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Abstract

In the current era of big data, the amount of data available is continuously increasing. Both

the number and types of samples, or features, are on the rise. The mixing of distinct features

often makes interpretation more difficult. However, separate analysis of individual types

requires subsequent integration. A tensor is a useful framework to deal with distinct types of

features in an integrated manner without mixing them. On the other hand, tensor data is not

easy to obtain since it requires the measurements of huge numbers of combinations of dis-

tinct features; if there are m kinds of features, each of which has N dimensions, the number

of measurements needed are as many as Nm, which is often too large to measure. In this

paper, I propose a new method where a tensor is generated from individual features without

combinatorial measurements, and the generated tensor was decomposed back to matrices,

by which unsupervised feature extraction was performed. In order to demonstrate the use-

fulness of the proposed strategy, it was applied to synthetic data, as well as three omics

datasets. It outperformed other matrix-based methodologies.

Introduction

In the current era of big data, it is often that massive datasets are obtained, including samples

with many features. For example, a video dataset can be regarded as time points (samples) vs

pixels (features). Audio files consist of time points (samples) vs amplitude (features), and sets

of DNA sequences consist of individuals (samples) vs nuclear acid sequences (features). All of

these are provided in the form of a matrix, whose rows and columns are features and samples,

respectively (of course, rows and columns are exchangeable). Although processing massive

datasets is itself problematic, integrating distinct types of datasets is even more difficult. This

problem is often annotated as multi-view data processing. For example, an audio visual file

can be regarded as time points (samples) vs pixels and amplitudes(both features). In this

paper, I consider two types of specific multi-view data processing: one is sharing samples

(hereinafter called Case I) and another is sharing features (hereinafter, called Case II). It is for-

mally possible to deal with these two cases as unified; multiple (m> 0) views of data, i.e., X(k),

k = 1, . . . m, each of which is Nk features times M samples shared with multiple views (Case I),
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can be regarded as a (∑k Nk) × M matrix

ðXð1ÞT ;Xð2ÞT ; � � � ;XðmÞTÞT ; ð1Þ

where XT is the transposed matrix of X, while, if X(k), k = 1, . . . m, are Mk samples times N fea-

tures shared with multiple views (Case II), can be regarded as a N × (∑k Mk) matrix

ðXð1Þ;Xð2Þ; � � � ;XðmÞÞ: ð2Þ

For both cases, however, we are not sure what will happen by simply merging distinct features

as one matrix.

In order to address this problem, a variety of multi-view data processes have been proposed

[1, 2]. Independent of the strategy to integrate multi-view datasets, there must be some weights

attributed to each view. Since there are no a priori criteria to optimize these weights, some

kind of artificial criteria are required. For example, if samples are classified, weights can be

optimized so as to discriminate samples coincidentally from classes. Alternatively, if feature

extraction is a task, weights can be optimized so as to generate the “best” features regardless of

which features are considered good.

The reason weights are required for individual views is that we do not know whether the

same weights are acceptable when simply creating new variables by merging or linearly com-

bining them. Suppose xðkÞij are the observed values attributed to the ith feature of the jth sample

in the kth view. Generating a merged matrix is to have a matrix where xðkÞij is placed at the

(i+∑k0 < k−1 Nk0)th row and the jth column, as introduced in Eq (1) (Case I). Alternatively, a

merged matrix can be generated where xðkÞij is placed at the ith row and the (j + ∑k0 < k−1 Mk0)th

column, as introduced in Eq (2) (Case II).

This is not necessarily as simple as it may appear. For example, in Case I, if Nk varies drasti-

cally from view to view, the results may be dominated by the views with the maximum number

of features. However, it is not clear if views with more features are more important. Alterna-

tively, if the new feature x0ij ¼
P

i;ðkÞC
ðkÞ
i xðkÞij is generated with the linear combination where

CðkÞi s are coefficient, there are similar problems. If CðkÞi s do not vary dependent upon (k), views

with more features may dominate the outcome. Reverting row and column, I will discuss Case

II as well. In order to compensate for this discrepancy, each view must be weighted based on

criteria which are not naturally unique. No previously proposed strategies were free from this

problem.

In this paper, I propose a brand new strategy that is free from weighting views; generating

tensors whose number of modes is the same as, or one greater than the number of views, and

applying tensor decomposition (TD) to them. Using this implementation, I performed feature

extraction (FE), which I name TD based unsupervised FE, which is extended from the recently

proposed principal component analysis (PCA) based unsupervised FE [3–22].

Materials and methods

Converting multi-view matrices into a tensor with multiplication

If we generate a new feature with neither summation nor merging, the product for Case I

—xi1 ;i2 ;:::;im;j
¼
Qm

k¼1
xðkÞik;j—can be regarded as an (m+1) mode tensor. As each newly generated

feature is composed of one feature from individual views, no weight is needed. Similarly, in

Case II, xj1 ;j2;:::;jm;i
¼
Qm

k¼1
xðkÞi;jk , can be regarded as an (m+1) mode tensor. These tensors are

hereinafter called Type 1.

