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SUMMARY

Transcription induces a wave of DNA supercoiling, altering the binding affinity of RNA 

polymerases and reshaping the biochemical landscape of gene regulation. As supercoiling rapidly 

diffuses, transcription dynamically reshapes the regulation of proximal genes, forming a complex 

feedback loop. However, a theoretical framework is needed to integrate biophysical regulation 

with biochemical transcriptional regulation. To investigate the role of supercoiling-mediated 

feedback within multi-gene systems, we model transcriptional regulation under the influence of 

supercoiling-mediated polymerase dynamics, allowing us to identify patterns of expression that 

result from physical inter-gene coupling. We find that gene syntax—the relative ordering and 

orientation of genes—defines the expression profiles, variance, burst dynamics, and inter-gene 

correlation of two-gene systems. Furthermore, supercoiling can enhance or weaken biochemical 

regulation. Our results suggest that supercoiling couples behavior between neighboring genes, 

providing a regulatory mechanism that tunes transcriptional variance in engineered gene networks 

and explains the behavior of co-localized native circuits.
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In brief

Supercoiling-mediated feedback couples the transcription of proximal genes. Here, Johnstone and 

Galloway provide a framework for integrating biochemical gene regulation with the biophysical 

effects of DNA supercoiling. This unified model provides design principles for improving the 

performance of gene networks, developing novel regulatory functions, and accessing previously 

inaccessible regulatory dynamics.

INTRODUCTION

Cells coordinate complex behaviors through precise spatiotemporal control of gene 

expression. To rapidly advance gene- and cell-based therapies, synthetic biology aims to 

harness the power of native biology by constructing synthetic gene regulatory networks 

capable of dynamically prescribing cellular processes, states, and identities (Chen et al., 

2012; Beitz et al., 2022; Purnick and Weiss, 2009; Elowitz and Lim, 2010). Synthetic 

networks process diverse inputs into complex logical and temporal responses (Weinberg 

et al., 2017; Xie et al., 2011; Tabor et al., 2009). From oscillators to pulse generators, 

synthetic circuits can precisely coordinate dynamic patterns of gene expression across 

populations of cells to control cell fate (Gardner et al., 2000; Elowitz and Leibler, 2000; 

Stricker et al., 2008; Danino et al., 2010; Ma et al., 2022; Park et al., 2019; Bashor et 

al., 2008; Galloway et al., 2013). However, rational de novo design of synthetic circuits 

remains challenging. Despite extensive bio-molecular modeling, integration of single genetic 
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elements into systems often leads to emergent behaviors, requiring iterative design-build-test 

cycles to achieve the desired performance (Jones et al., 2020; Frei et al., 2020; Qian et al., 

2017). Compounding the challenge, transcription exhibits significant extrinsic and intrinsic 

noise (To and Maheshri, 2010; Zopf et al., 2013; Desai et al., 2021). In particular, the 

stochastic nature of transcription makes coordinating expression across multiple genetic 

elements challenging (Rodriguez and Ren, 2019; Rodriguez and Larson, 2020; Quarton 

et al., 2020). Spatial variation in the nucleus and biochemical dynamics in condensates 

may contribute to bursting but provide limited parameters for tuning transcriptional noise 

(Henninger et al., 2020; Guo and Yang, 2019). Alternatively, mechanical sources of gene 

regulation offer one potential mechanism by which to understand and harness transcriptional 

noise to improve the predictable design of gene circuits (Johnstone and Galloway, 2021; 

Ancona et al., 2019; Kim et al., 2019; El Houdaigui et al., 2019; Meyer and Beslon, 2014).

The mechanical forces of DNA supercoiling powerfully shape transcriptional variance 

(Desai et al., 2021; Chong et al., 2014). In the process of transcription, RNA polymerases 

induce a leading wave of positive DNA supercoiling (Wu et al., 1988; Liu and Wang, 1987), 

reshaping the local structure of chromatin (Achar et al., 2020; Teves and Henikoff, 2014; 

Naughton et al., 2013; Guo et al., 2021). At the kilobase scale, chromatin structure correlates 

with gene regulation (HsiehTsung-Han et al., 2020; RowleyNichols et al., 2017; Krietenstein 

et al., 2020). In yeast and human cells, transcription-induced supercoiling demarks bounds 

of gene activity (Achar and Jagadheesh, 2020; Naughton et al., 2013; Kouzine et al., 2013). 

In particular, transcriptional activity dictates the strength of contact domains, indicating a 

role for transcription in forming and maintaining interactions at the kilobase scale (Rowley 

and Corces, 2018; RowleyNichols et al., 2017). Together these data suggest that the 

process of transcription drives formation of supercoiling-linked, kilobase-scale structures 

that feed back into transcriptional regulation of gene expression. As supercoiling rapidly 

diffuses across long distances (Loenhout and Dekker, 2012), transcriptional activity at 

one site may affect the overall activity and dynamics of transcription of proximal genes 

(Sevier and Levine, 2018; Sevier and Hormoz, 2022; Tripathi et al., 2021). Understanding 

how supercoiling induces coupling between neighboring genes provides the opportunity to 

improve the predictable design of transgenic systems from simple reporters to sophisticated 

dynamic circuits.

Here we develop a model of transcriptional regulation that integrates DNA supercoiling 

to examine how the orientation and placement of neighboring genes affects expression. 

Extending from a model of supercoiling-dependent polymerase motion (Sevier and Levine, 

2018), our model includes the effects of supercoiling on polymerase binding and initiation. 

Specifically, we model RNA polymerase binding and initiation as a function of DNA 

supercoiling, such that underwound DNA favors RNA polymerase binding and overwound 

DNA limits binding. To extract experimentally testable predictions, we apply our model 

to simple two-gene systems that include a constitutive reporter and an inducible gene. 

Using these two-gene systems, we find that DNA supercoiling strongly influences the 

profile of gene expression and that influence is defined by syntax—the relative orientation 

and position of genetic elements—and the enclosing boundary conditions. In addition to 

regulating the output of simulated genes, supercoiling-dependent feedback tunes the size 

and frequency of transcriptional bursts. To investigate how these tunable parameters may 
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affect synthetic gene circuits, we applied our model to a canonical gene circuit, a synthetic 

toggle switch constructed with different syntaxes. We find that circuit syntax affects 

the stability of states and sets biochemical parameters required for bistability, including 

repressor cooperativity and RNA stability. Finally, we explored how DNA supercoiling 

might support transcriptional coordination within the native genome of zebrafish (Danio 
rerio) to enable somite segmentation. We find that DNA supercoiling acts as a mechanism 

for coordinating expression between divergently expressed genes in the segmentation 

network. Supercoiling-dependent feedback supports tight regulation of these proximal 

segmentation genes, providing a molecular mechanism for the precise coordination of 

gene expression observed during somite formation (Zinani et al., 2021). Thus, supercoiling-

mediated feedback represents a testable regulatory mechanism that can both explain native 

behaviors and guide synthetic designs.

RESULTS

Simulating the behavior of native and synthetic circuits under the influence of transcription-

induced feedback requires a model that integrates explicitly modeled RNA polymerase 

(RNAP) motion and RNA- and protein-mediated feedback mechanisms. Our method 

combines three modeling levels: an ordinary differential equation system that simulates 

the continuous progression of polymerases loaded onto DNA, a core stochastic system 

that models supercoiling-dependent polymerase initiation, and a user-specified stochastic 

layer that allows for simulation of other modes of transcriptional regulation such as the 

promoter-repressive and -activating interactions that are often included in synthetic circuits 

(see STAR Methods for details on model development).

As RNA polymerases move along chromatin, positive supercoiling is generated ahead of the 

polymerase and negative supercoiling is generated behind. Supercoiling generation occurs 

because the drag of the nascent mRNA rotating with the polymerase is balanced by torque 

arising from the over- and under-winding of the DNA (Figure 1). On the length scale of 

tens of kilobases, supercoiling diffusion is negligible, causing the supercoiling density, σ, 

to take on a constant value between polymerases. Here, we model supercoiling as affecting 

gene expression in two ways: excessive supercoiling can both stall polymerases due to 

excess torque and enhance or suppress polymerase binding at promoter regions due to 

supercoiling-dependent initiation (Figure 1; STAR Methods).

