EASY-Spray

source (Thermo Fisher Scientific, UK) and operated at a constant temperature of 50�C.Mobile phase A consisted of 0.1% formic acid

in water while mobile phase B consisted of 80% ACN and 0.1% formic acid. Peptides were loaded onto the column at a flow rate of

0.3mL/min and eluted at a flow rate of 0.2mL/min according to the following gradient: 2 to 40% buffer B in 150 min, then to 95% in

11 min. Survey scans were performed at 120,000 resolution (scan range 350-1500 m/z) with an ion target of 4.0E5. MS2 was per-

formed in the ion trap at rapid scan mode with ion target of 2.0E4 and HCD fragmentation with normalized collision energy of 27.

The isolation window in the quadrupole was set at 1.4 Thomson. Only ions with charge between 2 and 7 were selected for MS2.

The MaxQuant software platform version 1.6.1.0 was used to process raw files and search was conducted against the Saccharo-

myces cerevisiae (strain SK1) complete/reference proteome set of Saccharomyces Genome Database (released in December,

2016), using the Andromeda search engine. The first search peptide tolerance was set to 20ppmwhile the main search peptide toler-

ance was set to 4.5ppm. Isotope mass tolerance was 2ppm and maximum charge of 7. A maximum of two missed cleavages were

allowed. Fixed modifications: cysteine carbamidomethylation; variable modifications: oxidation of methionine, acetylation of the

N-terminus, phosphorylation of serine, threonine and tyrosine. Label-free quantitation (LFQ) analysis was performed by the MaxLFQ

algorithm. FDR was set to 1%.

Flow-through sample data was used to identify Sgo1 interactors. LFQ data was processed using DEP R package (Zhang et al.,

2018). Imputation was performed using ‘‘MinProb’’ function with default parameters. Phospho-enriched sample data was used to

analyse Rec8 phosphopeptides, while the flow-through sample data was used to analyse Rec8 nonphosphopeptides. First, the

signal intensity of each individual Rec8 peptide was measured using Skyline (MacLean et al., 2010), with the same variable and fixed

modifications set as described above. The following procedure was then applied to both phospho- and nonphosphopeptides. First, a

normalization factor, derived by measuring peptide intensities of Sgo1-bound Smc3, was applied. Second, as each Rec8 residue

could have been detected multiple times (because of variable modifications or mis-cleaved peptides), a sum of intensities of all

observed peptides containing each Rec8 residue was generated. The logarithm of the obtained number was then taken, and the

log2 difference between of sum intensity between wild-type andmutant cells was plotted. Plots in Figure 5 (A and B) show an average

ratio of log2(fold enrichment over wild type) of Rec8 nonphospho- (A) and phosphopeptides (B) per amino acid, generated by aver-

aging the ratios presented in Figures S4B and S4C. Raw data are available via ProteomeXchange with identifier PXD012627.

Immunofluorescence and Fixed-Cell Microscopy
Meiotic spindles were visualised by indirect immunofluorescence. Briefly, 200ml meiotic culture was collected, and the pellet resus-

pended in 3.7% formaldehyde in 0.1MKPi pH 6.4. After overnight fixation, cell pellets were washed 3 times in 1ml of 0.1MKPi pH 6.4.

before resuspending in 1ml of 1.2M sorbitol-citrate. Fixed cells were resuspended in digestion mix (200 ml 1.2M sorbitol-citrate, 20 ml

glusulase (Perkin Elmer) and 6 ml zymolyase (10mg/ml; AMS Biotechnology (Europe)) for at least 2 h at 30�C. Spheroplasts were

washed once in 1ml sorbitol-citrate and resuspended in sorbitol-citrate before adhering to multi-well polylysine-treated slides and

fixed in MeOH for 3 min, immersed in acetone for 10s and allowed to dry. Cells adhered to wells were incubated with rat anti-tubulin
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primary antibody (Bio-Rad) at 1:50 dilution in PBS/BSA (1% BSA, 0.04M K2HPO4, 0.01M KH2PO4, 0.15 M NaCl, 0.1% NaN3) for 2h,

washed five times in PBS/BSA. Secondary anti-rat FITC conjugated antibody (Jackson Immunoresearch) was added at 1:100 dilution

in PBS/BSA, incubated a further 2h and wells washed a further five times with PBS/BSA. The supernatant was aspirated and 3ml

DAPI-MOUNT (1mg/ml p-phenylenediamine, 0.04M K2HPO4, 0.01M KH2PO4, 0.15M NaCl, 0.1% NaN3, 0.05mg/ml DAPI, 90% glyc-

erol) added to each well and a coverslip placed on the slide before imaging or storing at -20�C.
To visualise CEN5 TetR-tdTomato foci, cells were fixed as previously described (Klein et al., 1999). Briefly, cells were fixed with

3.7% formaldehyde for 8 minutes before washing in 500ml PBS. Cell pellets were resuspended in 20ml PBS before scoring by fluo-

rescence microscopy.

