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Abstract

To evaluate the postures in ergonomics applications, studies have proposed the use of low-

cost, marker-less, and portable depth camera-based motion tracking systems (DCMTSs) as

a potential alternative to conventional marker-based motion tracking systems (MMTSs).

However, a simple but systematic method for examining the estimation errors of various

DCMTSs is lacking. This paper proposes a benchmarking method for assessing the estima-

tion accuracy of depth cameras for full-body landmark location estimation. A novel align-

ment board was fabricated to align the coordinate systems of the DCMTSs and MMTSs.

The data from an MMTS were used as a reference to quantify the error of using a DCMTS to

identify target locations in a 3-D space. To demonstrate the proposed method, the full-body

landmark location tracking errors were evaluated for a static upright posture using two differ-

ent DCMTSs. For each landmark, we compared each DCMTS (Kinect system and Real-

Sense system) with an MMTS by calculating the Euclidean distances between symmetrical

landmarks. The evaluation trials were performed twice. The agreement between the track-

ing errors of the two evaluation trials was assessed using intraclass correlation coefficient

(ICC). The results indicate that the proposed method can effectively assess the tracking per-

formance of DCMTSs. The average errors (standard deviation) for the Kinect system and

RealSense system were 2.80 (1.03) cm and 5.14 (1.49) cm, respectively. The highest aver-

age error values were observed in the depth orientation for both DCMTSs. The proposed

method achieved high reliability with ICCs of 0.97 and 0.92 for the Kinect system and Real-

Sense system, respectively.

Introduction

Human body landmark location estimation has been introduced in many ergonomics applica-

tions for evaluating adopted working postures [1], performing gait assessment [2], clinical
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measurement [3], etc. Full-body landmark locations are important when estimating body seg-

ment lengths, joint angles, and joint displacements to calculate joint net moments using bio-

mechanical models [4, 5] in ergonomics analyses. Performing these analyses often includes the

implementation of anatomical segments defined by using a conventional optical marker-based

motion tracking system (MMTS) to track the positions of skin-mounted markers. Unfortu-

nately, MMTSs are often impractical for field applications because of their high-cost [6] and

complex setup [7].

Significant developments have been made in optical approaches for image acquisition tech-

nologies, and many low-cost and portable depth cameras have been released in recent years.

Depth cameras provide color channels (red, green, and blue (RGB)) and a depth channel (D).

These sensors can capture and identify RGB images along with their per-pixel depth informa-

tion in real-time [8]. Several techniques are used by depth cameras for object image acquisition

and depth information identification. For example, time-of-flight (TOF) technology obtains

depth information through the time delay between light emission and light detection (i.e.,

Kinect v2, Microsoft). Active stereoscopic technologies reconstruct a three-dimensional (3-D)

shape based on triangulation and epipolar geometry theory from multiple cameras (i.e., Real-

Sense D435i, Intel) [9]. Hence, depth cameras can be used in many applications for estimating

distances between objects and acquiring 3-D data within a reasonable measurement range [10,

11].

With the advantages of being marker-less, depth cameras are also becoming increasingly

popular for monitoring human movement and identifying 3-D joint positions in and outside

laboratory environments [1, 5]. They may also provide an accessible alternative to MMTSs for

ergonomics applications. Among them, many studies have been based on the Microsoft Kinect

depth camera, and researchers have shown further interest in performing various evaluations

to better understand its validity. For example, Xu and McGorry [5] indicated that a first- and

second-generation Kinect camera yielded an average error range of 76 mm to 179 mm 84 mm

to 161 mm, respectively, when identifying joint center locations of sixteen static postures dur-

ing daily activities. Plantard et al. [12] reported that the average error value of computed joint

angles based on available Kinect skeleton data was between 7.7˚ and 9.2˚ for performing ergo-

nomic task assessments under work conditions. In addition, the frame error for gait analysis

when using data from the Kinect device varied across gait parameters [13], while significant

agreement and a high correlation were also found between the Kinect-based parameters and

Vicon MMTS data for gait assessment [2, 14].

