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Abstract: Background: Whole transgenic or non-transgenic organism model systems allow the
screening of pharmacological compounds for protective actions in Alzheimer’s disease (AD). Aim:
In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from
the external environment, was investigated as a new potential non-transgenic model system of AD.
Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform
immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive
oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH)
levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1–40, 1–42,
17–42, 17–40, 1–28, or 1–16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth
Medium and directly used, as control, for chemosensory assays. Results: We demonstrated that:
(i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise
with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1–40, 1–42, 17–42,
17–40, 1–28, or 1–16) impairs G. pallida’s chemotaxis to differing extents; (iii) Aβ peptides reduced
survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this
unique model can distinguish differences between different treatment concentrations, durations, and
modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective
in protecting G. pallida from Aβ (1–42) exposure. Taken together, the data indicate that G. pallida is
an interesting in vivo model with strong potential for discovery of novel bioactive compounds with
anti-AD activity.

Keywords: Alzheimer’s disease; amyloid-β; Globodera pallida; Caenorhabditis elegans; oxidative stress;
in vivo model

Highlights

• G. pallida, a plant parasitic nematode, can be used as a non-transgenic model of AD.
• G. pallida appears to be a reliable non-transgenic nematode compared to C. elegans

transgenic strains, for studying AD experimentally.
• G. pallida can assimilate amyloid beta (Aβ) peptides, which co-localize with its neuro-

logical structures mimicking AD physiopathology.
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• Treatment with various Aβ isoforms 1–40, 1–42, 17–42, 17–40, 1–28, or 1–16) impaired
G. pallida’s chemotaxis, survival, production of ROS, and GSSG/GSH levels.

• G. pallida represents a unique model that can sensitively distinguish differences be-
tween different treatment concentrations, durations, and other modalities.

• Clinically approved neuroprotective agents were effective in protecting G. pallida from
Aβ (1–42) exposure.

• G. pallida is an interesting new in vivo model with strong potential for discovery of
novel bioactive compounds with anti-AD activity.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading
cause of age-related dementia affecting an estimated 50 million people worldwide [1,2].
The Alzheimer’s Association (2020) have reported that 60 to 80% of dementia patients have
AD [3]. Thus, AD represents a global public health concern and has the potential to cause
serious economic damage to major economies. The amyloid cascade hypothesis attributes
the development of AD pathology to the production and deposition of amyloid-β (Aβ)
peptides in the brain [4,5].

Various Aβ isoforms of differing length exist, the longest of which, Aβ (1–42), is
the most toxic [6,7]. Animal models of AD which develop Aβ pathology are impor-
tant in the preclinical testing of new AD therapies but remain impractical and expen-
sive when intended for large-scale drug screening. One alternative for facilitating high-
throughput screening (HTS) is to employ cell culture techniques using neuronal primary
cells/immortalized cell lines or stem-cells which have been differentiated into neurons [8].
However, the downside of this approach is that cells do not recapitulate the complexity
of pathological processes on the level of an organism. Therefore, a more complex alter-
native is the use of invertebrate transgenic organisms as disease models. Both the fly
Drosophila melanogaster and the nematode Caenorhabditis elegans have been used extensively
in studying AD pathology, including the effects of Aβ [9]. The extremely short life cycles
of these organisms have allowed scientists to easily perform high-throughput screens for
pharmacological compounds in a relatively short timescale and at low cost. Transgenic
C. elegans has been particularly used to study genetic and biological mechanisms of AD,
among other neurodegenerative diseases [10–12].

Nevertheless, such transgenic models are not completely without problems. Thereby,
a common criticism of invertebrate transgenic AD models is that non-transgenic organisms
are not appropriate to be used as controls. Indeed, it is difficult to ascertain whether
transgenic expression of any aggregating proteins (instead of Aβ) would have had the
same behavioral effects compared to that of the corresponding non-transgenic aggregating
proteins or would reflect the natural behavior effects [13]. Transgenic C. elegans may exhibit
transgenesis leading to extrachromosomal arrays containing hundreds of copies of the
transforming DNA [14], which subsequently produce exaggerated phenotypes. Besides,
some Aβ-expressing C. elegans AD models are muscle-expressed systems [15], which make
them unsuitable for modelling AD pathology or Aβ neurotoxicity. Although it has been
possible to overcome some of the above problems, including by the achievement of the
neuronal expression of Aβ in C. elegans [16], there is an urgent need to explore novel
non-transgenic models which are lesser complex alternatives than transgenic C. elegans
models of AD.

As a step in this direction, we investigate a novel non-transgenic model, namely
G. pallida, a plant parasitic nematode. The proposed G. pallida model would have poten-
tial advantages over C. elegans. First, G. pallida is capable of assimilating peptides from
the external environment, an innate trait lacking in C. elegans [17,18]. Indeed, G. pallida
takes up peptides through the neuronal amphids of its nervous system, enabling the
direct observation of neurotoxicity through the measurement of behavioral and biochem-
ical changes [17]. Second, it would be possible to examine the acute dose-response or
concentration-dependent effects on the actions of Aβ in G. pallida. Third, as Aβ exists in
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many forms in the human brain, it becomes feasible to isolate the effects of each individual
Aβ species and examine their combined effects in G. pallida. Fourth, in terms of HTS of
drugs, G. pallida model would offer greater speed and convenience over C. elegans. Fifth,
G. pallida is extremely sensitive to neuronal RNAi, which is a powerful tool for studying
and manipulating the mechanisms that underlie Aβ toxicity [18–20].