Gene syntax and boundary conditions define DNA supercoiling dynamics, expression 
profiles, and noise

In order to characterize the behavior of supercoiling-mediated feedback, we simulated 

a series of two-gene systems. These experimentally accessible circuits allow us to test 

and understand the core design considerations—syntax, relevant boundary conditions, and 

other experimentally tunable parameters—within a well-defined and controlled system. Our 

two-gene systems consist of a reporter gene that is constitutively active and an adjacent, 

inducible gene placed in either a tandem orientation with the reporter upstream, tandem 

orientation with the reporter downstream, convergent orientation, or divergent orientation 

(Figure 2A).
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Varying syntax, we examined how boundary conditions affect the expression profiles 

of the reporter and inducible genes. The type of boundary condition determines how 

transcriptionally generated supercoiling propagates to adjacent genes. Experimentally, 

plasmid constructs and genomically integrated cassettes allow for interrogation of circular 

and linear boundary conditions, respectively. Plotting reporter expression as a function of 

adjacent gene induction, we observed that circular boundary conditions show a monotonic 

increase in reporter output that scales by syntax (Figure 2B). With circular boundary 

conditions, both the convergent and divergent syntaxes show a large enhancement of 

expression relative to the uninduced case, whereas the tandem cases show only a slight 

enhancement. This phenomenon occurs because, on a circle, the convergent and divergent 

syntaxes differ only in the relative lengths of the intergenic and inter-promoter regions; as 

such, negative supercoiling density will accumulate in the inter-promoter region, enhancing 

expression in the convergent and divergent syntaxes. In contrast, linear boundary conditions 

show diverse behaviors. The upstream-tandem and divergent syntaxes maintain high 

expression levels, while the convergent and downstream-tandem syntaxes show decreasing 

reporter expression with increasing induction of the neighboring gene.

Transcriptional noise substantially contributes to variance of gene expression (Quarton 

et al., 2020), often confounding circuit designs. Thus, designing circuits to respond to 

or suppress noise may improve circuit performance. To investigate how syntax affects 

expression profiles and noise, we simulated the ensemble behavior for circular and linear 

two-gene systems at equal transcriptional induction (gray dotted line in Figure 2B). To 

examine different forms of noise, we decompose the population variance into an extrinsic 

noise component that describes how “all” genes co-vary within a cell and an intrinsic noise 

component that describes the inter-gene variance within a cell. Then, we define the noise 

ratio as the intrinsic noise divided by the extrinsic noise. For the circular-boundary condition 

simulations, we found that all four ensembles are dominated by extrinsic noise (Figure 2C). 

In contrast, while the tandem syntaxes with linear boundary conditions show approximately 

equal intrinsic and extrinsic noise, the linear convergent and divergent populations showed 

diverging shifts in the variance distribution (Figure 2D). Despite similar levels of extrinsic 

noise, the divergent syntax minimizes intrinsic variation between the two genes while the 

convergent syntax maximizes inter-gene variation. Moving forward, we used the linear set of 

boundary conditions to analyze system behaviors as we observe the richest set of behaviors 

under these boundary conditions.

To understand the mechanisms that support syntax-specific expression profiles (Figure 

2D), we examined the ensemble supercoiling density of our two-gene systems. Putatively, 

differences in supercoiling across the two-gene systems give rise to differences in 

RNAP initiation and thus affect gene expression. To observe supercoiling across the two-

gene systems, we averaged the supercoiling density across the simulated ensemble. To 

examine how induction of the adjacent gene changes supercoiling density, we compared 

the profiles for when the adjacent gene is uninduced (0-fold induction) and induced 

(1-fold induction). As expected, the uninduced cases uniformly show that positive 

supercoiling accumulates downstream of the constitutively active reporter gene while 

negative supercoiling accumulates upstream (Figure 2E; for other induction levels, see 

Figure S1A). Differences in basal expression of the reporter correspond to differences in 
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supercoiling profile across the different syntaxes. While each uninduced case generates 

an equal magnitude of positive and negative supercoiling upstream and downstream, the 

distance from the reporter gene to the boundaries differs depending on syntax, leading to the 

shorter segment having the higher magnitude of supercoiling density. Upon induction of the 

adjacent gene, supercoiling accumulates within the intergenic regions in a syntax-specific 

manner.

Supercoiling density determines both supercoiling-dependent initiation and polymerase 

stalling. Changing the inter-gene spacing directly tunes the transcriptional activity required 

to reach a specified supercoiling density and thus reach different expression profiles. To 

understand the spacing-driven deviations in reporter behavior, we simulated our linear 

two-gene circuits with different inter-gene spacings from 500 bp to 10 kb and plotted 

the reporter output of each circuit (Figure 2F). We found that the convergent and tandem-

upstream syntaxes show minimal spacing-dependent changes in reporter output; the reporter 

output in these two syntaxes is mostly dependent on the level of adjacent induction. In 

contrast, the reporter output in the divergent and tandem-downstream syntaxes depends 

on inter-gene spacing. With weak adjacent induction in the divergent case (blue curves), 

decreasing the inter-gene spacing decreases reporter output. We attribute this decrease to 

the effect of polymerase stalling; a small inter-gene spacing increases the local supercoiling 

density which can lead to polymerase stalling. At high adjacent induction (red curves), 

strong supercoiling-driven polymerase initiation overcomes the stalling effect, leading to a 

relatively distance-insensitive divergent reporter output. Finally, in the tandem-downstream 

syntax, in addition to the strong suppression of reporter output at high adjacent induction, 

a short inter-gene spacing further reduces reporter output by increasing the supercoiling 

density. Thus, depending on syntax, supercoiling-dependent feedback can be tuned by 

changing inter-gene spacing.

DNA supercoiling dynamics confer rapid, tunable coupling between adjacent genes

To explore the impact of DNA supercoiling beyond the ensemble steady-state behavior, 

we investigated the dynamic behavior of our system. To understand the initiation dynamics 

of the system, we initialized two-gene constructs with only the constitutive reporter gene 

active. After a settling period (2.8 h), we induced transcription of the adjacent gene (Figure 

3A). We observe that expression dynamics vary extensively by syntax. In the convergent 

syntax, we observe anti-correlated dynamics, with “either- or” promoter activity (Video S1). 

In contrast, the divergent syntax supports high levels of expression from both genes (Video 

S2). When comparing the two tandem orientations, we observe strong biasing of expression 

toward the upstream gene with stochastic bursts of expression from the downstream gene 

(Videos S3 and S4). While this upstream dominance does not completely disable the 

downstream gene, activation of the upstream gene reduces the average expression of the 

downstream reporter.

To ensure that this observed behavior was not an artifact of enabling adjacent induction 

later in the simulation, we need to verify that the two-gene ensembles are ergodic (not 

kinetically trapped or otherwise dependent on initial condition). To start, we examined the 

ensemble expression distribution at the simulation endpoint (Figure S1B), and found that 
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we recapitulate the population behavior observed in Figure 2D. As an additional check, we 

plotted the ensemble-averaged supercoiling density both before (at 2.3 h) and after (at 11 h) 

adjacent gene induction (Figure 3B). If the system is ergodic, then the ensemble behavior 

observed before and after the adjacent gene is turned on (snapshots of one population 

separated in time) should match ensemble behavior of simulations where the adjacent gene 

is time-independently active or inactive (snapshots of separate populations). Figure 3B does 

replicate the behavior observed in Figure 2E, indicating that the two-gene circuit populations 

are ergodic.

To expand our understanding of the emergent supercoiling-dependent dynamics, we 

examined the temporal correlation of transcription between both genes. To quantify the 

correlation and extract temporal patterns, we computed the normalized cross-correlation 

between the gene outputs following induction. The normalized cross-correlation of two 

signals is itself a function of a time offset; the normalized cross-correlation at some offset 

time τ can be thought of as the Pearson correlation coefficient between the two signals 

where one has been shifted by τ (Figure 3C; see "Computing cross-correlation" in STAR 

Methods for more detail). In particular, periodic but out-of-phase signals appear as strong 

negative and positive peaks on a cross-correlation plot. The time offset of peaks corresponds 

to the phase offset between the signals.