Most similar studies typically reported the validity of using the proprietary Kinect-specific

skeletal model to obtain human motion data. However, for certain applications, the Kinect-

specific skeletal model may not be adequate for some rigorous ergonomics assessments

because it lacks clear anatomical definitions for some joints [5, 15] and has insufficient ana-

tomical landmarks [12]. In addition, as this technology evolves quickly, analyses directly

derived from the Kinect-specific skeletal model may eventually be superseded [6]. Moreover,

other depth cameras are available on the market developed by various companies (Intel1,

Asus, etc.). To ensure that the estimation of target locations provided by different depth cam-

eras is trustworthy in intended applications, a systematic method for evaluating the validity of

depth cameras that uses their raw depth and color (RGB) data output is needed.

Previous studies have developed and validated different methods for identifying 3-D poses

based on raw depth camera data. For instance, Kobsar et al. [6] created a point cloud from a

raw depth image obtained by the Kinect depth camera and then applied an iterative closest

point algorithm to track the vertical displacement of the runner’s torso from the point cloud

dataset. Abobakr et al. [1] trained a deep convolutional neural network to predict the human

body joint angle and analyzed working postures in depth images captured by a depth camera.
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Although various validation results for advanced methods have been reported, for on-site

ergonomics applications, an alternative benchmarking method that can be used simply by

operators without computer expertise would be helpful.

Therefore, the goal of this study is to present a simple method for benchmarking the estima-

tion accuracy of depth cameras in comparison with a reference MMTS using a novel alignment

board. For demonstration, the proposed method is used to evaluate tracking errors in full-body

landmark location measurements of two different depth cameras with different data acquisition

techniques (time-of-flight and stereoscopic) for a static upright standing posture as an example.

Direct comparisons between two types of depth camera systems and thirty-two landmarks are

performed. In addition, the reliability of the proposed method is investigated in this study.

Materials and methods

Method for benchmarking the estimation accuracy of depth cameras

This method was developed for calculating tracking errors of depth cameras based on the

coordinate data identified by the MMTS in a 3-D space.

Novel alignment tool between the coordinate system of depth cameras and the coordi-

nate system of a marker-based motion tracking system. Alignment between different coor-

dinate systems defined by different devices is an important step for comparing data from

different camera systems. Generally, performing alignment lies in finding the correspondence

between a sufficient number of known points in one coordinate system and its corresponding

locations in another coordinate system. In the field of computer vision, researchers have pro-

posed various methods to calibrate cameras. The method identified the known points based

on two dimensional (2-D) objects, i.e., the intersection points of squares in a checkerboard, is

one of the most popular techniques [16]. Therefore, this current study ideated the novel align-

ment tool based on the concept of it (Fig 1).

A previous study indicated that the accuracy of a depth camera varies when the tracking tar-

get was placed at different locations and directions [17], therefore the proposed alignment

board was designed to be of sufficient size, with a large number of marker placements. This

board should allow a large tracking coverage of a depth camera, intended to reduce the error

due to the potential measurement bias. A square aluminum alignment board (110 cm × 110

cm) was designed and fabricated (Fig 2). Previous studies utilized alignment objects ranged

from an 11 × 8 checkerboard (a total of 88 quadrilaterals) [17] to a customized wooden wheel

with a total of 16 sampling points [5]. Hence, we determined to choose the number of marker

placements exceeding those used in the previous studies. On the plate, a 10×10-array of holes

was drilled symmetrically for reflective markers placement. The distance between each marker

placement was set at 10 cm, close to the length of smaller human body segments of interest, for

example, the hand. The special reflective markers were steel spheres (diameter = 14.5 mm)

coated with reflective powder, and they could be placed magnetically on the board (Fig 3).

Fig 1. The idea of developing a novel alignment tool stemming from the concept of a checkered board. This study used the reflective markers which can be

identified by MMTS in its coordinate system.

https://doi.org/10.1371/journal.pone.0254814.g001
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This design allowed the coordinate data of each special reflective marker on the alignment

board to be recognized and captured by the MMTS (as reference) and depth cameras when

there was no occurrence of occlusions. The transformation matrices for aligning the two coor-

dinate systems could be generated based on the coordinate data of the markers on the align-

ment board as identified by each system (Fig 4).