Herein, we then decided to explore G. pallida as a novel in vivo model for studying
AD. Specifically, we checked if (i) G. pallida can assimilate specifically Aβ peptides, (ii)
these peptides co-localise with neurological structures (e.g., the neural ring), and (iii) the
behaviour of this nematode is consequently impaired.

2. Materials and Methods
2.1. Chemicals and Reagents

All Aβ peptides ((1–40), (1–42), (17–42), (17–40), (1–28) and (1–16)) as well as the cocoa
peptide 13L (DNYDNSAGKWWVT) were obtained from GL Biochem Ltd. (Shanghai, China).

Mannitol, galantamine, memantine, caffeine, 2,7-dichlorofluorescein diacetate and
phosphate-buffered saline (PBS), and all reagents used in chemotaxis assays for C. elegans
were obtained from Sigma-Aldrich Co Ltd. (Poole, Dorset, UK). Alamar Blue reagent, agar
base and agar slurry were purchased from Fisher Scientific Ltd. (Loughborough, UK).

2.2. Methods
2.2.1. Chemosensory Studies with G. pallida

Potato cyst nematodes (G. pallida) were maintained in potato plants at the Agri-Food
and Bioscience Institute (AFBI), Belfast, Northern Ireland. The cysts were hatched in fresh
potato root diffusate (PRD) at 16 ◦C in darkness over ten days. Second-stage juveniles (J2s)
were first washed in spring water then used directly in assays.

Chemosensory assays were carried out using a modified protocol of a previously
published method [21]. Briefly, this involved the preparation of Petri dishes containing
10 mL of 0.25% agar base (prepared with spring water) which provided an environment
for nematodes to move within. Mannitol agar plugs (50 mM, used as an attractant) were
prepared and then placed into one side of a Petri dish with a control agar plug (using water
instead of mannitol) on the opposite side. Two parallel vertical lines (0.5 cm apart) were
marked on the Petri dish lid either side of the center point to form a vertical 1 cm ‘dead
zone’ (see Appendix A). One hundred G. pallida J2 organisms were then suspended in 10 µL
of spring water and spotted onto the midpoint of each dish. Only nematodes outside the
center ‘dead zone’ were counted. After 2 h at room temperature (RT), the Chemotaxis Index
(CI) [22] describing the movement of the worms either towards or away from mannitol
was calculated as follows:

CI =
(+ve)− (−ve)
(+ve) + (−ve)

(1)

where +ve is the number of organisms on the positive (mannitol) side of the dish, and −ve
is the number of organisms on the negative (control) side.

For Aβ pre-treatments (16 ◦C; 24 h), approximately 100 G. pallida J2 organisms were
washed in spring water to remove PRD liquid and then centrifuged (2500 rpm; 2 min).
Pellets were reconstituted in 196 µL of spring water and transferred to a 24-well plate; 4 µL
of either Aβ (5 mM; 1% dimethyl sulfoxide (DMSO) in double-distilled water (ddH2O))
or the vehicle control (1% DMSO in ddH2O) was then added to achieve a final peptide
concentration of 100 µM of Aβ (1–42), Aβ (1–40), Aβ (17–42), Aβ (17–40), Aβ (1–28) or Aβ

(1–16). Studies with Aβ (1–42) were conducted with a range of pre-treatment temperatures
(16 ◦C; 4 ◦C), periods (3 h to 24 h), and concentrations (1–200 µM). Drug treatments, at
the concentrations indicated in Figures 1–5 (i.e., galantamine (100 µM), caffeine (3.6 mM),
memantine (10 mM), or 13L cocoa peptide (200 µg/mL), were co-incubated with Aβ (1–42)
(100 µM; 16 ◦C; 24 h).
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2.2.2. Immunocytochemistry (ICC)

Approximately 1000 freshly hatched G. pallida J2s were immuno-stained using indirect
immunofluorescence technique [23]. Organisms were incubated for 24 h either as control
or peptide-treated groups, after which they were fixed with 4% paraformaldehyde (PFA)
in 0.1 M phosphate-buffered saline (PBS) and incubated in a rotator at 4 ◦C for 24 h.

Immunocytochemical staining employed purified monoclonal anti-Aβ (1–16) primary
antibody 6E10, Isotype: Mouse IgG1 (Biolegend, Inc., San Diego, CA, USA), goat anti-
mouse Alexa Fluor 488 (Molecular Probes) pre-adsorbed IgG (H + L) Secondary Antibody,
and Alexa Fluor® 488 conjugate (Thermo Fisher Scientific Corp., UK) with fixed worms [24].
Thereby, following a wash in the antibody diluent (AbD; PBS pH 7.4, 0.1% (v/v), Triton
X-100, 0.1% (w/v), sodium azide (NaN3) and 0.1% (w/v) bovine serum albumin (BSA)), the
specimens were incubated at 4 ◦C in the primary antibody (1:700 dilution in AbD) for
three days. Then, a wash in AbD for 24 h preceded the incubation of the specimens with
the secondary antibody conjugated to the fluorophore goat anti-mouse Alexa Fluor 488
(Molecular Probes) for 72 h at 4 ◦C. Subsequently, an additional wash in AbD for 24 h
was followed by incubation in tetramethylrhodamine isothiocyanate (TRITC)-conjugated
phalloidin for 24 h at 4 ◦C to visualise endogenous muscle systems (Sigma-Aldrich Co Ltd.,
Poole, Dorset, UK). After a final wash in AbD for 24 h at 4 ◦C, the specimens were mounted
on glass slides with glycerol/PBS and viewed under the Leica TCS SP5 confocal scanning
laser microscope.