The four syntaxes show starkly different cross-correlation behaviors (Figure 3D). The 

convergent system shows a large anti-correlation at zero time offset with positive correlation 

peaks at offsets around ± 2 h. This combination suggests a periodic but out-of-phase 

behavior between the two genes with a period of around 2 h, confirming that our ensemble 

behaves similarly to the example simulation in Figure 3A. In contrast, the divergent syntax 

shows a strong positive peak at zero time offset, showing strong aperiodic, but correlated, 

behavior. The tandem syntax shows weak correlation between genes.

We then examined how adjacent induction affects the reporter output distributions. 

Visualizing the entire ensemble reporter output distribution per condition in Figure 3E at 

equal induction, we observe that adjacent induction changes both the mean and variance 

of the reporter output. In particular, the widths of the distributions change before and 

after induction, suggesting a change in the noise profile. At high adjacent induction, we 

observe that the upstream-tandem and divergent cases show enhanced transcription, with the 

downstream-tandem and convergent cases effectively turning off (Figure S1C).

As noise affects the properties of native and synthetic gene networks, we quantified the 

width of the these distributions by plotting the standard deviation of the ensemble reporter 

output as a function of time (Figure 3F). Prior to induction of the second gene, all four 

systems display similar standard deviations. Syntax differences emerge upon induction of 

the second gene. We found that syntax strongly modulates the noise behavior of the reporter. 

In particular, the downstream-tandem and convergent syntaxes show a strong increase in 

noise levels while the upstream-tandem and divergent syntaxes show a small decrease in 

noise levels. These changes in noise may results from differences in transcriptional burst 

sizes and frequencies.
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Burst dynamics vary in different models of DNA supercoiling

Transcription occurs in bursts of activity, and native and synthetic mechanisms can modify 

burst dynamics (Desai et al., 2021; Chong et al., 2014; Popp et al., 2021). In our base model, 

transcriptional bursting arises from the stochastic addition of polymerases. We hypothesized 

that burst dynamics may explain the distribution dynamics observed in Figures 3E and 

3F. While our base model provides a species-agnostic approach to investigate supercoiling-

mediated feedback, the mechanical regulation of eukaryotic chromatin may introduce 

additional complexity and tunability to bursting dynamics. For example, nucleosomes 

can serve as a reservoir of negative supercoiling by stabilizing the wrapped double-loop 

of DNA (Le et al., 2019). Furthermore, at hypernegative or hyperpositive supercoiling 

densities, local chromatin structure may be disrupted causing structures such as R-loops 

and G-quadruplexes to preferentially form. These structures can block polymerase binding 

and motion (Stolz et al., 2019). Even when including our second-order correction term 

as detailed in Equation 7, our base model predicts favorable supercoiling-dependent 

polymerase initiation at the hypernegative value of σ = − 0.1 (Figure 4A). To address these 

complexities, we implemented two alternate models that extend our torque-response and 

polymerase-initiation energy equations.

To simulate the effects of structures forming at hypernegative or hyperpositive supercoiling 

densities, we penalize polymerase initiation by adding a near-infinite positive energy 

penalty to polymerase initiation at hypernegative and hyperpositive supercoiling densities 

(Figure 4A) roughly matching the density at which structures such as R-loops form (σ 
< – 0.06, σ > 0.125; Stolz et al., 2019). Putatively, these barriers enable us to simulate 

the formation of stable structures within the DNA that strongly penalize RNAP binding 

while remaining agnostic to any specific molecular structure. We find that penalization of 

extreme supercoiling globally reduces supercoiling density (Figure S2A) but maintains the 

qualitative syntax-dependent behavior of the steady-state, linear systems. However, syntax-

specific differences are mostly eliminated for circular templates (Figures S2B and S2C).

To model nucleosomes, we updated our torque-response function to phenomenologically 

match in vitro experimental measurements (Le et al., 2019). Nucleosomes putatively 

“buffer” the effects of positive supercoiling by unbinding and releasing stored negative 

supercoiling. We accounted for this buffering by extending a zero-torque plateau within 

the region 0 ≤ σ ≤ 0.031 (Figure 4A). We found that the nucleosome buffering does not 

significantly affect the steady-state expression profile or supercoiling density observed in 

Figure 2 (Figures S3A-S3C).

With these three models, we simulated the four linear syntaxes and recorded polymerase 

initiation events per gene. We then examined the distribution of both burst size, which 

we define as the number of polymerase initiation events during a burst, and inter-burst 

time, the amount of time separating two consecutive bursts for the reporter gene (Figure 

4B; see "Burst threshold choice" in STAR Methods for more detail). Upon induction 

of the adjacent gene, we find burst dynamics differ by syntax (Figure 4C). In both the 

base model and the nucleosome-buffering model, the downstream-tandem and convergent 

syntaxes show a reduced burst size compared with the divergent and upstream-tandem 

syntaxes. We attribute this reduction in burst size to accumulated positive supercoiling at 
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the site of the reporter gene’s promoter. In contrast, induction of the adjacent gene in the 

divergent syntax increases the burst size of the reporter gene, putatively due to enhanced 

loading of polymerases facilitated by accumulated negative supercoiling. With penalization 

of hypernegative supercoiling density, the divergent syntax shows a decrease in burst 

size, potentially due a shift in the tradeoff between polymerase stalling and supercoiling-

dependent initiation.

Examining the inter-burst time distributions, induction of the neighboring gene shifts the 

upstream-tandem and divergent syntaxes to shorter inter-burst times (Figure 4D). The down-

stream-tandem and convergent syntaxes shift to longer inter-burst times upon induction 

of the adjacent gene. Interestingly, this qualitative observation holds independently of 

the choice of torque-energy model, suggesting that changes in inter-burst time—and its 

inverse, burst frequency—is a syntax-dependent effect that is largely insensitive to additional 

chromatin perturbations.

From these observations, we can now understand the population-level behaviors observed 

in Figures 3E and 3F. The increase of noise and reduction of mean expression value 

in the down-stream-tandem and convergent cases occurs concomitant with an increase in 

inter-burst time (Figure 4D). This is expected; if bursts occur rarely, stochastic fluctuations 

will have an outsized effect on each individual simulation, enhancing population variance. In 

contrast, the decrease of noise in the upstream-tandem and divergent syntaxes is matched by 

a decrease in the inter-burst time (Figure 4D). Because bursts happen more frequently, the 

ensemble reporter output is more stable as we approach the limit of constant transcription. 

Taken as a whole, syntax provides a powerful design parameter for inducing and tuning 

time-dependent behaviors between genes and shaping output gene distributions.

Optimizing toggle-switch performance and stability through circuit syntax

From oscillators to pulse generators, synthetic circuits aim to precisely coordinate dynamic 

patterns of gene expression. However, emergent dynamics, mediated through DNA 

supercoiling, may support or impede the performance of dynamic circuits. To examine 

how supercoiling-mediated feedback influences a dynamic circuit, we applied our model 

to the classic repressor-mediated toggle switch (Gardner et al., 2000). Toggle switches are 

well characterized both theoretically (Gardner et al., 2000) and experimentally (Gardner et 

al., 2000; Yeung et al., 2017; Zhu et al., 2021). The behavior of a simple toggle under 

the additional influence of supercoiling-mediated feedback provides an ideal testbed to 

understand how syntax influences circuit performance.

A toggle switch can be constructed with two genes that mutually repress each other (Figure 

5A). Ideally, such a toggle switch exhibits bistability, generating two stable basins. If 

modeled with continuous, noise-free equations, a toggle switch will remain within one of the 

basins based on the initial conditions (Gardner et al., 2000). However, if we treat the mRNA 

concentration discretely with a stochastic simulation, the system escapes the stable basin 

with a certain probability, depending on the size of fluctuations relative to the steady-state 

values. How does supercoiling-mediated feedback affect this probability of escape? How 

might supercoiling-mediated feedback interact with mutual transcriptional repression and 

alter toggle-switch behavior? To answer these questions, we simulate the behavior of a two-
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gene toggle switch with our model for various circuit syntaxes. To establish the conventional 

dual repressor system used for toggle switches, we abstracted the regulatory interaction of 

the repressors using a Hill function to define the base promoter initiation rates:

rA = r0
KA

KA + [B]n rB = r0
KB

KB + [A]n (Equation 1)

for r0 = 1/160 s−1 and n = 2.0. Here, we do not explicitly model protein production. 