TD based unsupervised FE applied to multi-view data sets
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Alternatively, instead of simply multiplying matrix components with the shared columns or

rows, they can be summed up as follows: ~xi1;i2 ;:::;im
¼
P

j

Qm
k¼1

xðkÞik;j (Case I) and ~xj1 ;j2 ;:::;jm
¼

P
i

Qm
k¼1

xðkÞi;jk (Case II). These can be regarded as m-mode tensors and are hereinafter called

Type II. All variables associated with Type II tensors are written with tildes.

These newly generated m-mode (type II) or (m+1)-mode (type I) tensors can be processed

using any kind of tensor manipulation. For example, for a reduced number of features whose

combination can express tensors, TD can be used to gain such features.

In the following subsection, I consider four combinations of types and cases, i.e., type I or II

tensors for Case I or II multi-view data, case by case.

Definition and terminology of TD

Since TD is not a popular methodology and the usage of TD for FE is rare, I will briefly intro-

duce TD in this subsection.

TD is the expansion of tensor xn1,n2,. . .,nm
, nk = 1, . . ., Nk, 1� k�m in the form

xn1 ;n2 ;...;nm
¼
XN1

‘1¼1

� � �
XNm

‘m¼1

Gðn1; n2; . . . ; nmÞ
Ym

k¼1

xnk;‘k
;

where xnk,ℓk
, 1� k�m, are orthogonal matrices. Since xn1,n2,. . .,nm

is as large as G(n1, n2, . . .,

nm), this formula is clearly overcomplete and does not give unique expansion. In this study, in

order to decide G(n1, n2, . . ., nm), xnk,ℓk
, 1� k�m uniquely, I employ the higher order singular

value decomposition (HOSVD) algorithm [23], which has successfully used to analyse micro-

arrays [24] previously. G(n1, n2, . . ., nm) is a core matrix. xnk,ℓk
, 1� k�m, are singular value

matrices and their column vectors are singular value vectors. G(n1, n2, . . ., nm), having larger

absolute values, has more contribution to xn1,n2,. . .,nm
. Since the combination of xnk,ℓk

, 1� k�
m, associated with G(n1, n2, . . ., nm) to which larger absolute values were attributed contributes

more collectively to xn1,n2,. . .,nm
, they are more likely to be associated with one another.

For type I tensors this expression is straightforward. (m+1) modes correspond to m+1 com-

ponents, i1, i2, . . ., im, j (Case I) or j1, j2, . . ., jm, i (Case II), respectively. On the other hand, for

type II tensors, m modes correspond to m components, i1, i2, . . ., im (Case I) or j1, j2, . . ., jm
(Case II), respectively. Thus, singular value vectors for jth sample (Case I) or ith feature (Case

II) are missing. These can be computed via ~xðkÞ‘mþ1¼‘k;j ¼
P

ik
~x‘k;ik

xik;j
(Case I) or ~xðkÞ‘mþ1¼‘k;i ¼P

jk
~x‘k;jk

xi;jk
(Case II), k = 1, . . ., m. Thus, for type II tensor, there are m kinds of sample (Case

I) or feature (Case II) singular value vectors in contrast to the type I tensors that have unique

sample (Case I) or feature (Case II) singular vale vectors.

The relation to HO GSVD

Higher order generalized singular value decomposition [25] (HO GSVD) is the method that

corresponds to singular value vectors when TD is applied to type I tensors. As HO GSVD con-

verts X(k) = U(k)ΛVT where U(k), Λ and V are the Nk × M left singular value matrix, M × M
eigenvalue matrix, and the M × M right singular value matrix, U(k) are regarded as feature sin-

gular value matrices and V is regarded as a unique (common) sample singular value matrix in

the present implementation.

TD based unsupervised FE applied to multi-view data sets
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Synthetic dataset

The synthetic dataset used for demonstrating the usefulness of TD based unsupervised FE is

defined as:

xð1Þij ¼
c
2

j
M
þ sin

pj
M

� �

þ ð1 � cÞεð1Þij

xð2Þij ¼
c
2

M � j
M
þ sin

pj
M

� �

þ ð1 � cÞεð2Þij

for 1� i� N0. xðkÞij ¼ ε
ðkÞ
ij for N0 < i� N. 1� j�M. εðkÞij obeys uniform distribution 2 [0, 1].

Specifically, c = 0.8, N = 1000, N0 = M = 50.

mRNA and miRNA expression profile

mRNA and microRNA(miRNA) expression profiles of multi-omics data were downloaded

from gene expression omnibus (GEO) using GEO ID GSE28884. At first, GSE28884_RAW.tar

was downloaded and expanded. For mRNA, 161 files whose names ended by the string “c.txt.

gz” were used. Each file was loaded into R by read.csv command and the second column

named “M” was employed as mRNA expression values. Probes not associated with Human

Genome Organisation (HUGO) gene names were discarded and 13393 probes were remained.