2.2.3. Measuring Effects of Aβ on the Health of G. pallida Survival Rate

The number of live and dead G. pallida J2 organisms was manually counted [25], based
on their movements, using a Leica microscope (Leica model: M205C) and the software
package Leica Application Suite (LAS). The assays were blind counted by a second party
to minimise experimental bias.

Measurement of G. pallida Viability

Alamar Blue reagent (Life Technologies Ltd., Paisley, Inchinnan, UK) was used to
assess the cell viability of G. pallida J2 organisms. The Alamar Blue assay is based on the
ability of viable cells to produce formazan from the cleavage of tetrazolium salt by func-
tional mitochondria. The Alamar Blue assay was carried out according to manufacturer’s
instructions. Briefly, a 96-well plate containing G. pallida and the Aβ peptides to be tested
was prepared using standard methods, and Alamar Blue was added directly to each well.
The plates were then incubated at two different temperatures points, 18 ◦C (ambient/RT)
and 37 ◦C (physiological), to allow cells to convert resazurin to resorufin, and the signal
was measured. Fluorescence was quantified every 30 min for 24 h at Ex550 nm and Em590
nm using a FLUOstar Omega microplate reader, and a mean value was obtained for three
independent experiments.

Measurement of ROS

The dichlorofluorescein-diacetate (DCF-DA) assay was used to measure the amount
of ROS production in G. pallida in response to peptides Aβ (1–42), Aβ (1–40), Aβ (17–42),
Aβ (17–40), Aβ (1–28), Aβ (1–16), or to the vehicle control. The method used a modified
protocol based on previous studies with C. elegans [26–28]. ROS production was calculated
by area-under-the-curve (AUC) analysis.

Determination of Total Glutathione

The content of reduced glutathione (GSH) and oxidized glutathione (GSSG) in
G. pallida was determined using an OxiSelectTM Total Glutathione Assay Kit (Cell BIOLABS,
San Diego, CA, USA) in accordance with the manufacturer’s instructions.
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2.2.4. C. elegans Chemotaxis Assays

Wild-type N2 C. elegans (strain N2) was obtained from the Caenorhabditis Genetics
91 Centre, University of Minnesota, Minneapolis, USA, and was cultured on Nematode
Growth Medium. Chemosensory assays were performed as described by [29] with some
minor modifications.

2.3. Data Analysis

All data are expressed as mean ± standard error mean (SEM) (n = 3). Data were
statistically analysed by a one-way ANOVA with Tukey’s multiple comparison test to
compare differences between groups: ns (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001.
All statistical analyses were performed using Graphpad Prism 5.0 software (GraphPad,
San Diego, CA, USA).

3. Results
3.1. Optimisation of Chemosensory Assays

The optimal concentration of chemoattractant was determined by measuring the
chemotaxis index (CI) of G. pallida for two different concentrations of mannitol at 2, 4, 6,
and 24 h.

As shown in Figure 1A, a 50 mM concentration of mannitol (CI: 0.45 ± 0.05) was
highly effective in attracting the nematodes, whereas mannitol at the lower concentration
of 5 mM was not (CI: 0.03 ± 0.08).

Next, the optimal time for chemosensory assays was determined. As shown in Figure 1B,
the CI value for G. pallida was highest at 2 h (CI: 0.52 ± 0.06) and gradually diminished
with increasing incubation time.

3.2. Effects of Aβ on the Chemotaxis of G. pallida

The effect of Aβ exposure on the chemotaxis of G. pallida was evaluated using the
optimized concentration mannitol of 50 mM.

Figure 1C shows that the duration of Aβ (1–42) exposure affected the extent to which
the CI changed. Indeed, treatments as short as 6 h significantly affected the CI (0.23 ± 0.03;
p < 0.001), with the most pronounced effects observed at 21 h (−0.23 ± 0.06; p < 0.001) and
24 h (−0.31 ± 0.02; p < 0.001) compared with the vehicle control group (0.47 ± 0.03).

A pre-incubation time of 24 h was deemed optimal where the response was maximized.
Figure 1D shows that pre-incubation (24 h) of G. pallida with different Aβ fragment peptides
affected its chemoattraction to mannitol (50 mM; 2 h). At a concentration of 100 µM, the CI
value was significantly altered for Aβ (1–42), Aβ (1–40), Aβ (17–42), Aβ (17–40), Aβ (1–28),
and Aβ (1–16) compared with the vehicle control (CI: 0.47 ± 0.06). The greatest effect on
the CI was observed for Aβ (1–42) peptides (CI: −0.30 ± 0.00; p < 0.001), followed by Aβ

(17–42) (CI: −0.23 ± 0.07), Aβ (1–40) (CI: −0.09 ± 0.04), Aβ (17–40) (CI: −0.02 ± 0.04), Aβ

(1–28) (CI: 0.18 ± 0.02) and Aβ (1–16) (CI: 0.18 ± 0.06).
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Figure 1. Optimising assays for chemotaxis index (CI) of G. pallida in function of (A) different concentrations of mannitol
(chemoattractant) with CI measured at 2, 4, 6, and 24 h; (B) a range of incubation periods in response to mannitol (50 mM).
G. pallida had the greatest CI to mannitol at 2 h; this effect gradually diminished with increasing incubation time; (C) the
duration of the Aβ (1–42) pre-incubation, which determines the extent to which the CI was affected. Pre-incubations as short
as 6 h significantly affected CI, with the most pronounced effects observed at 18 h and 24 h; (D) Aβ fragment peptides in
untreated G. pallida. The data are mean ± SEM (n = 3). ns (not significant), * p < 0.05, ** p < 0.01, and *** p < 0.001, compared
with control.