Rather, transcriptional repression directly depends on the mRNA counts of repressors. This 

parsimonious model allows us to understand the behavior of the system without introducing 

additional rate constants. We chose the half-max value K—the mRNA count at which the 

promoter activity is half that of r0 —to approximately match the mean steady-state value 

of either stable state to ensure that the toggle switch operates in the regime of maximum 

sensitivity (see "Toggle-switch parameter selection" in STAR Methods for details). In order 

to compare the behavior of the toggle switches, we initialized toggle switches of different 

syntaxes within one of the stable basins (gene A) and induced the second gene (gene B) 

after 2.8 h (see Figure S4A for example runs). The system then evolves under simultaneous 

mutual inhibition from expression of the repressors as well as from supercoiling-dependent 

feedback.

Circuit syntax specifies unique toggle-switch dynamics that can be understood by 

visualizing the distribution of mRNA counts over time (Figure 5B). Initially, nearly all 

of the simulations in the ensemble lie along the axis corresponding to the initially active 

gene, gene A. As time progresses, each ensemble approaches and fluctuates around an 

equilibrium. The convergent syntax approaches an equilibrium where approximately half of 

the population distributes into each state. In this syntax, activation of either gene causes 

positive supercoiling to accumulate in the intergenic region, enhancing negative feedback 

between genes and thus between states. With divergent syntax, the toggle distributions 

converge toward monostability with low differential expression of either gene. Accumulation 

of negative supercoiling between genes enhances polymerase loading, weakening negative 

feedback. Finally, the vast majority of the simulations in the tandem syntax remain in or 

transition to the upstream-active state, demonstrating upstream dominance. We find that 

these results qualitatively hold for varying values of n, the repressor cooperativity coefficient 

(Figure S4E). We find that even in the absence of cooperativity, n = 1.0, the convergent 

syntax shows some level of bistability (Figure S4D), indicating that supercoiling-mediated 

feedback introduces a degree of nonlinearity that can reinforce toggle-switch function.

To quantify these distribution results, we computed the stable fraction of the ensemble, 

defined as the fraction of simulations that have never left the initial starting basin at a certain 

simulation time. The stable fraction monotonically decreases toward zero with time, as 

simulations that cross into the other stable basin are no longer counted as stable even if they 

return to the original basin. We observe substantial syntax differences in the dynamics of 

the stable fraction of the ensemble (Figure 5C). While the tandem orientations represent the 

extremes of stability, the convergent and divergent syntaxes exhibit intermediate stabilities. 

As expected, different burst dynamics characterize toggle-switch behaviors, varying by 

syntax. In particular, we observe that the divergent syntax displays reduced burst size 
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compared with the other syntaxes (Figure 5D). In contrast, the inter-burst time distributions 

do not significantly vary with syntax (Figure S4C), suggesting that burst size, not burst 

frequency, is a key parameter tuned by supercoiling-mediated feedback in this context. We 

hypothesize that the divergent toggle switch may be governed by a conflicting interaction at 

the promoter level between supercoiling-mediated feedback and mutual inhibition. Overall, 

these trends suggest that the observed toggle-switch behavior emerges through correlated 

(or anti-correlated) transcription and changes in burst size, suggesting that toggle-switch 

behavior could be tuned orthogonally by supercoiling-mediated feedback.

For any stochastic system, the steady-state number of molecules influences the stability 

of the system. As the reservoir of molecules grows larger, the size of fluctuations relative 

to the total concentration decreases. For toggle switches, we expect that, as the number 

of steady-state mRNA molecules grows, we should approach the theoretical, continuous 

solution that predicts that no state switching occurs. To examine this expectation, we 

modified the simulated mRNA degradation rate, scaling K as described in "Toggle-switch 

parameter selection" in STAR Methods, and plotted the resulting half-lives (Figure 5E). As 

the mRNA degradation rate goes to zero, we increase the reservoir size and observe that the 

half-life for all syntaxes approaches the simulation upper-limit on the half-life (Figure 5E). 

Interestingly, increasing mRNA degradation rates reduces the asymmetry in the half-lives 

between the tandem-upstream and tandem-downstream syntaxes. These results suggest that 

state switching increases as mRNA degradation rate increases as expected.

DNA supercoiling tightly coordinates expression of proximal segmentation genes

DNA supercoiling provides a mechanism for the precise coordination of co-localized 

genes. Through colocalization, native circuits may incorporate transcription-linked feedback 

mechanisms to reduce noise and tune cell-state specific output in tightly regulated, dynamic 

processes such as somite formation. In zebrafish, proper somite segmentation requires 

precise coordination of two clock genes, her1 and her7. her1 and her7 form an inhibitory 

feedback loop encoded in a divergent syntax (Figure 6A). Proper somite formation requires 

one intact allele of her1 and her7, provided these genes are expressed from the same locus 

(Zinani et al., 2021). Mutant zebrafish embryos where her1 and her7 are only expressed 

from separate loci eliminate any supercoiling-mediated coupling while retaining the dimer-

mediated inhibitory feedback loop. Zinani et al. (2021) found that, in the gene-unpaired 

embryos, transcriptional coordination between genes is lost and proper somite segmentation 

is disrupted (Figure 6B). Consequently, physical colocalization represents an important 

feature supporting transcriptional coordination between genes and proper somitogenesis, 

which may be mediated by supercoiling-mediated feedback.

Based on our above results from two-gene systems, we hypothesized the feedback from 

DNA supercoiling supports coordination between discrete transcripts expressed from 

divergent promoters. Using our full computational model, we replicated the previously 

developed stochastic reaction network. Importantly, her1 and her7 are regulated in a binary 

fashion; the promoters are either completely off when bound by a dimer or expressed at their 

basal rate when unbound. We simulated two cases: an unpaired system where the simulated 

genes were separated by a large distance (1 Mb) to prevent supercoiling interactions, and a 
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gene-paired system where her1 and her7 were spaced at their genomically active locations. 

In the paired system, linear boundary conditions were used with boundaries chosen at the 

nearest adjacent genes on each side in the zebrafish genome.

Strikingly, the gene-paired case shows strong periodic levels of mRNA expression (Figure 

6C). In fact, such levels of periodicity are not observed even in the original computational 

model presented by Zinani et al. (2021) (Figures S5A and S5B); we confirmed that this 

is not simply an artifact of the uniform time resampling performed in order to compare 

our model behavior to the literature model (Figure S5C). The level of periodicity appears 

sensitive to our second-order polymerase initiation model. Performing simulations with a 

weakened second-order penalty term (see STAR Methods; Figures 2 and S7) reduces the 

amount of periodicity observed (Figures S5D to S5G).

Examining the time-dependent nature of the her1-her7 system, we plotted the ensemble 

cross-correlation for paired and unpaired genes (Figure 6D). Here, we found that, in 

addition to the enhanced positive correlation peak at a time delay of τ = 0 seconds, the 

paired case showed exceptionally strong, nearly symmetric cross-correlation at positive and 

negative time offsets. Such cross-correlation is the hallmark of a periodic signal. Thus, both 

individual examples (Figure 6C) and ensemble behavior (Figure 6D) show that supercoiling-

mediated feedback provides a strong mechanistic driver of inter-gene coordination in the 

her1-her7 clock circuit that is inaccessible to solely dimer-mediated regulation.

In order to confirm that these results apply across the ensemble, we examined the ensemble 

correlation between the counts of her1 and her7 mRNA (Figure 6E). We found that while 

the unpaired case shows minimal correlation, the gene-paired case shows strong correlation 

between the two clock genes. We attribute this strong, periodic correlation to the additional 

biophysical coupling conferred by the divergent syntax. Notably, we observed that our 

model predicts an increase in the amplitude of oscillations (Figure 6F). In vivo, loss of 

gene pairing reduces oscillation amplitude, leading to improper segmentation (Zinani et al., 

2021).