Tracking error calculation. To illustrate the procedure of the proposed method, let sym-

bols “M” and “D” represent coordinates x, y, and z in the coordinate systems (CSs) of the

MMTS and depth camera, respectively. In addition, “t” and “b” are defined as the coordinate

data of the measurement target and that of the special reflective markers on the alignment

board, respectively.

To compare coordinate data of the depth camera and MMTS directly, a 3-by-3 rotation

matrix (R3,3) and a 3-by-1 translation matrix (t3,1) that can be used to transform the coordinate

data between the CSs are needed.

First, the coordinate data of two sets of corresponding reflective markers on the alignment

board captured by the MMTS ðxMb ; y
M
b ; z

M
b Þ and depth camera ðxDb ; y

D
b ; z

D
b Þ were used to calcu-

late the matrices R3,3 and t3,1. It follows that:

ðxMb ; y
M
b ; z

M
b Þ ¼ ðx

D
b ; y

D
b ; z

D
b Þ � R3;3 þ t3;1 ð1Þ

Performing a coordinate transformation usually produces an estimated residual. The resid-

ual error (ErR) can be examined by calculating the average Euclidean distance between the

original coordinate data determined by the MMTS ðxMb i; y
M
b i; z

M
b iÞ and the coordinate data

from the depth camera after transformation ðxD!M
b i; yD!M

b i; zD!M
b iÞ, where i is the ith point on

the alignment board and n is the number of reflective markers placed on the board:

ðxD!M
b i; yD!M

b i;z
D!M
b iÞ ¼ ðx

D
b i;y

D
b i ;z

D
b iÞ � R3;3 þ t3;1 ð2Þ

ErR ¼
1

n
Pn

i¼1
½ðxMb i � xD!M

b iÞ
2
þ ðyMb i � yD!M

b iÞ
2
þ ðzMb i � zD!M

b iÞ
2
�

1
2

n o
ð3Þ

Fig 2. Sketch of the design for the alignment board. There are one hundred placements for the special reflective markers.

https://doi.org/10.1371/journal.pone.0254814.g002
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After solving the rotation matrix and the translation matrix, they are used to convert the

3-D coordinate data of the measurement targets recognized by the depth camera ðxDt ; y
D
t ; z

D
t Þ to

the coordinate data based on the CS of the MMTS ðxD!M
t ; yD!M

t ; zD!M
t Þ:

ðxD!M
t ; yD!M

t ; zD!M
t Þ ¼ ðxDt ; y

D
t ; z

D
t Þ � R3;3 þ t3;1 ð4Þ

Fig 3. A sample of each of the holes that was used for special reflective marker placement. The special reflective markers (coated with reflective powder) are steel

spheres, which can be fixed magnetically onto the alignment board.

https://doi.org/10.1371/journal.pone.0254814.g003

Fig 4. The special reflective markers can be tracked by the MMTS and DCMTS simultaneously. (a) MMTS view:

the screenshot of the Motive software (OptiTrack Motion Capture System, NaturalPoint, Inc., USA) showed that one

hundred markers were identified by the MMTS; (b) DCMTS view: the photo taken by a depth camera (the color space

data (pixel, (x, y)) of each reflective marker on this picture was mapped onto camera space data (3-D space, (x, y, z))).

https://doi.org/10.1371/journal.pone.0254814.g004
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Then, the error in the measurement of the coordinate data (Er) of each target location in

3-D space as measured with a depth camera can be calculated using the same concept of

Euclidean distance via:

Er ¼ ½ðxMt � xD!M
t Þ

2
þ ðyMt � yD!M

t Þ
2
þ ðzMt � zD!M

t Þ
2
�

1
2 ð5Þ

Demonstration

As an example, this section describes the use of the method proposed in this study to assess the

human full-body landmark location tracking error of two different depth camera-based

motion tracking systems (DCMTSs), i.e., time-of-flight and stereoscopic. Here, body land-

marks were defined as the measurement targets. Fig 5 shows the flowchart of this experiment.