For miRNA, 161 files whose names ended by the string “geo.txt.gz” and the corresponding

samples of mRNA expression which were measured were used. Each file was loaded into R by

read.csv command and the second column (“Count”) was summed using the same third col-

umn (“Annotation”) values. Sum totals of less than 10 were discarded. As a result, 755 features

remained. Finally, the miRNA expression profile matrix is xmiRNA
i2 ;j

; 1 � i2 � 755; 1 � j � 161,

and the mRNA expression profile matrix is xmRNA
i1 ;j

; 1 � i1 � 13393; 1 � j � 161.

mRNA expressions of epidermal growth factor (EGF) treated breast cancers were down-

loaded from GEO using GEO ID GSE84096. The file named GSE84096_series_matrix.txt.gz

included in “Series Matrix File(s)” was downloaded. Gene expression was divided into 14 con-

trol samples and 14 EGF treated samples named xcontrol
i;t1

and xEGF
i;t1

, respectively.

mRNA expressions of vaccination experiments were downloaded from GEO using GEO ID

GSE18323. Files named GSE18323-GPL570_series_matrix.txt.gz and GSE18323-GPL571_ser-

ies_matrix.txt.gz included in “Series Matrix File(s)” were downloaded. As these included two

distinct platforms, 22277 commonly included probes were used. Fifty eight samples annotated

as “Protected group” (P) at time points T1 to T5, 52 samples annotated as “Delay group” (D) at

time points T1 to T5, and 72 samples annotated as “Non-protected group” (NP) at time points

T1 to T5, were used. They were named as xPl
i;t1

, xD
i;t2

and xNP
i;t3

respectively.

All expression profiles were standardized as ∑i xij = 0, and
P

i x2
ij ¼ N.

PCA-based unsupervised FE

PCA. In contrast to the usual use of PCA, where samples are embedded, the genes were

embedded in this implementation.

Suppose xijs satisfy
P

i xij ¼ 0;
P

i x2
ij=N ¼ 1 and X is a matrix whose elements are xij. The

gram matrix G is defined as G� XXT. Eigenvectors uk ¼ ðuk1and . . . ; ukNÞ
Ts (1� k�min(M,

N)) are then obtained as Guk ¼ lkuk, where uki is the kth PC score attributed to gene i and λks

are the eigenvalues ordered as λk� λk+1. The kth PC loadings attributed to the jth sample vkj

are defined as vk ¼ XTuk, where vk ¼ ðvk1; . . . ; vkMÞ
T

because vk is the eigenvector of the

covariance matrix XT X, XT Guk ¼ XTXXTuk ¼ XT Xvk ¼ lkXTuk ¼ lkvk.

TD based unsupervised FE applied to multi-view data sets
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PCA-based unsupervised FE applied to mRNA/miRNA expression. First, the five initial

PC loadings vℓ1, js (for mRNA) and v0
‘2 ;j

s (for miRNA), 1� ℓ1, ℓ2� 5, were confirmed to have

significant sample dependence (P-values < 0.05) with categorical regression,

v‘1 ;j ¼ C0
‘1
þ
X

S

C1

‘1 ;S
dSj; 1 � j � 161;

v0
‘2 ;j
¼ C0

‘2
þ
X

S

C1

‘2 ;S
dSj; 1 � j � 161;

where C0
‘k

and C1
‘k;S

(k = 1, 2) are regression coefficients. δSj takes 1 when jth sample belongs to

category S, and isotherwise 0.

Then, assuming that PC scores uℓ1,i1s (for mRNA) and u0
‘2 ;i2

s (for miRNA) are normally dis-

tributed, the P-values were attributed to the i1th mRNA and i2th miRNA using a χ squared dis-

tribution as

Pi1
¼ Pw2 >

X

‘1�5

u‘1 ;i1
su‘1

 !2" #

Pi2
¼ Pw2 >

X

‘2�5

u0
‘2 ;i2

su0
‘2

0

@

1

A

22

4

3

5;

where su
‘2

and su0
‘2

is the standard deviation of {uℓ1,i1
|1� i1� 13393} and

fu0
‘2 ;i2
j1 � i2 � 755g, respectively. Pχ2[>x] is the probability that the argument is larger than x

under the assumption that the arguments obey a χ squared distribution. The P-values were fur-

ther adjusted by the Benjamini-Hochberg (BH) criterion [26], and those genes associated with

adjusted P-values less than 0.01 were selected as the genes associated with the difference

between multiple classes.