Because this periodic behavior depends on biophysical coupling, we investigated whether 

the periodicity was robust to topoisomerase activity, nucleosome buffering, or hypernegative 

chromatin structure formation. We found that intergenic topoisomerase relaxation (see 

STAR Methods) does not abrogate the periodic behavior, with strong correlated oscillations 

still visible (Figures 6D-6F). However, intergenic topoisomerase activity does reduce the 

cross-correlation after a few periods, indicating that topoisomerase activity contributes to 

variance in oscillation frequency while still supporting strongly correlated her1 and her7 
expression. Intragenic topoisomerase activity showed similar behaviors (Figure S5I). Finally, 

we found that while penalization of hypernegative supercoiling densities eliminates periodic 

behavior (Figures S2D to S2G), periodicity is maintained in the presence of nucleosome 

buffering (Figures S3D to S3G). Thus, we propose that supercoiling-mediated feedback 

offers a mechanism to support robust oscillations in the her1 and her7 network for proper 

somite formation.
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DISCUSSION

Transcription induces significant variance in gene expression. At a single-cell level, 

individual genes are expressed stochastically, with most genes experiencing relatively 

long periods of quiescence punctuated by bursts of polymerase activity. Phenomenological 

models of this process based on stochastic probability distributions can provide some 

insights, but defining the mechanically regulated physical factors that influence RNA 

polymerase dynamics will improve existing models of gene regulation and support enhanced 

design of transgenic systems. Importantly, we sought to develop a model that would define a 

set of experimentally testable predictions as well as lay the groundwork for future modeling 

across multigenic loci and circuits.

In this work, we developed a model of supercoiling-mediated feedback that captures 

emergent coupling between neighboring genes to influence expression levels as well as 

dynamics. This model allowed us to tractably compute polymerase activity at the scale 

of synthetic circuits (Figure 2). Within supercoiling-mediated feedback, we included both 

supercoiling-dependent polymerase motion terms and supercoiling-dependent polymerase 

initiation terms. This computational framework lays the groundwork for understanding how 

DNA supercoiling functions as a regulatory mechanism that can be integrated with canonical 

biochemical models of gene regulation. Using this model, we extracted insights into how 

mechanical and biochemical regulation combine to generate diverse profiles of expression 

and support or impede the performance of gene networks.

We find that induction of neighboring genes significantly influences the transcriptional 

activity of both genes (Figure 2). Syntax-specific differences in DNA supercoiling dynamics, 

expression profiles, and noise emerge due to physical coupling. We find that such a system 

regulated by this biophysical coupling is responsive to expression level changes in adjacent 

genes, with both mean expression and population variance changing as a function of gene 

orientation (Figure 3). The observed supercoiling-mediated feedback is itself dependent on 

inter-gene spacing, mRNA degradation rate, and other variables tunable in an experimental 

setting. Generally, accumulated negative supercoiling leads to correlated bursting, which 

occurs concomitant to a decrease in intrinsic noise. In contrast, accumulated positive 

supercoiling can lead to anti-correlated bursting, which instead enhances intrinsic noise. 

While the tandem syntax does not lead to large supercoiling accumulation in the intergenic 

region, we observe upstream dominance, where the upstream gene is more highly expressed 

than the downstream gene.

Our prediction of burst dynamics (Figure 4) complements theoretical and experimental 

investigations of cooperative interactions of RNA polymerases arising from the beneficial 

cancellation of positive and negative supercoiling generated by adjacent polymerases (Sevier 

and Hormoz, 2022; Kim et al., 2019). We predict that syntax causes a 2- to 3-fold change 

in burst size (Figure 4C) but can shift inter-burst time by an order of magnitude (Figure 

4D). In addition, the syntax-specific trends in inter-burst time are not strongly affected by 

other potential mechanical regulators of eukaryotic chromatin—nucleosomes and strained 

structures such as R-loops—suggesting that syntax may robustly control gene expression 

through differences in burst dynamics. While we do not directly examine transcription 
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elongation rates, we similarly predict syntax-specific differences in expression dynamics 

but observe distinct syntax-specific behaviors in our model (Sevier and Hormoz, 2022; 

Tripathi et al., 2021). We also find that intergenic distance only weakly affects supercoiling 

feedback (Tripathi et al., 2021). In alignment with experimental work, we find that positive 

supercoiling accumulates in the intergenic region of convergently oriented native genes (Guo 

et al., 2021). When combined with sequencing methods that precisely measure nascent 

mRNA transcription (Mellor et al., 2016), these methods may provide a window into 

experimental systems in order to test theoretical predictions of our work and others.

The fast timescale of supercoiling-mediated feedback offers access to a uniquely tunable 

and orthogonal form of gene regulation. In contrast to regulatory mechanisms dependent 

on relatively long timescales, such as mRNA- and protein-mediated systems, supercoiling-

mediated feedback occurs at the timescale of seconds. Polymerases can stall and unstall 

each other within seconds, while local polymerase loading rates can vary over the 

course of minutes. By combining the fast dynamic feedback with slower classic feedback 

mechanisms, circuit regulation can be selectively stabilized or destabilized. We found 

that specification of syntax within a simple two-gene toggle switch generated diverse 

behaviors, including a reasonably stable switch, a hypersensitive toggle with hysteresis, 

and an asymmetric system that preferentially decays toward a single target state (Figure 

5). As a rapid mechanism for coordinating transcriptional dynamics, supercoiling-dependent 

feedback may support intergenic coordination in native systems. Examining the zebrafish 

segmentation clock, we find that addition of supercoiling-mediated feedback recapitulates 

the synchronized, periodic expression of the clock genes, her1-her7 (Figure 6).

Our model integrates supercoiling-mediated biophysical feedback with classic gene 

regulation motifs that are well studied in native and synthetic contexts. This unified 

framework brings us closer to an understanding of how supercoiling contributes to 

transcriptional regulation. We offer testable predictions about the performance of genetic 

circuits. The predicted changes in reporter output, supercoiling density, and burst dynamics 

observed in Figures 2-4 are experimentally accessible with modern sequencing and single-

cell imaging technology (Guo et al., 2021; Mellor et al., 2016; Patel et al., 2022). 

Experimental verification of our theoretical results will aid in constructing a mechanistic 

understanding of how transcription-induced supercoiling couples expression. Harnessing 

these insights will enable gene regulation at the level of transcription, providing a robust 

method to control expression dynamics, levels, and noise.

Limitations of the study

In deriving our model, we made several simplifying assumptions. Our derivation of the 

energy function for supercoiling-dependent polymerase initiation adds relevant molecular 

detail to our model. The second-order correction term reflects the asymptotic relationship 

observed in in vitro assays between torque and supercoiling density for underwound DNA 

(Le et al., 2019). Inclusion of this correction supports the periodic behavior of the native 

her1-her7 clock circuit, suggesting this term may accurately capture regulation in vivo. For 

simplicity, we model the dynamic processes of RNAP binding, initiation, and pause release 

as a single reaction. In real biological systems, each of these processes may vary across the 
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genome by sequence and by the presence of nucleosomes, transcription factors, and other 

DNA-binding proteins. Formation of supercoiled structures shows sequence bias in vitro that 

may affect in vivo structures and gene regulation (Kim et al., 2018).

While we do approximate the behavior of the system in the presence of hypernegative/

hyperpositive chromatin structures and nucleosomes, we do not explicitly model the 

presence of these and instead perturb our torque and polymerase binding energy functions. 

This implicit simulation method may not accurately capture the discrete nature of these 

phenomena, especially in the case of positive supercoiling waves displacing nucleosomes. 

Furthermore, while real topoisomerases dynamically relax chromatin and are often recruited 

to sites of active transcription (Baranello et al., 2016), we use a simplified model that 

instantly relaxes DNA in a non-specific manner. We find that our systems are mostly 

insensitive to this simple model of topoisomerase activity; future work using a different 

topoisomerase activity model may reveal additional roles for supercoiling relaxation.