Apparatus. An OptiTrack motion capture system (NaturalPoint, Inc., USA) sampling at

125 Hz was used as the gold standard. The second-generation Kinect (Microsoft, USA) with a

frame rate of up to 30 fps was chosen to represent the time-of-flight technique. It consists of an

RGB camera (resolution of 1920 × 1080 pixels) and a depth sensor (512 × 424 pixels). The sec-

ond system chosen was RealSense D435i (Intel, USA) with a stereoscopic depth camera, a

1920 × 1080 pixel RGB sensor, and a depth sensor (1280 × 720 active stereo depth resolution,

up to 90 fps). In this study, two different DCMTSs were defined (Kinect system and RealSense

system). Two cameras of the same type placed at the front and back sides of the participants

were combined to form a DCMTS. The distance between the two depth cameras was 5 m to

track the target at the middle point, and the devices were placed at a height of 0.75 m. The full-

body landmark coordinates were integrated based on the data output from one of the two

depth cameras in a DCMTS.

The alignment board developed in this study was used as a tool for aligning the coordinate

data between the two DCMTSs and their corresponding data defined by an MMTS.

Participants. The experimental protocol was approved by the local institutional review

board of National Tsing Hua University in Taiwan. Three participants (age: 23.67 (2.08) years

old, height: 1.68 (0.08) m, and weight: 63.67 (17.21) kg) provided written informed consent

prior to participation in this study.

Experimental design and procedure. The same experimental protocols were used for the

validation of the Kinect system and RealSense system.

First, the alignment board was placed in front of and facing each depth camera in the

DCMTS and in the available field of view of the MMTS. In this experiment, 100 special reflec-

tive markers were placed on the alignment board. The locations of the markers on the board

were recorded by the DCMTS and MMTS simultaneously.

Then, each participant was asked to stand in the middle of the DCMTS, face the front-cam-

era, and hold a normal upright standing posture for approximately 2 s. Custom reflective

markers that could be identified by the MMTS were attached to the thirty-two anatomical

landmarks of the participants based on the tutorials of the professional biomechanics analysis

software Visual3D (C-Motion Inc., USA). The target anatomical landmarks were chosen based

on the “Rab Upper Extremity Model” [18] and the “Conventional Gait Model” [19–24], which

can be implemented in Visual3D to compose a whole-body model, as shown in Fig 6.

Data collection. The coordinate data of the special reflective markers on the alignment

board and the custom reflective markers attached to the thirty-two landmarks of the partici-

pants were tracked and identified by the MMTS using Motive (NaturalPoint, Inc., USA)

software.

The color pictures (raw RGB data) with depth information (raw depth data) of the align-

ment board and the participants were taken by the DCMTS. For the Kinect system, Kinect

software development kit (SDK) 2.0 was used to develop a customized application for
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recording and outputting coordinate data of the markers on the board and participants’ body

landmarks. For the RealSense system, this study used Intel RealSense SDK 2.0 to write a pro-

gram for obtaining the depth data of the reflective markers from the color picture.

The center points of the markers shown on the color pictures were manually selected, and

their pixel-coordinate data were determined by an experimenter who performed several trials

before formal data acquisition. Next, the color space data (pixel, (x, y)) were mapped onto the

camera space (3-D space, (x, y, z)). This manual selection procedure was repeated twice by the

experimenter based on the same dataset.

Fig 5. The flowchart for describing the use of the proposed benchmarking method. (MMTS: marker-based motion tracking system; DCMTS: depth camera-based

motion tracking system; CS: coordinate system; SR-marker: special reflective marker; CR-marker: custom reflective marker).

https://doi.org/10.1371/journal.pone.0254814.g005
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As shown in Fig 6, the landmark data on the front-side of the participants were taken by the

front-depth camera (which the participants faced); the landmark data of the participants’

back-sides were obtained using the back-depth camera.

Data analysis. The x-axis represents the lateral orientation, the y-axis represents the verti-

cal orientation, and the z-axis represents the depth direction of both depth cameras. The coor-

dinate data of the special reflective markers on the alignment board tracked by the MMTS and

each of the two DCMTSs were used to generate the transformation matrices and align the CS

between them based on Eqs (1)–(3), respectively.