The effects of Aβ (1–42) on the chemotaxis response of G. pallida were found to be
dependent on the peptide concentration (Figure 2A). Concentrations of Aβ (1–42) from
50 to 200 µM were tested; all induced dysfunction in the CI of G. pallida (CI: 200 µM
−0.16 ± 0.02, 150 µM −0.07 ± 0.06, 100 µM −0.26 ± 0.08, and 50 µM 0.08 ± 0.05; p < 0.001)
compared with the vehicle control (CI: 0.52 ± 0.02). Further studies involving 10-fold
dilutions of Aβ (1–42) (Figure 2B) demonstrated that 100 µM had the strongest effect on
the CI (−0.3 ± 0.06; p < 0.001), followed by 10 µM (−0.08 ± 0.05; p < 0.001), whereas 1 µM
had no significant effect on CI compared with the vehicle control (CI: 0.4 ± 0.05; ns).

Additional studies were carried out to demonstrate that Aβ-induced impairment
of chemosensing by G. pallida was not evident in C. elegans. Chemosensory assays were
carried out for C. elegans wild-type N2 using 0.1% diacetyl as an attractant. Organisms were
exposed to Aβ (1–42) for 24 h. Figure 2C shows that Aβ (1–42) did not cause chemotaxis
dysfunction in C. elegans. No significant differences between Aβ (1–42)-treated organisms
and the vehicle control could be detected at any time point over a 120-min period.
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was measured. C. elegans was unaffected. Approximately 30 nematodes (wild-type N2—synchronised young adult age)
per observation. Data demonstrated that Aβ (1–42) had no effect on the chemotaxis response of C. elegans towards the
attractant compared with the vehicle control; (D) Confocal microscopy of amyloid-β (Aβ) (1–42)-treated G. pallida. G. pallida
pre-incubated for 24 h with Aβ (1–42) showed Aβ-specific fluorescence staining (green) which was not co-localised with
muscle staining (red). In second-stage juveniles (J2s), Aβ (1–42) was in the ‘brain’, i.e., the circumpharyngeal nerve ring
(CNR), posterior to the pharyngeal bulb (PHB), and in amphid neurons (AN) running anteriorly towards the stylet protractor
muscles (SPM) and parallel to the body wall muscle (BWM). It is also shown in the ventral nerve cord (VNC) and in phasmid
neurons (PN). Scale bars = 25 µm. The data are mean ± SEM (n = 3). ns (not significant), and *** p < 0.001, compared
with control.

3.3. Localisation of Aβ (1–42) within G. pallida

Immunocytochemistry studies were conducted to confirm the capacity of G. pallida to
assimilate Aβ (1–42), and to establish in which physiological structures of G. pallida the
peptides are localised.

Figure 2D shows confocal microscographs comparing G. pallida exposed to the vehicle
control (left) or Aβ (1–42) (right). Aβ (1–42)-treatment (100 µM) produced clear Aβ-specific
fluorescence staining (green) which was not co-localised with muscle staining (red). Aβ

(1–42) was extensively located throughout the nervous system of G. pallida J2s. It was
particularly abundant in the amphid and phasmid neurons and in the ‘brain’ i.e., the
longitudinal nerve cords of the circumpharyngeal nerve ring (CNR) of G. pallida J2s. This
confirms the hypothesis that these nematodes can assimilate peptides from the external
environment. Furthermore, it is evident that the chemotaxis dysfunctions exhibited in
pre-incubation of Aβ (1–42) with G. pallida were mediated by the nervous system and not
by muscle action. It appears that Aβ (1–42) is localised in both the paired neurons within
the central nerve ring and the sensory amphid neurons of G. pallida J2s.
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3.4. Effects of Aβ (1–42) on the Health Parameters of G. pallida
3.4.1. Viability

Figure 3A,B show the effects of Aβ (1–42), Aβ (1–40), Aβ (17–42), Aβ (17–40), Aβ

(1–28), and Aβ (1–16) peptide fragments on the viability of G. pallida, at 18 ◦C and 37 ◦C,
respectively, as measured by mitochondrial reductase activity (Alamar Blue). 100 µM of
Aβ peptide fragments was used. These effects were compared to the vehicle control.

Aβ (1–42) increased mitochondrial reductase activity by 26.33% at 18 ◦C and by 255%
at 37 ◦C. Aβ (1–40) caused a negligible change in this activity (1.51%) at 18 ◦C but increased
it drastically by 53% at 37 ◦C. Aβ (17–42) increased this activity by 12.95% and 120% at 18 ◦C
and 37 ◦C, respectively. Aβ (17–40) reduced this activity by 4.48% at 18 ◦C but increased it
by 23% at 37 ◦C. Aβ (1–28) increased this activity by 10.15% and 71% at 18 ◦C and 37 ◦C,
respectively. Eventually, Aβ (1–16) slightly increased the mitochondrial reductase activity
by 6.74% at 18 ◦C, it is worth noting that this activity increased drastically by 99% at 37 ◦C.
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Figure 3. Changes in mitochondrial reductase activity in G. pallida in response to amyloid-β (Aβ) peptide fragments.
G. pallida were incubated with Alamar Blue either at a temperature of (A) 18 ◦C or (B) 37 ◦C, and the relevant Aβ fragment
with fluorescence (Ex: 550 nm, Em: 590 nm) was measured every 30 min for 24 h (FLUOstar Omega microplate reader). Aβ