Our model also excludes polymerase collision, premature termination, and the impact of 

3D structures and loop domains formed by protein complexes such as CCCTC-binding 

factor (CTCF) and other structural maintenance of chromosomes (SMC) proteins. More 

broadly, we assume that regions of simulated chromatin are uniformly accessible and 

have equal torque responses during polymerase elongation; these assumptions may fail at 

the boundaries of chromatin domains. Finally, we also neglect the speed of supercoiling 

diffusion. While this is expected to be a negligible effect at the scale considered in this work, 

supercoiling diffusion remains slow at the scale of hundreds of kilobases to megabases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources, datasets, and code 

should be directed to and will be fulfilled by the lead contact, Kate E. Galloway 

(katiegal@mit.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All unprocessed and preprocessed simulation data reported in this paper has 

been deposited at Zenodo and is publicly available with the DOI: https://doi.org/

10.5281/zenodo.7041641.

• All original code has been deposited at Zenodo and is publicly available with the 

DOI: https://doi.org/10.5281/zenodo.7054394.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Supercoiling-dependent transcription model—Supercoiling is defined as the amount 

of excess twist φ relative to relaxed DNA. Relaxed DNA rotates one full revolution per ≈ 
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10 basepairs (1bp ≈ 0.34 nm); thus its relaxed twist is ω0 = 1.85 radians/nm. Supercoiling 

density can generally be defined as a varying function of genomic location σ(z). However, 

in a region of constant supercoiling density, we can use the excess DNA twist φi, φi+1 at the 

endpoints zi, zi+1 to define the supercoiling density as:

σ = φi − φi + 1
ω0(zi + 1 − zi)

(Equation 2)

For a polymerase with φ1 > 0 between endpoints with φ0 = φ2 = 0, Equation 2 implies 

that the supercoiling density is positive in front of the polymerase and negative behind the 

polymerase (Figure 1). Following on the work of Sevier et al. (Sevier and Levine, 2018), 

we assume that on the length scales of synthetic and native circuits of interest (O(≈ 10kb)), 

the supercoiling density is constant in all regions between polymerases and other barriers. 

Because supercoiling diffusion and plectoneme hopping (Loenhout and Dekker, 2012) occur 

at rates faster than transcription (supercoiling diffusion: D ≈ O 0.5 kb2
s  versus transcription 

rate: v0 ≈ 0.05 kb
s ) (Muniz et al., 2021), the supercoiling generated by a polymerase will 

diffuse outward far more rapidly than polymerases can move. As in previous reported work, 

we make a pseudo-steady assumption for inter-RNAP supercoiling—assuming that Equation 

2 holds between polymerases—over the relatively small (~ 10 kb) genomic distances 

considered in this work in order to simplify the resulting model.

How does transcription both drive the process of supercoiling generation and react to 

changes in local supercoiling? Under the assumption of supercoiling relaxation, each 

polymerase is defined by four variables—the one-dimensional genomic location of the 

polymerase zi, the length of the nascent RNA xi, the excess twist at the location of the 

polymerase φi, and the rotation angle of the polymerase (Figure 1). Then, two governing 

equations define the motion of all polymerases (Sevier and Levine, 2018). First, we equate 

linear polymerase motion with the rotational motion required to track the DNA groove:

ω0
dzi
dt

RNAP velocity

= dθi
dt

RNAP rotation

+ dφi
dt

supercoiling generation

(Equation 3)

where the change in θi represents polymerase rotation and the change in φi represents 

local rotation of the DNA. The second equation provides a torque balance between DNA-

mediated torques on the left hand side and torque caused by drag acting on the nascent 

RNA:

τ(σ(zi, φi − 1, φi + 1))
torque acting on RNAP

+ χ dφi
dt

supercoiling restoring force

= ηxin
dθi
dt

nascent RNA drag

(Equation 4)
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To develop a final system of ordinary differential equations, we still must define the torque 

response function τ(σ) and the polymerase velocity function dz
dt = v(τ). With these two 

functions, Equations 3 and 4 can be solved as in Sevier and Levine (2018). Here, we 

use Marko’s torque-response model of supercoiling which accounts for the thermodynamic 

behavior of both non-buckled, twisted DNA and buckled, plectonemic DNA (see Equations 

(S1) and (S4) in supplemental section B) (Marko, 2007). The resulting τ(σ) function exhibits 

a phase transition, where the torque response is nearly constant at intermediate values of σ 
where the DNA is transitioning from a locally-twisted phase to a plectonemic-phase (Figure 

S6A).

For the velocity response of a polymerase experiencing a torque τf in front and τb behind, 

we model polymerase stalling as:

v(τf, τb) = v0

(1 + e( ∣ τf ∣ − τs) ∕ τw)(1 + e( ∣ τb ∣ − τs) ∕ τw)
(Equation 5)

where the stall torque τs = 12 pN nm and stall-width τw = 3 pN nm define a sigmoidal stall-

response curve. As shown in Figures S6E and S6F, our results are only weakly dependent 

on the specific choice of τs and τw. Importantly, our selected phenomenological term will 

stall polymerase motion if either the torque upstream or downstream exceeds the stall torque 

τs. Some models choose a stalling equation that only stalls if the difference between the 

upstream and downstream torque exceeds a stall torque (Tripathi et al., 2021); we chose this 

form, reasoning that the DNA unwinding and rewinding process opposed, respectively, by 

upstream and downstream torque could independently stall. When simulated, the difference 

between these stalling models is small in practice; polymerases at the start or end of the 

burst encounter both high upstream and downstream torques and a high torque difference, 

whereas polymerases in the middle of a burst experience both lower adjacent torques and a 

lower torque difference.

Taking the above equations together, we can simulate the coupled motion of an arbitrary 

number of polymerases as a single coupled ODE system. We further examine different 

experimental systems by implementing different boundary conditions that allow us 

to simulate both plasmid systems and genomically-integrated systems (see Boundary 

conditions).

Supercoiling-dependent initiation model—While the described differential equation 

system can simulate polymerase motion, we need a way to model the addition of 

polymerases to simulated genes. A simple strategy is to assume a supercoiling-independent 

initiation rate and use a stochastic simulation method to randomly add polymerases to 

transcriptional start sites at a certain fixed rate. However, this simple model assumes that 

polymerases can bind equally well to initiation sites independent of local supercoiling, 

missing supercoiling-dependent binding dynamics (Revyakin et al., 2004). In order to 

include supercoiling in a polymerase initiation model, we relate the basal expression rate 

to a corresponding base energy term. We can then additively introduce extra energy costs for 

polymerase binding under different local supercoiling conditions. Under the approximation 
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that the direct energetic cost of locally melting the DNA to fit in the RNAP groove 

dwarfs the relative change in unwinding energy caused by supercoiling, the majority of the 

energetic cost comes from inserting supercoiling ahead and behind the inserted polymerase. 

Under this assumption, the first-order supercoiling energetic correction can be written as:

Esc = 1.2 ⋅ 2π ⋅ τ(σ) (Equation 6)

Is this a good approximation? We can estimate the energetic cost of local melting, and find 

that neglecting local melting leads to a minor change in the resulting energy as seen in 

Figure S6B. A full derivation of Equation 6 is given in Methods S1.

While this first-order energetic term introduces much-needed behavior to the modeled 

system—where locally high positive supercoiling decreases the RNAP initiation rate and 

locally negative supercoiling increases the RNAP initiation rate—at extreme values of σ, this 

energetic term gives aphysical predictions. In particular, under highly negative supercoiling 

densities, the energetics of polymerase loading become increasingly favorable, with loading 

sometimes occurring more than two orders of magnitude faster when compared with relaxed 

DNA. To correct for this behavior, we add a second-order (quadratic) term that constrains 

polymerase loading at highly positive or negative local supercoiling:

Esc = 1.2 ⋅ 2π ⋅ τ(σ) + α ⋅ τ0 ⋅ σ2 (Equation 7)

for τ0, the relevant scale factor in the τ(σ) equation (Equation (S1) and (S3) from (Marko, 

2007)) and α, a positive tunable parameter. As the τ(σ) equation is linear in σ outside of the 

phase-transition region, this added σ2 term can be contextualized as an additional term in the 

Taylor expansion of the physically-realistic Esc(σ) equation. This form of the binding energy 

enables us to qualitatively match the experimentally observed asymptotic behavior between 

torque and supercoiling for underwound DNA (Le et al., 2019).