PCA-based unsupervised FE applied to vaccination experiments. Although similar to

the previous section, some differences are: (i) Only the second PC scores attributed to mRNAs

were used for FE. (ii) Instead of mRNA and miRNA, patient category groups, P, D, and NP

were used. (iii) mRNAs commonly included in three independent FEs performed considering

P, D, and NP, were considered.

TD-based unsupervised FE

For type I tensor generated from multi-omics dataset, in order to identify miRNAs and

mRNAs associated with identified sample singular value vectors, it was assumed that xmRNA
‘1 ;i1

and xmiRNA
‘2 ;i2

follow multiple normal distributions, and P-values were attributed to the i1th

mRNA and the i2th miRNA using χ2 distribution.

Pi1
¼ Pw2 >

X

‘1�5

xmRNA
‘1;i1

s‘1

 !2" #

; Pi2
¼ Pw2 >

X

‘k�2

xmiRNA
‘2 ;i2

s‘2

 !2" #

where σℓ1
(σℓ2

) are standard deviations of xmRNA
‘1 ;i1
ðxmiRNA

‘2 ;i2
Þ. Pik

s were adjusted by using the BH cri-

terion, and mRNAs and miRNAs associated with the adjusted P-value lower than 0.01 for

mRNA and 0.05 for miRNA were selected as those associated with identified sample singular

value vectors when TD was applied to type I tensor.

TD based unsupervised FE applied to multi-view data sets
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When TD was applied to type II tensor, the computations were similar, excluding that

adjusted P-value lower than 0.01 and 1� ℓ2� 5 were used for miRNA, where xmRNA
‘1 ;i1

and xmiRNA
‘2 ;i2

were replaced with ~xmRNA
‘1 ;i1

and ~xmiRNA
‘2 ;i2

, respectively.

For EGF treated cell lines and vaccination experiments, similar procedures were repeated

by replacing gene singular value vectors with xℓ3 = 2,i (EGF, type I) or ~xcontrol
‘3¼2;i and ~xEGF

‘3¼2;i (EGF,

type II) or ~xD
‘3¼2;i, ~xP

‘3¼2;i and ~xNP
‘3¼2;i, (vaccination, type II), respectively.

Where HO GSVD was applied to multi-omics datasets, the feature singular value matrices

were replaced with the first five column vectors of U(k) (k = 1 for mRNA and k = 2 for

miRNA).

Adjusted P values used as thresholds are always 0.01 for EGF treated cell lines, vaccination,

and HO GSVD.

Conversion prob ID to HUGO gene name/ensembl gene ID/GENBANK

accession ID

Coincidences between prob ID (mRNA), HUGO gene names, Ensembl gene IDs were down-

loaded from GEO using GEO ID GPL3676 for multi-omics datasets, and GPL571/570 for vac-

cination experiments. GENBANK accession ID attributed to probes identified in the EGF

treatment were extracted from GPL16686.

Enrichment analysis of g:profiler

Ensembl gene IDs were uploaded to g:profiler [27]. 13393 Ensembl gene IDs were used as

background.

Enrichment analysis of genes identified as outliers using each of the first

five mRNA singular value vectors obtained by applying TD based

unsupervised FE to type I tensor generated from multi-omics datasets

Five distinct P-values were attributed to the i1th mRNA using χ2 distribution:

P‘1
i1 ¼ Pw2 >

xmRNA
‘1 ;i1

s‘1

 !2" #

; 1 � ‘1 � 5

P-values were adjusted using the BH criterion and mRNAs associated with adjusted P-values

less than 0.01 were identified as outliers (see S2 Table). S2 Table was uploaded to g:Cocoa in g:

profiler with “Gene Ontology/ Biological Process” specified as the targeted ontology.

Enrichment analysis of MSigDB

HUGO gene IDs or GENBANK accession IDs associated with identified mRNAs were

uploaded to http://software.broadinstitute.org/gsea/msigdb/annotate.jsp (registration and

login are needed). “CGP: chemical and genetic perturbations” was selected for multi-omics

data and EGF treated cell lines, while “C7: immunologic signatures” was selected for vaccina-

tion experiments.

TD based unsupervised FE applied to multi-view data sets
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Enrichment analysis of DIANA-mirpath

As for TDs applied to type I tensors, the following link was pasted to browser.

http://snf-515788.vm.okeanos.grnet.gr/#mirnas=hsa-let-7b-5p;hsa-miR-125b-5p;hsa-miR-

143-3p;hsa-miR-145-5p;hsa-miR-21-5p;hsa-miR-22-3p;hsa-miR-99a-5p&methods=Tarbase;

Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase&selection=0

As for TDs applied to type II tensors, the following link was pasted to browser.

http://snf-515788.vm.okeanos.grnet.gr/#mirnas=hsa-let-7a-5p;hsa-let-7b-5p;hsa-let-7f-5p;

hsa-miR-103a-3p;hsa-miR-125b-5p;hsa-miR-141-3p;hsa-miR-142-3p;hsa-miR-143-3p;hsa-

miR-145-5p;hsa-miR-148a-3p;hsa-miR-199a-3p;hsa-miR-199b-3p;hsa-miR-19b-3p;hsa-miR-