The coordinate data of thirty-two anatomical landmarks identified by two different

DCMTSs were transformed into the CS of the MMTS using these matrices. The average

Euclidean distance between the landmark locations defined by each DCMTS and their coun-

terparts identified by the MMTS was used as an error. The difference between the coordinates

based on the depth camera’s CS after transformation and the data from the MMTS of each axis

(x, y, z) was also calculated using jxMl � xD!M
l j; jyMl � yD!M

l j and jzMl � zD!M
l j, with l represent-

ing the meaning of each landmark. Based on the evaluation results of the proposed method

(Eqs (4) and (5)), the estimation accuracy of each DCMTS could be benchmarked.

The average tracking error of two trials was used to compare the two different DCMTSs

(Kinect system/RealSense system) when tracking full-body landmark locations.

In addition, the reliability of this method was assessed via intraclass correlation coefficient

(ICC) based on two sets of tracking errors data of the thirty-two landmarks from two manual

Fig 6. The target anatomical landmarks in this study.

https://doi.org/10.1371/journal.pone.0254814.g006
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selection trials. The ICC value was evaluated using this order of agreement [25]: less than 0.5,

poor; 0.5–0.75, moderate; 0.75–0.9, good and greater than 0.9, excellent. The standard error of

the measurement (SEM) was also calculated. The SEM was defined as the standard deviation

(SD) multiplied by the square root of the estimated reliability (Cronbach’s alpha in here) sub-

tracted from 1.

Results

For the alignments between the CSs of the DCMTSs and the corresponding CS of the MMTS,

the average (standard deviation) residual errors (ErR) were 0.59 (0.04) cm and 3.77 (0.46) cm

for the Kinect system and RealSense system, respectively, among the alignment steps.

The average Euclidean distances of the three subjects and two trials for each target land-

mark of the Kinect system and RealSense system are presented in Figs 8 and 9, respectively.

The range in the average error values (Er) was 1.66 to 5.65 cm and 1.91 to 8.28 cm, and the

average error (standard deviation) of the full-body landmarks was 2.80 (1.03) cm and 5.14

(1.49) cm for the Kinect system and RealSense system, respectively, as shown in Fig 7.

For data tracking of three different axes using the Kinect system, the z-axis had a maximum

average error value (standard deviation) of 1.86 (0.64) cm, and the x-axis had a minimum

value of 1.10 (0.69) cm. Similar results were obtained for the data captured by the RealSense

system, and a maximum average error value (standard deviation) of 3.52 (1.47) cm was

observed for the z-axis. The x-axis had a minimum error of 1.62 (1.18) cm. Based on these

results, overall, the Kinect system exhibited a better performance than the RealSense system in

tracking full-body landmark locations for a static standing posture.

The method proposed in this study achieved high reliability between two measurement tri-

als for benchmarking the tracking errors of thirty-two landmark locations using two different

DCMTSs (Table 1). ICCs of 0.97 and 0.92 were found for the Kinect system and RealSense sys-

tem, respectively, for evaluating the full-body landmark location tracking error. Reliability

with an ICC higher than 0.9 was found in all error measurements of the x-, y-, and z-axes iden-

tified by the Kinect system (ICC: 0.95, 0.95, and 0.91, respectively). The landmark tracking

errors defined by the RealSense system over two trials also showed ICC values higher than 0.9

in the x- and y-axes (ICC: 0.91 and 0.99, respectively), with the exception of the error measure-

ment in the z-axis (ICC, 0.89).

Discussion

The present study developed an alignment board and a method for benchmarking estimation

accuracy using depth cameras to capture full-body landmark locations in 3-D space. We

Fig 7. The average error value of the Kinect system and RealSense system in 3-D space.

https://doi.org/10.1371/journal.pone.0254814.g007
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propose the utility of raw depth/RGB data captured by depth cameras to measure the estima-

tion accuracy of full-body landmark location identification. As previous analyses directly

derived from the Kinect-specific skeletal model may eventually be superseded [6], we present a

simple but systematic method that may be helpful for assessing the accuracy of alternative or

upcoming depth cameras and is not limited to the two devices considered in this study.