For these three models of supercoiling-dependent initiation, we found that the supercoiling-

independent initiation model predicted only small changes in reporter output (Figure 

S7A). Comparing the first- and second-order models, we found that a critical value of α 
existed, α≈0.2, above which the second-order model demonstrated emergent non-monotonic 

behavior (Figure S7). At low values of α, the second-order model behaves similarly to 

the first-order model, so we used α ≈ 0.025 for this work. Increasing α beyond this 

chosen value appears to scale down reporter output without qualitatively modifying behavior 

(Figure S7).

When simulating the ODE model, the rate of stochastic polymerase initiation, rinitiation, 

varies continuously based on the local supercoiling density σ at the transcription start site as:

rinitiation = rbase rate ⋅ e−Esc ∕ (kBT)
(Equation 8)

Additional discrete reaction model—Many of the native and synthetic systems of 

interest include mechanisms of gene regulation that rely on other regulatory species. In order 
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to analyze these types of systems using our supercoiling model, we extended our model to 

simultaneously simulate arbitrary discrete stochastic equations—such as those commonly 

used in the literature to model protein production, degradation, dimerization, and more. This 

addition allowed us to model discrete events otherwise not accounted for in the continuous 

model.

Importantly, this framework allows us to simulate the activity of topoisomerases. While 

the total amount of supercoiling (the integral of supercoiling density) is conserved, 

topoisomerases can be modeled as stochastic events that redistribute supercoiling in certain 

regions. Here, we simulated the removal of supercoiling in either intergenic or intragenic 

regions. Removal of supercoiling in intergenic regions is performed by updating the rotation 

of polymerases on adjacent genes to make the intergenic supercoiling density zero. After 

relaxation of supercoiling in intragenic regions, polymerases on the gene experience a 

constant supercoiling density which conserves overall supercoiling. With the exception of 

the segmentation gene network simulations in Figure 6 and related supplemental figures, we 

found that inclusion of topoisomerase relaxation did not appreciably change the observed 

results. Thus, unless otherwise stated, simulations were performed without topoisomerase 

relaxation.

In addition, we allowed the base initiation rate of genes to vary as an arbitrary function of all 

species concentrations in the model (Si), such that Equation 8 becomes:

rinitiation = r(Si) ⋅ e−Esc ∕ (kBT)
(Equation 9)

By combining discrete reactions with the ability to dynamically change polymerase 

initiation rates, we are able to simulate a wide range of phenomena. For example, a 

cooperative repressive interaction between some repressor protein R and a promoter could 

be modeled using a repressive Hill function:

rinitiation(R) = 1

1 + R
K

n ⋅ e−Esc ∕ (kBT)

More generally, we can use stochastic formulations of other regulatory mechanisms and test 

how these mechanisms behave in concert with supercoiling-mediated feedback.

Boundary conditions—Key to our simulations is calculating the supercoiling density 

across the domain using Equation 2. For simulations using linear boundary conditions, we 

use the left and right edges as boundaries, assigning excess twist φ = 0 at both boundary 

locations. Then, the supercoiling density can be defined between every polymerase. The 

location of the boundary conditions for the simulations is described in Table S3.

For simulations using circular boundary conditions, we must define how generated 

supercoiling “wraps around” the edges of the simulation. To do this, we choose an arbitrary 

origin, and order polymerases based on their (clockwise) position from the origin. In Table 

S3, the first boundary location is used as this origin location and the second boundary 
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location is the length of the circle, relative to the origin. As in the linear case, when there 

are zero polymerases loaded, the supercoiling density is uniformly 0. In addition, for circular 

boundary conditions, the supercoiling density is also uniformly 0 when a single polymerase 

is present; when assuming fast supercoiling relaxation, a single polymerase on a circle can 

never accumulate negative or positive supercoiling.

For two or more polymerases, we create a list of excess twists, duplicating the endpoints as 

φn, φ1, ⋯, φn, φ1. We additionally project the locations of the wrapped polymerases past the 

origin (e.g., the position of the wrap-around φn is placed at ztotal length – zn), then compute 

the supercoiling density as in the linear case.

Burst threshold choice—We calculated burst size and inter-burst time by using a burst 

threshold. From polymerase initiation times, we calculate the time between successive 

polymerase additions. Intra-addition times greater than the burst threshold form the 

boundaries between different expression bursts. We define the burst size to be the number 

of polymerases included in a burst, and the inter-burst time to be those intra-polymerase-

addition times greater than the burst threshold. For the main text, we used a burst threshold 

of 30 s; specifically, this means that bursts ended if 30 s passed without a new polymerase 

being added.

In Figures S1D and S1E, we reanalyze the data presented in Figures 4C and 4D for different 

burst thresholds. We find that using a burst threshold of twenty or sixty seconds does 

not significantly affect the qualitative results observed. However, using a ten second burst 

threshold does dramatically shift the resulting burst size and inter-burst time distributions, 

with the inter-burst time distribution becoming concentrated around ten seconds. This 

indicates that a ten-second burst time is too short and incorrectly separates bursts.

Toggle-switch parameter selection—The half-max value K, the mRNA count at which 

the promoter activity is half that of r0, is chosen here to approximately match the mean 

steady-state expression of the steady states. The mean steady-state value is identified using 

simulations where only one of the toggle switch genes is enabled; this allows us to directly 

account for the influence of supercoiling-mediated feedback on the steady state mRNA 

concentration. With this choice of K, we ensure that the toggle switch operates in the regime 

of maximum sensitivity (e.g., the stable basin steady-state value is in the middle of the 

sigmoidal repression curve).

In Figure 5E, we tune the mRNA degradation rate, which directly impacts the mean 

steady-state value. If the mRNA degradation rate is doubled, we expect that the mean 

steady-state value should decrease to half its original value. To compare between these 

otherwise disparate conditions, we scaled the K value alongside the mRNA degradation rate, 

dividing by the fold increase in the mRNA degradation rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

ODE and stochastic simulation—The core ordinary differential equations were 

simulated using a Tsitouras’s explicit Runge-Kutte 4-5 order method (Tsitouras, 2011). 

Normally, one implements stochastic simulations using a time-jumping method such as 
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Gillespie’s method. However, because the propensity of our stochastic events changes 

continuously with the continuous simulation, we need a stochastic solver that can be applied 

within the continuous integrator loop. Here, we used DifferentialEquations.jl, a performant 

Julia package that allows layered differential and stochastic equations (Rackauckas and Nie, 

2017).

Summarizing stochastic simulations—Stochastic simulations inherently sample from 

an underlying population distribution. As single simulations may not adequately represent 

the population behavior, we simulated ensembles of simulations and chose an ensemble 

size that was large enough to show the desired population behavior. These simulations 

then were post-processed, by either taking the average over each ensemble or by directly 

showing population distributions, summarized by a kernel density estimate (smoothed 

histograms provided by the Python package seaborn). The ensemble size for each data plot 

is summarized in Table S1.