205-5p;hsa-miR-21-5p;hsa-miR-22-3p;hsa-miR-23a-3p;hsa-miR-24-3p;hsa-miR-26a-5p;hsa-

miR-30a-5p;hsa-miR-451a;hsa-miR-99a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase;

Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;

Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase&selection=0

As for HO GSVD, the following link was pasted to browser.

http://snf-515788.vm.okeanos.grnet.gr/#mirnas=hsa-miR-127-5p;hsa-miR-128-1-5p;hsa-

miR-181a-3p;hsa-miR-190a-5p;hsa-miR-301a-3p;hsa-miR-30e-3p;hsa-miR-339-5p;hsa-miR-

340-5p;hsa-miR-361-5p;hsa-miR-365a-3p;hsa-miR-452-5p;hsa-miR-454-3p;hsa-miR-455-5p;

hsa-miR-874-5p;hsa-miR-135a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;

Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;Tarbase;

Tarbase&selection=0

Categorical regression towards data shown in Fig 1

For type I tensor (Fig 1(a)),

x‘3 ;j ¼ C0
‘3
þ
X

S

C1

‘3 ;S
dSj; 1 � j � 161

where C0
‘3

and C1
‘3 ;S

are regression coefficients. δSj takes 1 when jth sample belongs to category

S, otherwise 0. The summation is taken over all categories. For type II tensor (Fig 1(b) and 1

(c)), xℓ3,j is replaced with ~xmRNA
‘3 ;j

or ~xmiRNA
‘3 ;j

. For HO GSVD (Fig 1(d)), xℓ3,j is replaced with col-

umn vectors of V.

Correlations in Fig 2(c) and 2(g)

The correlations were computed between two vectors of the length Tcontrol+TEGF,

ðxcontrol
‘1¼2;t1¼1

; . . . ; xcontrol
‘1¼2;t1¼Tcontrol

; xEGF
‘2¼2t2¼1

; . . . ; xEGF
‘2¼2;t2¼TEGF

Þ and

ðxcontrol
i;t1¼1

; . . . ; xcontrol
i;t1¼Tcontrol

; xEGF
i;t2¼1

; . . . ; xEGF
i;t2¼TEGF

Þ (Fig 2(c)) or between

ð~xcontrol
‘1¼2;t1¼1

; . . . ; ~xcontrol
‘1¼2;t1¼Tcontrol

; ~xEGF
‘2¼2;t2¼1

; . . . ; ~xEGF
‘2¼2;t2¼TEGF

Þ and

ðxcontrol
i;t1¼1

; . . . ; xcontrol
i;t1¼Tcontrol

; xEGF
i;t2¼1

; . . . ; xEGF
i;t2¼TEGF

Þ (Fig 2(g)), where Tcontrol and TEGF are total number

of samples in each treatment, respectively. Adjusted P-values attributed to the correlation coef-

ficients were computed via the fdrtool [28] function in the fdrtool package in R [29].

Scaling and shifting prior to plotting Fig 2(d) and 2(h)

As each individual gene expression has its own base line and amplitude, they must be scaled

and shifted before being overdrawn. To this end, the linear regression analysis

xcontrol
‘1¼2;t1

¼ aixcontrol
i;t1
þ bi; t1 ¼ 1; . . . ;Tcontrol

xEGF
‘2¼2;t2

¼ aixEGF
i;t2
þ bi; t2 ¼ 1; . . . ;TEGF

TD based unsupervised FE applied to multi-view data sets
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Fig 1. Boxplots of sample singular value vectors xℓ3,j (a) when TD was applied to the type I tensor and ~xmRNA
‘3 ;j

(b), ~xmiRNA
‘3 ;j

(c), 1� ℓ3� 5, when TD

was applied to the type II tensor, generated from mRNA and miRNA expression profiles of multi-omics datasets. (d) Sample singular value

vectors when HO GSVD was applied to multi-omics datasets. P-values computed by categorical regression attributed to (a) to (d) were below

the figures.

https://doi.org/10.1371/journal.pone.0183933.g001
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was employed (Fig 2(c)) where ai and bi are regression coefficients commonly used for control

and EGF treated samples. For Fig 2(g), xcontrol
‘1¼2;t1

and xEGF
‘2¼2;t2

are replaced with ~xcontrol
‘1¼2;t1

and ~xEGF
‘2¼2;t2

,

respectively. Then, fitted values are used for plots. P-values that exhibit distinction between

control and EGF treated sample at time point t were computed by two-sided t test between

faixcontrol
i;t1¼t þ bi j 1 � i � Ng and faixEGF

i;t2¼t þ bi j 1 � i � Ng within N = 558 (Fig 2(d)) or

N = 398 (Fig 2(h)) selected mRNA probes.