According to the results (Figs 8 and 9), mapping 2-D pixels in a 3-D space using the Kinect

system to obtain coordinate data of participant’s body landmarks exhibited an average error of

2.80 cm. In comparison, Xu and McGorry reported an average error value of 8.7 cm (the dif-

ference between the output data of a second-generation Kinect-specific skeletal model and an

MMTS) over all major joints in a normal standing posture [5]. The current approach appar-

ently can improve the accuracy acquired body landmark location data even when the same

hardware device is used.

Additionally, based on the results observed in Fig 7, the Kinect system (with the time-of-

flight technique) exhibited higher accuracy than the RealSense system (with stereoscopic tech-

nique) in identifying the thirty-two body landmark locations. This result indicates that for full-

body landmark tracking, the Kinect system outperforms the RealSense system in the current

setting. A similar result was found in the accuracy comparison between the Kinect and Real-

Sense devices for measuring the fixed object dimensions [26]. The use of the time-of-flight

technique seems to have better estimation accuracy than that of the stereoscopic technique.

However, Chiu et al. [26] mentioned that the SDK of a RealSense device provides a wider

range of options for altering the camera settings to adapt to different environments. The trade-

off between accuracy and adaptability should be carefully considered to satisfy the user’s

needs.

A new marker-less pose estimation library, OpenPose, was released for real-time multi-per-

son 2-D pose estimation from an image or video [27]. However, the default 2-D skeleton out-

put from OpenPose may not be sufficient for applications where body landmark locations in

the 3-D space are required. Therefore, a previous study [28] developed a 3-D marker-less

motion capture technique using OpenPose with multiple synchronized video cameras, and

then evaluated its accuracy against the gold standard, an optical marker-based motion tracking

system. Among all the error estimates based on the data in each of the axes (x, y, and z), only

approximately 47% of errors were lower than 2 cm. The current study showed that there were

79% of the errors less than 2 cm for the Kinect system while a similar condition was observed

from the RealSense system that only 47% of errors were less than 2 cm, compared with the

gold standard system. Although the experimental conditions in this study were different from

those in the previous study, it is still reasonable to believe that the utility of raw depth/RGB

data captured by the Kinect system in this study can be an applicable alternative motion track-

ing tool.

The Table 1 results show that the proposed method for evaluating the full-body landmark

estimation accuracy has excellent reliability for the Kinect system, with ICC values greater

than 0.9 in all three axes. For the RealSense system, this method also exhibited excellent reli-

ability for measuring the error in the x- and y-axes. For the z-axis, an ICC value of 0.89 was

reached, which is slightly lower than 0.9 but remains within good agreement.

Other studies have used different parameters, such as joint angles [12, 29] and gait charac-

teristics [30, 31], to test and determine the applicability of depth cameras in various fields.

Regardless, our study used the distance directly calculated between the MMTS and DCMTS as

the error because the coordinate data in 3-D space (x, y, z) are fundamental for estimating

other spatiotemporal or kinematic parameters. Relying on advanced machine learning tech-

niques, various methods for obtaining 3-D postural data without the help of a conventional

marker-based motion tracking system have been developed and applied in improving motion
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Fig 8. The mean (SD) of the Kinect system tracking error for full-body landmarks in 3-D space (Er) and each axis.

https://doi.org/10.1371/journal.pone.0254814.g008
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Fig 9. The mean (SD) of the RealSense system tracking error for full-body landmarks in 3-D space (Er) and each axis.

https://doi.org/10.1371/journal.pone.0254814.g009
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assessment system [15], predicting joint load [32] and 3-D spinal postures [33]. However, the

development and use of those methods usually require deep knowledge of those techniques

and specific pose databases for certain required parameters. For example, using a deep neural

network-based method to develop a 3-D lifting motion model would need a lifting dataset con-

sisting of videos and corresponding 3-D joint information of various lifting tasks [34]. The val-

idation results of those methods usually limited the applications to similar scenarios. In

contrast, our proposed simple benchmarking method uses the depth camera’s raw depth and

color data output, and directly calculates the distance between the MMTS and DCMTS for

each fundamental body landmark location for universal usage.