(1–42) increased reductase activity by the greatest extent. Representative light microscopy images of G. pallida second-stage
juveniles (J2s) following 24 h exposure to amyloid-β Aβ (1–42); (C) shows percent survival rate using counting by visual
observation; (D) shows untreated worms (control) with characteristic ‘body bends’; (E) shows the Aβ (1–42)-treated group
with mixed ‘body bends’ and ‘poker straight’ shape characteristics; (F) shows heat-killed worms with characteristic ‘poker
straight’ shape. The data are mean ± SEM (n = 3) with approximately 100 G. pallida organisms per observation. *** p < 0.001,
compared with control.

3.4.2. Survival

100 µM of Aβ peptide fragments was used. Figure 3C indicated the survival of G. pallida
based on counting using visual observation. Specifically, 24 h exposure of G. pallida to Aβ

(1–42) significantly decreased the survival rate of G. pallida (74.3 ± 0.66%) compared with
the vehicle control (97.66 ± 0.88%).

Figure 3D–F represent light microscopy images of G. pallida J2s following 24 h expo-
sure to amyloid-β Aβ (1–42). Figure 3D shows untreated worms (used as control) with
characteristic ‘body bends’, Figure 3E shows the Aβ (1–42)-treated group with a mix of
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‘body bends’ and ‘poker straight’ shape, and Figure 3F shows heat-killed worms with a
characteristic ‘poker straight’ shape.

3.4.3. ROS Production

Figure 4A shows that over the 24 h period, all Aβ peptide fragments (100 µM) sig-
nificantly increased ROS levels in G. pallida compared with the vehicle control. Aβ (1–42)
increased ROS production to the greatest extent with 329%, followed by Aβ (17–42) with
251%, Aβ (1–28) with 194%, and Aβ (1–16) with 188%. Aβ (1–40) and Aβ (17–40) affected
ROS production the least, by 99% and 62%, respectively. When G. pallida were not subject
to any incubations, there was significantly less ROS production, indicating that these
organisms maintain a basal level of ROS.

3.4.4. GSSG/GSH Levels

The ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) within cells is
believed to be a measure of cellular oxidative stress.

Therefore, glutathione levels in G. pallida treated with 100 µM Aβ (1–42) for 24 h were
measured (Figure 4B). Briefly, the data demonstrated that Aβ (1–42) led to significantly
higher GSSG/GSH compared to the control. Moreover, this held true as the number of
G. pallida J2s varied. The increase was 3.21 µM/worms: J2s = 2000, 2.99 µM/worms:
J2s = 1000, 2.32 µM/worms: J2s = 500, and 0.86 µM/worms: J2s= 250 (p < 0.001).
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Figure 4. Changes in oxidative stress in G. pallida in response to amyloid-β (Aβ) peptide fragments. Total ROS production
was determined by adding 2′,7′-dichlorofluorescin diacetate (DCFH-DA) and measuring fluorescence every 30 min for
24 h (Ex: 485 nm, Em: 520 nm, FLUOstar Omega) at RT. (A) ROS production for 0–24 h (s) as measured by AUC analysis.
Aβ (1–42) increased oxidative stress by the greatest extent; (B) Effects of amyloid-β (Aβ) (1–42) on glutathione levels in
G. pallida. The ratio of GSSG to GSH in cells is a measure of cellular oxidative stress. An OxiSelect™ Total Glutathione
(GSSG/GSH) Assay kit (Cell Biolabs, Inc., San Diego, CA, USA) was used for measurements. Treatment of either 250, 500,
1000, or 2000 G. pallida second-stage juveniles (J2s) with Aβ (1–42) led to significantly higher GSSG/GSH compared with
control. The data for (A) are mean ± SEM (n = 3) with approximately 100 G. pallida organisms per observation; *** p < 0.001,
compared with control group. The data for (B) are mean ± SEM (n = 3); * p < 0.05, compared with control.

3.5. Effects of Neuroprotective Agents on Aβ (1–42)-Induced Impairment of Chemosensing

One of the key questions we asked was whether it is possible to prevent Aβ-induced
impairments, by testing potential anti-AD drugs exerting specifically anti-Aβ (1–42)-
induced impairment of the CI when G. pallida is used as a novel in vivo invertebrate
model of AD (Figure 5).