Correlations in Fig 3(c)

Similar to Fig 2, the correlations were computed between two vectors of length TP+TD+TNP,

ð~xP
‘4¼2;t1¼1

; . . . ; ~xP
‘4¼2;t1¼TP

; ~xD
‘4¼2;t2¼1

; . . . ; ~xD
‘4¼2;t2¼TD

; xNP
‘4¼2;t3¼1

; . . . ; xNP
‘4¼2;t3¼TNP

Þ and

ðxP
i;t1¼1

; . . . ; xP
i;t1¼TP

; xD
i;t2¼1

; . . . ; xD
i;t2¼TD

; xNP
i;t3¼1

; . . . ; ~xNP
i2;t3¼TNP

Þ; where TP = 58, TD = 52, and TNP =

72 are the total number of samples in each patient category, respectively. Adjusted P-values

were computed via the fdrtool function in the fdrtool package in R [29].

Fig 2. The results of TD applied to type I tensor generated from EGF treatment experiments. Sample singular value vectors, Black open

circle: xcontrol
‘1 ;t1

Red open circle: xEGF
‘2 ;t2

(a) ℓ1 = 1 (b) ℓ1 = 2. (c) Histogram of the correlation coefficients between sample (time) singular value vectors

and selected individual 558 mRNA probes expression profiles. (d) Boxplot of scaled and shifted selected individual 558 mRNA probe expression

profiles. Black: control, Red: EGF treated cell lines. The same as (a) to (d), but for type II tensor. Black open circles: ~xcontrol
‘1 ;t1

Red open circles: ~xEGF
‘2 ;t2

(e) ℓ1 = 1 (f) ℓ1 = 2. (g) Histogram of the correlation coefficients between sample (time) singular value vectors and selected individual 398 mRNA

probe expression profiles. (h) Boxplot of scaled and shifted selected individual 398 mRNA probe expression profiles. Black: control, Red: EGF

treated cell lines. P-values computed by t test of 558 (d) or 398 (h) mRNA probes between with and without EGF treatments are below figures.

https://doi.org/10.1371/journal.pone.0183933.g002
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Scaling and shifting prior to plotting Fig 3(d)

The linear regression analysis

~xP
‘1¼2;t1

¼ aixP
i;t1
þ bi; t1 ¼ 1; . . . ;TP

~xD
‘2¼2;t2

¼ aixD
i;t2
þ bi; t2 ¼ 1; . . . ;TD

~xNP
‘3¼2;t3

¼ aixNP
i;t3
þ bi; t3 ¼ 1; . . . ;TNP

was employed, where ai and bi are regression coefficients commonly used for three patient cat-

egories (these values differ from those used in Fig 2). Fitted values are used for plots. P-values

that exhibit distinction among three patient groups at time point t = 1, 2, 3, 4, 5 days were com-

puted by categorical regression

aixS
i;t þ bi ¼ C0

t þ
X

S02ðP;D;NPÞ

C1

tS0dSS0

for 104 commonly selected mRNA probes in the three categories. C0
t and C1

tS0 are regression

coefficients fitted for fxS
i;t j 1 � i � 104; S 2 ðP;D;NPÞg with fixed t.

Statistical analysis

All statistical analyses were performed in R [29]. HOSVD was performed using the HOSVD

function in the rTensor package. PCA was performed using the prcomp function in R. SAM

was performed using SAM function in siggenes package. limma was performed in limma func-

tion in the limma package. Adjusted P-values were computed by p.adjust function with “BH”

options. P-values by χ2 distribution was computed by pchisq function in R. Categorical regres-

sion was performed using the lm function in R. RF was performed using randomForest func-

tion in randomForest package. KCCA was performed by KCCA function in the kernlab

package.

Fig 3. The results of TD applied to type II tensor generated from vaccination. Sample singular value vectors, Black open circle: ~xP
‘1 ;t1

Red

open circle: ~xD
‘2 ;t2

Green open circle: ~xNP
‘3 ;t3

(a) ℓ1 = ℓ2 = ℓ3 = 1 (b) ℓ1 = ℓ2 = ℓ3 = 2 (c) Histogram of the correlation coefficients between sample

singular value vectors and selected individual 104 mRNA probes expression profiles. (d) Boxplot of scaled and shifted selected individual 104

mRNA probe expression profiles. Black: P, Red:D, green:ND cell lines. P-values computed by categorical regression between P, D, and NP

groups are below figures.

https://doi.org/10.1371/journal.pone.0183933.g003
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Results

A Work flow chart and list of the variables introduced are in S1 File.