The result shown in Fig 7 indicated that the error in the z-axis (depth orientation) was the

main contributor when generating the tracking error of both DCMTSs in this study. A previ-

ous study [17] reported similar results: the first-generation Kinect had the highest error level

of 1.1 cm in the depth direction across the entire tracking range. This finding should be con-

sidered in future experimental designs.

There were some limitations in the current study. First, the center location of each reflective

marker in the color picture of the depth cameras was manually selected by only one experi-

menter. The interexperimenter variabilities associated with these determinations are

unknown. The effects of variabilities among experimenters on the accuracy assessment should

be further examined to understand if there is user-dependent error existed. Second, although

different tracking distances and viewing angles may influence the accuracy of the depth cam-

eras, this study only focused on developing a new method for assessing the accuracy and illus-

trating the method through demonstration experiments under a single condition based on the

two selected depth cameras. In addition, because CSs differ among motion tracking devices, to

directly compare their outputs, a step for aligning these CSs is important and necessary. The

alignment board developed in this study, which has 100 special reflective markers, was used as

a tool for aligning the CS of depth cameras with respect to the MMTS. It would be interesting

to investigate whether the number and arrangement of the special reflective markers on the

alignment board affects the result. Certainly, there is the time demand associated with the

manual operations in this proposed method. This study intended to provide a systematics

alternative benchmarking method for practitioners or operators to understand the accuracy of

a depth camera for body landmark tracking before they conduct biomechanical or ergonomics

analysis. The proposed benchmarking method is likely needed to be performed only once for

an experiment to establish a depth camera system’s relative accuracy, and the time to carry this

process out should be not significantly more than a typical calibration required for such

motion tracking equipment. After this assessment, the user then can carry out the study.

Therefore, this process is only a small portion of a whole study. Considering the value of

understanding a system’s applicability before using it, we believe that it is a good trade-off. In

Table 1. The reliability of the assessment of the estimation accuracy using the method proposed in this study for

the Kinect system and RealSense system.

Kinect system RealSense system

ICC 95% CI SEM ICC 95% CI SEM

Er 0.97 0.94–0.99 0.25 0.92 0.85–0.96 0.60

x-axis 0.95 0.90–0.97 0.23 0.91 0.82–0.95 0.52

y-axis 0.95 0.90–0.98 0.27 0.99 0.99–1.00 0.19

z-axis 0.91 0.82–0.95 0.29 0.89 0.79–0.95 0.71

ICC: intraclass correlation coefficient, CI: confidence interval, SEM: standard error of measurement

https://doi.org/10.1371/journal.pone.0254814.t001
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future studies, with the emergence and advancements of computer vision techniques, using

these approaches to automatically recognize special reflective markers on the alignment board

may allow the aligning step to be performed efficiently. However, the idea of this proposed

method should still be useful in assessing the estimation accuracy of various depth cameras,

regardless of whether these assessments are performed manually by on-site operators or by

specialists with advanced knowledge of computer vision-based algorithm development.

While the present study used postural data obtained at a single time point as a demonstra-

tion of the proposed benchmarking method, it did not limit the application of the proposed

method to static poses. Given that a dynamic movement is composed of a series of individual

static poses, that is, the video of dynamic movement recorded by a depth camera is the compo-

sition of serial images along the time. In principle, once the accuracy on each one of the images

can be evaluated for a depth camera, the accuracy for dynamic movements can also be ascer-

tained with further development. Similarly, the proposed benchmarking method should also

be usable for studies that intend to use different postures as tracking targets to check the accu-

racy of the depth camera system. However, tracking different postures inevitably would

encounter problems such as occlusions by the subject’s body segments or the surrounding

objects when using camera-based systems. Further investigation on the effect of such chal-

lenges in the different complex levels of settings would be an important topic to expand the

applicability of our proposed benchmarking method.

In addition, this study selected and evaluated two common depth cameras as representa-

tives of the time-of-flight and stereoscopic techniques at the time of conducting this study.

However, newer models of depth cameras will continue to be developed. The benchmarking

results from this current study may not be able to represent the accuracy of all the new depth

cameras. However, the proposed benchmarking method will still be applicable to other new

depth cameras with similar principles in the future.
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