Live-Cell Imaging
Unless stated, live-cell imaging was performed on a DeltaVision Elite system (Applied Precision) connected to an inverted Olympus

IX-71 microscope with a 100x UPlanSApo NA 1.4 oil lens. Images were taken using a Photometrics Cascade II EMCCD camera. The

Deltavision system was controlled using SoftWoRx software. Live-cell imaging for Figures 2E, 2G, 2J, 3F, 3G, 6G, 6H, 7A, 7B, S2B,

S2F, S2G, S2H, S3E, S3F, S6I, and S6L was performed on a Zeiss Axio Observer Z1 (Zeiss UK, Cambridge) equipped with a Hama-

matsu Flash 4 sCMOS camera, Prior motorised stage and Zen 2.3 acquisition software. Enhanced resolution imaging in Figures 4A

and 4B was performed on a Zeiss LSM 880 laser scanning confocal equipped with an Airyscan detector (Zeiss UK, Cambridge). A

high NA oil immersion alpha Plan Apochromat x100/1.46 objective was used for enhanced resolution. Laser intensity was kept as low

as possible to maintain cell viability and reduce phototoxicity.

Cells were imaged at 30�C (unless stated) on either an ONIX microfluidic perfusion platform by CellASIC or Ibidi 4-well or 8-well

dishes. Cells were pre-grown in culture flasks for �3 h before transfer to either microfluidics plates or concanavalin A-coated Ibidi

dishes. In the latter case, cells were left to attach for 20 min. Imaging began about 30 min later, with images being acquired every

15 min for 12-15 h. Seven to eight z-stacks were acquired with 0.85mm spacing. For prophase block-release experiments, cells

were arrested in culture flasks for 5 h before release. Drugs were added and cells left to shake for a further 5 min before transfer

to microfluidics plates (Figures 5D, 5G, 7C, 7E, S1F, S3A, S6G, S6H, S7G, and S7J) or attachment to Ibidi dishes (all others). Image

panels were assembled using Image Pro Premier, version 9.1 (Media Cybernetics). Images were analysed using ImageJ 1.48v (Na-

tional Institutes of Health). Final image assembly was carried out using Adobe Photoshop CS5.1 and Adobe Illustrator CS5.1. Rec8-

GFP intensities were measured a custom plugin for ImageJ. The first plugin ‘‘DV_DotCounter’’ (https://doi.org/10.5281/zenodo.

2553082) applied a Z projection to each colour channel and allowed the user to select a cell of interest. Kinetochores in the red chan-

nel were identified by Yen autothreshold and their XY central coordinates, mean intensity and area recorded. The coordinates were

then used to measure mean intensity in the corresponding location in the green channel, equivalent to pericentromeric Rec8-GFP. A

different plugin ‘‘YeastLineProfiler’’ (https://doi.org/10.5281/zenodo.2560099) was used in experiments where pericentromeric co-

hesin was likely to be found in between kinetochores (which is thought to occur in cells that bi-orient in meiosis I but retain cohesin),

the XY coordinates in the red channel were used to generate a line profile between the 2 kinetochores in both colour channels over

exactly the same pixels. The 2 brightest peaks in the line profile of the green channel were calculated to give the maximum intensity

value for each. Rec8-GFP intensity was measured in this manner for Figures 5F and 6E. Rec8-GFP intensity in anaphase I was

measured within the first two time points after Pds1-tdTomato degradation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Conventions used to indicate statistical significance between conditions are described in figure legends. All ChIP experiments were

performed in at least three biological repeats. Statistical significance for ChIP experiments was calculated using the paired t-test with

a two-tailed distribution. Proteomic data in Figures 5A and 5B was analysed by one-sample t-test. p-values in volcano plots (Fig-

ure S4A) were calculated using t-test. For all imaging experiments, 50 different cells were analysed per strain. To quantify signal in-

tensity of Rec8-GFP in anaphase I, GFP channel intensity was normalised to the average background GFP signal from 50 cells as

measured in wild-type meiosis II cells. Western blot quantifications (Figure S6C) were performed from four different repeats. For

each repeat, the ratio of Sgo1-6Ha over wild type was calculated for any given strain and divided by the corresponding signal ratio

of Kar2 (loading control) over wild type.

DATA AND SOFTWARE AVAILABILITY

ChIP-seq data has been deposited on the Genome Expression Omnibus (GEO) and can be accessed using accession numbers

GSE112167 (Sgo1-6Ha), GSE112170 (Spo13-3Flag) and GSE123546 (Rec8-3Ha).

Plugins for Image J have been deposited on Github https://github.com/dkelly604/DV_DotCounter and https://github.com/

dkelly604/YeastLineProfiler. The proteomics dataset is available at ProteomeXchange with identifier PXD012627.
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