Among anti-AD drugs, galantamine is an acetylcholinesterase inhibitor (AChEI) com-
monly used clinically to treat mild-to-moderate AD [30]. The impact of galantamine in
reversing the effects of Aβ (1–42) used at 100 µM on G. pallida J2s is shown in Figure 5A.
G. pallida J2s were pre-incubated (24 h) with either the vehicle control, galantamine (100 µM),
Aβ (1–42), or Aβ (1–42) in combination with 100 µM of galantamine. Insignificant differ-
ence was noticed between the vehicle control group (CI: 0.50 ± 0.02) and the group treated
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with just galantamine at 100 µM (CI: 0.53± 0.03). However, when galantamine is combined
to Aβ (1–42), significant improvements in CI values (CI: 100 µM: 0.31 ± 0.03; p < 0.001
and 10 µM: −0.023 ± 0.02; p < 0.01) were found compared to that of the Aβ (1–42)-treated
group (CI: −0.3 ± 0.01).
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Figure 5. Neuroprotective agents ameliorate Aβ (1–42)-induced impairment of chemosensing. Two clinically used drugs
(galantamine and memantine) and two neuroprotective agents (caffeine and 13L cocoa peptide, previously observed to be
beneficial in Aβ-expressing C. elegans) were selected and assessed for their ability to ameliorate the effects of Aβ (1–42) in
G. pallida. G. pallida second-stage juveniles (J2s) were pre-incubated (24 h) with either (1) the vehicle control (1% DMSO
in ddH2O), (2) Aβ (1–42), (3) the tested drug alone, or 4) Aβ (1–42) in combination with the tested drug: (A) galantamine
(100 µM); (B) caffeine (3.6 mM); (C) 13L cocoa peptide (200 µg/mL); (D) memantine (10 mM). When tested alone, none of
these agents affected the chemotaxis index (CI). All ameliorated Aβ (1–42)-induced impairments in the CI (p < 0.001). The
data are mean ± SEM (n = 3) with approximately 100 G. pallida organisms per observation. ns (not significant), *** p < 0.001
compared to either the vehicle control or the Aβ (1–42) group.

We also evaluated other neuroprotective agents, i.e., caffeine (Figure 5B), 13L cocoa
peptide (Figure 5C), memantine (Figure 5D), to determine their ability to ameliorate Aβ (1–42)-
induced impairment of chemotaxis in G. pallida J2s (Figure 5B–D). These neuroprotective
agents were selected based on their effectiveness in the transgenic C. elegans AD model.

G. pallida J2s were pre-incubated (24 h) with either the vehicle control, Aβ (1–42) at
100 µM or Aβ (1–42) at 100 µM in combination with caffeine (3.6 mM), 13L cocoa peptide
(200 µg/mL), or memantine (10 mM). When tested alone in G. pallida, none of these agents
significantly affected the CI (CI: 0.43 ± 0.20 caffeine; CI: 0.51 ± 0.11 13L cocoa peptide; CI:
0.53± 0.10 memantine) compared to the vehicle control group (CI: 0.5± 0.04). However, all
of them did ameliorate Aβ (1–42)-induced impairments in CI (p < 0.001). Indeed, all these
agents in combination with Aβ (1–42), a significant attenuation in the chemotaxis responses
was noticed (CI: 0.33 ± 0.02 caffeine; CI: 0.36 ± 0.04 13L cocoa peptide; CI: 0.43 ± 0.0
memantine) compared to the Aβ (1–42)-treated group (CI: −0.3 ± 0.02; p < 0.001).

4. Discussion

The principal aim of this investigation was to develop a novel non-transgenic model
as a less complicated alternative to C. elegans models of AD. For this purpose, the innate
ability of the plant parasitic nematode G. pallida, to assimilate intact peptides from the
external environment into neuronal structures [17,18,31], was exploited.
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Aβ-induced toxicity is one of the central mechanisms thought to be involved in
the induction of AD pathology [32]. It has been established that synaptic and neuronal
degeneration is triggered by Aβ toxicity in the brains of AD patients [33]. Therefore,
we investigated the effects of Aβ peptide fragments in G. pallida, in anticipation that it
could provide new insights into AD mechanisms or assist with the identification of new
therapeutic targets. There are several potential advantages to this approach, not least that
it allows the direct observation of Aβ toxicity through the measurement of behavioral
changes on sensory neurons of this nematode [17,18].

We applied conventional chemosensory assays to objectively assess Aβ-induced effects
on the behavior of G. pallida J2s. We determined that a 2 h period of chemotaxis towards
mannitol as a chemoattractant was optimal. The investigation then turned to how G. pallida
responded to a range of human Aβ fragments. All Aβ peptide fragments (Aβ (1–42), Aβ

(1–40), Aβ (17–42), Aβ (17–40), Aβ (1–28) and Aβ (1–16)) tested in this study significantly
affected the chemotaxis index (CI) of G. pallida. However, Aβ (1–42) had the most marked
effect on CI compared with the vehicle control. In contrast, Aβ (1–28) and Aβ (1–16) exerted
the least effect on the CI. These findings corroborate earlier studies showing that Aβ (1–42)
is the most toxic in human AD [34,35], and strongly support the proposed causative role of
Aβ (1–42)-induced oxidative stress and neurodegeneration in AD [36].

The Aβ peptide is derived from a single transmembrane protein, known as the
amyloid precursor protein (APP), and production of Aβ is completed by the sequential
actions of two enzymes, β-secretase (BACE) and γ-secretase. The Aβ (1–40) and Aβ

(1–42) species are components of the plaques implicated in AD progression. With Aβ

(1–42) established as the most potent peptide in our model system, we examined how the
duration of Aβ (1–42) treatment affected the CI. We found that incubations of as little as 6 h
significantly affected the CI, with the most pronounced effects were observed at 18 h and
24 h. These time-related changes may reflect the typical transit time required for assimilated
peptides to reach the nervous system of G. pallida. These data confirmed that this nematode
can assimilate peptides through chemosensing amphid neurons within cells of the central
nerve ring of its nervous system [17,18,21]. In line with our data, it takes typically around
18–24 h for peptides to be absorbed and to impact on the neurons and cellular behaviors of
G. pallida [17,18,31]. The most likely route for exogenous Aβ assimilation is via retrograde
transport along the chemosensory amphid neurons. It is known that other neuropeptides
can accumulate within cells of the central nerve ring eliciting strong physiological effects
when they interact with receptors on nearby cells [31]. In the case of Aβ we cannot be
definitive about whether it is acting intracellularly or extracellularly.