Computing cross-correlation—We computed the cross-correlation between the gene 

outputs following induction (Figure 3C), normalized by the geometric mean of the auto-

correlation of these outputs. Strong negative or positive peaks evenly spaced around τ = 

0 is a hallmark of periodic behavior, with the time offset of the peak encoding the phase 

offset between the signals. For two signals f(t) and g(t), the normalized cross-correlation 

at a certain time offset τ is bounded between ± 1 and can be thought of as the correlation 

coefficient between the unshifted version of one of the signals (f(t)) and the other signal 

shifted in the time axis by τ(g(t+τ)). Mathematically, we use:

cross−correlation(τ) = (f ⋆ g)(τ)
(f ⋆ f)(0) ⋅ (g ⋆ g)(0) (Equation 10)

for

(f ⋆ g)(τ) = ∑
t

(f(t) − 〈f(t)〉)(g(t + τ) − 〈g(t)〉) (Equation 11)

In fact, for τ = 0, the normalized cross-correlation of the two signals is exactly the Pearson 

correlation coefficient. The shape of the cross-correlation curve can also reveal periodic and 

other time-dependent correlative behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Supercoiling dynamics confer rapid, tunable coupling between adjacent genes

• Syntax—the relative order and orientation of genes—alters expression levels

• Supercoiling-dependent feedback tunes transcriptional variance and bursting

• Supercoiling coordinates the dynamics of transcriptional networks and gene 

circuits
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Figure 1. Four key variables define the location of each polymerase: its linear distance z along 
the genome, the length of the nascent mRNA transcript x, the rotation of the polymerase Θ, and 
the local DNA excess twist φ
The relaxed DNA twist frequency ω0 has value ω0 = 1.85 radians/nm. The tradeoff between 

RNAP rotation and DNA rotation generates supercoiling upstream and downstream, with the 

drag generated by the nascent mRNA primarily balancing the torque caused by generated 

supercoils. In the limit of fast supercoiling relaxation relative to polymerase motion, the 

supercoiling density is constant in the region between polymerases and can be calculated 

from the slope of the linearly interpolated φ(z) graph. Using an energy model responsive 

to local supercoiling, we can derive supercoiling-dependent initiation terms to model 

differential polymerase loading rates.
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Figure 2. Supercoiling-dependent feedback induces syntax-specific expression profiles
(A) Two-gene circuits serve as a testbed for investigating supercoiling-mediated feedback. 

All four syntaxes include a reporter gene (colored) and an inducible gene (gray).

(B) Two classes of boundary conditions are simulated. Linear boundary conditions are 

simulated with adjacent “walls” that prevent supercoiling propagation, whereas circular 

boundary conditions allow supercoiling generated at one gene to freely affect other genes in 

either direction around the circle. At right, mean reporter expression is plotted as a function 

of the level of induction of the adjacent gene for circular and linear boundary conditions. 

Reporter output is normalized to the uninduced expression case by dividing mRNA counts 

by a constant value per boundary condition case (10 mRNAs for the circular case and 250 

mRNAs for the linear case).

(C) Gene expression distributions of simulations with circular boundary conditions are 

shown, where the adjacent induced gene is equally induced relative to the reporter gene. 

For each of the four syntaxes, the expression variance can be decomposed into intrinsic and 

extrinsic noise components; the ratio of intrinsic to extrinsic noise is shown on the right. 

Reporter output is normalized by dividing mRNA counts by a constant value (10 mRNAs).

(D) Gene expression distributions and the intrinsic to extrinsic noise ratios are shown for 

linear boundary conditions. Reporter output is normalized by dividing counts by a constant 

value (250 mRNAs).
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(E) The mean supercoiling density of linear constructs are shown as a function of induction 

of the inducible gene. Induction (colored line) displays syntax-specific behavior compared 

with the uninduced case (dashed line).

(F) Reporter output is shown as a function of inter-gene spacing (Δx) at five different 

induction levels. Reporter output is normalized by dividing mRNA counts by a constant 

value (250 mRNAs). See also Figure S1.
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Figure 3. Supercoiling-dependent feedback induces dynamic coupling and altered variance 
between genes
(A) mRNA counts over time from example individual simulations for the four syntaxes are 

shown. Simulations are initialized with only the reporter gene (colored) active, with the 

adjacent gene (gray) enabled with equal basal expression after 10,000 s (2.8 h).

(B) The average ensemble supercoiling density is shown both before and after adjacent gene 

induction.

(C) The cross-correlation of two signals f(t), g(t) at a time offset τ can be calculated by 

“sliding” one mean-centered signal relative to the other mean-centered signal and integrating 

the product of the resulting signals.

(D) The cross-correlation between the two genes is shown for the equal-induction case 

across the four syntaxes. The convergent and divergent syntaxes showed the strongest 

cross-correlation, with the convergent case showing periodic behavior and the divergent 

case showing strong correlated expression.

(E) Distributions of the reporter output before (dotted) and after (solid) induction of the 

adjacent gene show changes in both the mean and standard deviation due to adjacent 

expression.

(F) Ensemble noise behavior for the four simulated syntaxes is shown by plotting the 

standard deviation of the reporter gene across the ensemble of simulations as a function of 

time. See also Figure S1 and Videos S1, S2, S3, and S4.
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Figure 4. Burst dynamics vary in different models of DNA supercoiling
(A) Two model perturbations are compared with the base model, one where polymerase 

initiation is impossible once the supercoiling density is extreme, and one where nucleosomes 

provide buffering against positive supercoiling. Each model tunes either the function relating 

torque and supercoiling density (middle) or the polymerase initiation energy function 

(bottom); changes relative to the base model are marked with a gray background.

(B) Bursts are defined as a group of consecutive polymerase loading events. The size of a 

burst is defined as the number of loaded polymerases, whereas interburst time is defined as 

the gap between successive bursts.

(C) The ensemble distribution of burst size is shown for the different orientations for each of 

the polymerase conditions.

(D) The ensemble distribution of inter-burst time is shown for the different orientations for 

each of the polymerase conditions. See also Figures S1-S3.
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Figure 5. Toggle switches implemented as a mutually inhibitory pair of genes show syntax-
specific stability
(A) Schematic of a synthetic toggle switch composed of mutual transcriptional repressors, 

A and B, which are expressed from a promoter negatively regulated by the opposite gene. 

Repression follows a Hill function (center), which shows cooperativity based on the value 

of n. Reactions where n is greater than 1 show cooperativity. Simulated toggle switches are 

regulated both by a mutually inhibitory interaction at the mRNA level and via supercoiling-

dependent phenomena.

(B) The ensemble mRNA count distributions are shown as a function of syntax at four 

selected time points. All plots represent simulations where the Hill coefficient has been set 

to n = 2.0.

(C) The stability, measured as the percentage of simulations in the ensemble that have 

never escaped the initial starting basin, of the four starting states of the system plotted as a 

function of time.

(D) Expression burst size distributions of the initially active gene A are plotted as a function 

of circuit syntax.

(E) The half-life at different values of the mRNA degradation rate are shown. As the mRNA 

degradation rate principally sets the average number of mRNA molecules, high degradation 
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rates lead to systems with low overall mRNA concentration and concordant stochastic 

instability. See also Figure S4.
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Figure 6. Supercoiling-mediated feedback supports robust transcriptional coordination within 
the zebrafish segmentation clock circuit
(A) Schematic of the mutually inhibitory her1-her7 system. Either a her1-her1 dimer or a 

hes6-her7 dimer can bind to either promoter, preventing transcription of the downstream 

gene.

(B) Coupling between her1-her7 genes on the same allele supports proper zebrafish somite 

formation (Zinani et al., 2021). Disruption of this intra-allele coupling through unpaired 

mutations in her1-her7 leads to loss of proper segmentation.

(C) Example simulations of her1 and her7 mRNA levels are shown as a function of gene 

syntax and topoisomerase activity.

(D) The ensemble cross-correlation between the her1 and her7 mRNA counts is shown 

across pairing and topoisomerase conditions. The large maxima at τ = 0 combined with 

large roughly symmetric minima observed in the gene-paired cases signal the strong cyclic 

behavior observed experimentally in zebrafish.

(E) The distribution of correlation coefficients between the her1 and her7 mRNA counts is 

shown for the various pairing and topoisomerase conditions.

(F) The oscillation amplitude over the ensemble is shown for the various conditions. See 

also Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Simulation datasets This work https://doi.org/10.5281/zenodo.7041641

Software and algorithms

Adobe Illustrator CC Adobe Systems https://www.adobe.com

Julia 1.6.1 https://julialang.org

DifferentialEquations.jl 6.19.0 Rackauckas and Nie, 2017 https://diffeq.sciml.ai/stable

Python 3 https://www.python.org

Simulation and figure-generation code This work https://doi.org/10.5281/zenodo.7054394
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