Synthetic dataset

In order to demonstrate the efficacy of our strategy, I applied TD based unsupervised FE to

synthetic data. In the following interpretation, I assumed two views of Case I for synthetic

dataset, however interpreting it as Case II is straightforward, thus, I do not consider Case II

specifically. The method applied to the synthetic dataset, TD based unsupervised FE, is the

extension from the recently proposed PCA based unsupervised FE, which has been success-

fully applied to various bioinformatics problems [5–22].

First, two matrices are generated, each of which is composed of N features times M samples.

They are notated as X(k), and k = 1, 2, respectively, whose components are denoted as xðkÞik;j, and

k = 1, 2, respectively. The first N0 row vectors (features), xðkÞik;j, and 1� ik� N0, are the noise

added linear combination (Fig 4(d) and 4(e)) of constant, linear, and half period sinusoidal

function (Fig 4(a) and 4(c)). However, since the coefficients of linear combinations were

selected such that the correlation between X(1) and X(2) is negligible, identifying a correlation

between two matrix row vectors is usually impossible (Fig 4(f)). Remaining row vectors xðkÞik;j

and N0 < ik� N are simply random number 2[0, 1]. The tasks are (i) identify N0 ordered fea-

tures, and (ii) identify latent correspondence between two views.

The three mode tensor (type I) xi1 ;i2 ;j
¼ xð1Þi1 ;jx

ð2Þ

i2 ;j; 1 � i1; i2 � N; 1 � j � M was derived from

xðkÞik;j; k ¼ 1; 2. Fig 4(g)–4(i) shows the first three sample mode singular value vectors, xℓ3,j, ℓ3 =

1, 2, 3, obtained with HOSVD,

xi1 ;i2 ;j
¼ xð1Þi1 ;jx

ð2Þ

i2 ;j ¼
XN

‘1¼1

XN

‘2¼1

XM

‘3¼1

Gð‘1; ‘2; ‘3Þx
ð1Þ

‘1 ;i1
xð2Þ‘2 ;i2 x‘3 ;j ð3Þ

It is obvious that Fig 4(g)–4(i) corresponds to Fig 4(a)–4(c), respectively. To my knowledge, it

is the only method to decompose linear combinations back into parts in a fully unsupervised

manner.

Moreover, as can be seen in Fig 5(a) and 5(b), N0 features are placed as outliers. Thus, TD

based unsupervised FE applied to type I tensors generated from matrices’ products can not

only decompose linear combinations, but can also identify the limited number of features, 1�

i1, i2,� N0, that contribute to correlations between two matrices, X(k), k = 1, 2.

Although I could successfully demonstrate that my strategy works well, there is one draw-

back; it is the computationally extensive method, since its memory as well as computational

time are proportional to MN2. In order to reduce computational resources as much as possible,

I summed xð1Þi1;jx
ð2Þ

i2 ;j and generated the m(= 2) mode tensor (type II), ~xi1 ;i2
¼
P

jx
ð1Þ

i1 ;jx
ð2Þ

i2 ;j. Then,

~xi1 ;i2
is decomposed as

~xi1 ;i2
¼

X

j

xð1Þi1 ;jx
ð2Þ

i2 ;j ¼
XN

‘1

XN

‘2

~Gð‘1; ‘2Þ~x
ð1Þ

‘1 ;i1
~xð2Þ‘2 ;i2 ð4Þ

Two sample singular value vectors can be computed as

~xðkÞ‘3¼‘k;j
¼
X

ik

~xðkÞ‘k;ik
xðkÞik;j; k ¼ 1; 2:

Since I employed the two views problem, although I occasionally got the two mode tensor, i.e.,
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Fig 4. The results of TD applied to the type I tensor generated from a synthetic dataset (M = 50). (a) to (c) are orthogonal base functions:

(a) constant, (b) linear, (c) half period sinusoidal. (d) and (e) base functions used for generating xðkÞik ;j ; 1 � ik � N0. (d) k = 1, (e) k = 2. (f) is the

scatter plot of (d) and (e). (g) to (i) are the first, second, and third sample singular value vectors xℓ3,j and ℓ3 = 1, 2, 3, and are computed by

applying TD to synthetic data.

https://doi.org/10.1371/journal.pone.0183933.g004
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the matrix, if I consider m(>2) views, I generally get a m mode tensor and the above proce-

dures can be easily extended to m mode tensors.

Fig 6 shows the first three sample singular value vectors, ~xðkÞ‘3 ;j; ‘3 ¼ 1; 2; 3, and (k = 1, 2),

obtained with the application of HOSVD to type II tensors. Among these, ~xðkÞ‘3 ;j and k = 1, 2,

shown in Fig 6(b) and 6(e) (ℓ3 = 1) correctly reproduce Fig 4(e) while those shown in Fig 6(c)

and 6(f) (ℓ3 = 2) does Fig 4(d), respectively. Thus, TD applied to type II tensors also success-

fully identified latent correlations between X(k), k = 1, 2 (Fig 6(h) and 6(i)). However, it could

not depict orthogonal base functions (Fig 4(a)–4(c)) that can be detected by TD applied to

type I tensors (Fig 4(g)–4(i)). Additionally, N0 features were successfully identified as outliers

(Fig 5(c) and 5(d)). Thus, at the expense of recognition of orthogonal base functions, TD

applied to type II tensors successfully reduced the computational resources needed by 1/M and

fulfilled tasks (i) and (ii) as defined above.