Importantly, we then confirmed that Aβ-induced impairments of chemosensing of
G. pallida are not recapitulated in C. elegans. Wild-type C. elegans was not affected by
exposure to Aβ (1–42), further demonstrating that G. pallida’s known ability to assimilate
peptides was critical for sensory impairment to occur. It should be noted that G. pallida
and C. elegans respond to different chemoattractants and therefore a direct like-for-like
comparison is not possible.

Next, the sensitivity of G. pallida, as an original in vivo non-transgenic model system
for AD studies, was assessed by gauging whether Aβ (1–42) affected chemotaxis in a
concentration-dependent manner. Concentrations of between 50 and 200 µM of Aβ (1–42)
profoundly affected the CI of G. pallida compared with the vehicle control. Even Aβ (1–42)
concentrations as low as 10 µM had a significant impact on the CI. However, very low Aβ

(1–42) concentrations (1 µM) were completely ineffective, showing the relative sensitivity
of our method.

We then probed putative mechanisms through which Aβ peptides could be impairing
chemotaxis. Mitochondrial dysfunction and oxidative stress contribute to ageing and
to the occurrence and progression of AD [37]. Oxidative stress results from ROS, key
hallmarks, generated during mitochondrial oxidative metabolism that leads to acceleration
of AD pathology [38]. Thus, we evaluated if mitochondrial reductase activity and ROS
production could be impacted in G. pallida in response to each of the tested Aβ peptide
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fragments. There is growing evidence that Aβ peptides play a role in increasing ROS
production and oxidative stress in AD. Moreover, Aβ induces oxidative damage to the
vital cellular biomolecules, DNA, proteins, and lipids oxidation, which are associated
with AD pathology [34,39–43]. Many of the tested Aβ peptides significantly increased
mitochondrial reductase activity and ROS. Notably, Aβ (1–42) and Aβ (17–42)) most
profoundly affected these levels while impacting chemotaxis the most. It is known that
human Aβ (1–42) and Aβ (17–42) are toxic [44]. Indeed, Aβ (1–42) is the most toxic of
Aβ fragments both in vitro and in vivo, and the methionine amino acid residue located at
position 35 of Aβ (1–42) appears to be an important factor. Indeed, this methionine residue
would modulate the neurotoxic properties of Aβ (1–42) and the induction of oxidative
stress in AD pathology [34,41,45]. Longer Aβ (1–42) peptide incubations in rat models
showed more toxicity in neurons [46]. Aβ peptides induced mitochondrial reductase
activity, as observed in the present study, are likely to reflect a mitochondrial response
within the cells of G. pallida which are acting against the increased oxidative stress [47–49].

Mitochondrial reductase activity was assessed at two different temperature conditions:
ambient (18 ◦C) and human physiological (37 ◦C). All Aβ-treated groups had significantly
higher mitochondrial reductase activity at 37 ◦C than at 18 ◦C. A temperature of 37 ◦C
is considered high for G. pallida, and this added heat stress probably accelerated the
mitochondrial responses to Aβ. A similar temperature (35 ◦C) has been applied to C. elegans.
Periods of heat stress in C. elegans can increase life span, increase mitochondrial ROS, and
enhance maintenance and repair (hormesis) [50–52]. This phenomenon is associated with
increased expression of heat shock proteins (HSP-16 and HSP-4) which enhance the stress
response in nematodes, and which may correlate with the impacts of hermetic treatments
on lifespan.

Although Aβ (1–16) and Aβ (1–28) are not cytotoxic and usually do not aggregate,
our results suggest that they nevertheless induce some ROS production. This is consistent
with [53,54], who found that Aβ (1–16) can induce oxidative stress and increase the forma-
tion of ROS, resulting in Aβ (1–16) aggregation. However, Aβ (1–28) has been reported
to not induce oxidative stress or neurotoxicity [54]. Aβ (1–40) and Aβ (17–40) induced
the lowest level of ROS production, and these findings are supported by the literature
describing Aβ 40-mer isoforms as being less toxic, less aggregated, and more soluble than
42-mer isoforms. Aβ (17–42) was shown to induce mitochondrial dysfunction, protein
oxidation, and lipid peroxidation like Aβ (1–42) in neuronal cell cultures [54]. Also, Aβ

(17–42) plays a greater role in AD pathogenesis than other fragments (e.g., Aβ (1–40)) [55].
In the present studies it was not possible to precisely assess the role of Aβ aggregation in
inducing the behavioral phenotype; however, it was controlled for by freshly preparing
each Aβ peptide in solution just before the experiment. Therefore, all peptides would have
begun as monomers, and any peptide aggregates would have formed during the timespan
of the experiment; also, it is difficult to unpick the relative contribution of aggregation and
inherent cytotoxicity to each of the observed effects.

Increased ROS production causes severe damages to mitochondrial DNA and cellular
injury; moreover, ROS are linked to systemic necrosis and lethality in C. elegans [56]. Some
studies have shown that high lipid peroxidation production is induced by Aβ aggregations
in AD pathology that is usually associated with increasing ROS formation. Moreover,
it is thought that ROS production and Aβ leads to neuronal damage, which results in
increased sensitivity to lipid peroxidation, disruption of cellular calcium homeostasis, and
impairment to mitochondrial function [57–59].

High rates of oxidative stress increase the levels of antioxidants such as glutathione,
which is an anti-oxidative defence system common in all biological processes [55,60–62]. It
is known that parasitic nematodes use antioxidant activity as a defence against invasive
plants, and ROS is believed to be the first line of defence in plants [63–66]. In the human ner-
vous system, glutathione levels are the most abundant endogenous antioxidant molecule.
On this basis, and to confirm the validity of our previous ROS results, glutathione levels
were measured in control incubations of G. pallida or in G. pallida incubated in Aβ (1–42)
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for 24 h. The results show that Aβ (1–42) led to significantly higher GSSG/GSH compared
with the control in different numbers of worms.

In a final phase of the study, we evaluated whether a range of reported neuroprotective
compounds could protect G. pallida from impairment by Aβ (1–42). Firstly, we examined
if inhibition of acetylcholinesterase (AChE) was effective in achieving this. AChE is the
key enzyme that hydrolyses the neurotransmitter acetylcholine, which plays a vital role
in maintaining effective synaptic communication. Reduced levels of acetylcholine can
affect the communication between neurons and ultimately can contribute to cognitive
decline [67–69]. There is an association between a decline in learning, memory, and a
decreased acetylcholine in cholinergic synapses. AChE inhibitors reduce the cholinergic
deficits which occur in AD patients.

Galantamine is a known AChE inhibitor which is clinically approved for treatment
of mild-to-moderate AD [30,70–72]. Galantamine is a naturally occurring plant alkaloid
isolated from the bulbs and flowers of several species, including Galanthus caucasicus,
Galanthus woronowii, Narcissus (daffodil), Leucojum aestivum, and Lycoris radiata. Research
indicates that there is a high level of AChE in the brain cells of AD patients [73]. Therefore,
we investigated whether galantamine improves impairments to chemotaxis in Aβ-treated
G. pallida. It was demonstrated that galantamine significantly ameliorated Aβ (1–42)-
induced impairment of chemosensing.

Similarly, memantine is a known attenuator of glutamatergic (N-methyl-D-aspartate
(NMDA), serotonergic (5-HT3) and cholinergic (nicotinic acetylcholine) receptors [74].
Memantine is used to treat moderate-to-severe AD, especially for people who are intolerant
to or have a contraindication for AChE inhibitors. It is known to improve and protect
cholinergic cells from degeneration [75]. Herein, we clearly demonstrated that memantine
significantly ameliorated Aβ (1–42)-induced impairment of chemosensing. These findings
agree with a previous study which employed the amyloid beta-expressing transgenic
C. elegans [76]. A concentration of 10 mM of memantine had an anti-paralytic effect
on C. elegans [76]. Furthermore, inhibition of both AChE and NMDA protected these
nematodes from the toxic effects of Aβ (1–42) [76].

Non-clinical neuroprotective agents were also examined for their ability to ameliorate
Aβ (1–42)-induced impairment of chemotaxis in G. pallida. Neuroprotective agents were
selected based on their reported protective effects in studies of transgenic C. elegans AD
models. First, we examined caffeine, since [77] have shown improved caffeine-induced
oxidative stress resistance, which itself reduces the risk of chronic aging diseases such as
AD. This study also showed that caffeine extends the lifespan of C. elegans [77]. Another
study by [78] examined the protective effects of coffee extracts on a transgenic C. elegans
AD model; it was suggested that coffee extracts significantly reduced the paralysis that was
induced by Aβ (1–42) expression and subsequently protected against Aβ (1–42) toxicity.
Second, we examined a Cocoa peptide known as 13L, which reduces paralysis resulting
from Aβ (1–42) peptide expression in transgenic C. elegans [79]. Along with polyphenol
compounds, bioactive peptides such as 13L are released from the protein fraction of
cocoa [79], which possesses antioxidant properties. This could explain the reported link
between dark chocolate consumption and better cognitive performance [80].

Taken together, we demonstrated that both caffeine and 13L significantly improved
the CI responses of G. pallida treated with Aβ (1–42). The non-transgenic G. pallida model
system provided similar results to the Aβ-expressing transgenic C. elegans model system.
Furthermore, we showed that G. pallida represent a promising non-transgenic invertebrate
to screen faster, easier, and reliably, for novel therapeutic compounds which protect against
Aβ-induced damage.

5. Conclusions

In this present study, we have optimized a chemosensory assay capable of reliably
measuring G. pallida responses. We evaluated how treatment of G. pallida with Aβ peptides
(1–40, 1–42, 17–42, 17–40, 1–28, or 1–16) impaired the chemotaxis response to a chemoat-
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tractant and increased mitochondrial reductase activity and ROS production (leading to
increased glutathione). Importantly, we have determined that, unlike C. elegans models,
G. pallida assimilates Aβ (1–42), which co-localises with specific neurological structures.
The ability of this unique model to distinguish between different treatment concentrations,
durations, and modalities, shows that it offers remarkable sensitivity and specificity, which
could be of benefit to the pharmaceutical industry. The fact that clinically approved neuro-
protective agents were effective in protecting G. pallida from Aβ (1–42) exposure outlines
its clear potential for the discovery of novel bioactive compounds with anti-AD activity.
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Figure A1. Images showing agar plates for chemotaxis assays for G. pallida (left; 3 cm plate) and for C. elegans (right; 9 cm 
plate). 
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