In order to see if these strategies are also useful in practice, integrated analyses of multi-

omics datasets were performed with this strategy and are described in the next subsection.

Multi-omics dataset

In the previous subsection, I demonstrated that applying TD based unsupervised FE to tensors

generated from matrices’ products could determine latent structures behind pairs of matrices.

However, this may only be feasible using synthetic data, as described in the previous subsec-

tion. Thus, in order to see if it also works in the situation not prepared specifically fitted to it, I

need to show that it works in real situation.

The analysed dataset is composed of two omics profiles. These are mRNA and miRNA pro-

files which were measured for multi-class breast cancer samples including normal breast tis-

sues [30]. As the samples are shared, the multi-omics data corresponds to Case I data. TD

based unsupervised FE was applied to the dataset in order to identify disease critical genes and

latent relations between miRNA and mRNA.

At first, TD was applied to the type I tensor generated from the mRNA and miRNA profiles

as follows:

xi1 ;i2;j
¼ xmRNA

i1 ;j
xmiRNA

i2 ;j

¼
X

‘1

X

‘2

X

‘3

Gð‘1; ‘2; ‘3Þx
mRNA
‘1;i1

xmiRNA
‘2 ;i2

x‘3 ;j

Fig 5. Feature singular value vectors when TD was applied to type I tensor generated from synthetic data. (a) xð1Þ‘1 ;i1 ; ‘1 ¼ 1; 2 and (b) xð2Þ‘2 ;i2 ; ‘2 ¼ 1; 2.

and type II tensor, (c) ~x ð1Þ‘1 ;i1 ; ‘1 ¼ 1; 2 and (d) ~x ð2Þ‘2 ;i2 ; ‘2 ¼ 1; 2. Red open circles are 1� i1, i2� N0 and black open circles are N0 < i1, i2� N.

https://doi.org/10.1371/journal.pone.0183933.g005
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where xmRNA
i1 ;j

and xmiRNA
i2 ;j

are expressions of the i1th mRNA and the i2th miRNA from the jth
sample. In order to determine whether TD can identify disease critical features, categorical

regression analysis was applied to sample singular value vector xℓ3,j, in order to identify coinci-

dences with defined sample classes. If the obtained sample singular value vectors are coinci-

dent with sample class labels, it is evidence that TD can process omics profiles properly, as this

approach does not employ class labels explicitly. Fig 1 shows the first five sample singular

Fig 6. The results of TD applied to type II tensor generated from synthetic dataset (M = 50). ~x ð1Þ‘3 ;j (a) ℓ3 = 1 (b) ℓ3 = 2 (c) ℓ3 = 3. ~x ð2Þ‘3 ;j (d) ℓ3 = 1

(e) ℓ3 = 2 (f) ℓ3 = 3. (g): (a) vs (c), (h): (b) vs (d), γ = 0.97, P = 0, (i): (c) vs (f), γ = 0.97, P = 0. γ: Pearson correlation coefficients. P: associated P-

values.

https://doi.org/10.1371/journal.pone.0183933.g006
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value vectors, xℓ3,j, 1� ℓ3� 5, that show significant sample class dependence. Thus, TD could

successfully generate disease associated features. This is not a trivial outcome, as sample classi-

fication was not used.

Next, I attempted to extract features using the mRNA and miRNA singular value vectors

xmRNA
‘1;i1

and xmiRNA
‘2 ;i2

. To accomplish this, it was necessary to first identify mRNA and miRNA sin-

gular value vectors xmRNA
‘1 ;i1

and xmiRNA
‘2 ;i2

, associated with sample singular value vectors, xℓ3,j, 1� ℓ3

� 5 identified above. This can be done by investigating G(ℓ1, ℓ2, ℓ3) since the combinations (ℓ1,

ℓ2, ℓ3) associated with larger absolute G values are regarded as more coincident with one

another. Table 1 shows the ranking of G for 1� ℓ1, ℓ2, ℓ3� 5 (ranked from 1 to 10) based upon

their absolute values. The first five sample singular value vectors xℓ3,j, 1� ℓ3� 5, are associated

with the first two miRNA singular value vectors xmiRNA
‘2 ;i2

; ‘2 ¼ 1; 2 as well as the first five mRNA

singular value vectors, xmRNA
‘1 ;i1

; 1 � ‘1 � 5, as only these combinations appear within top ten

ranked G(ℓ1, ℓ2, ℓ3)s that represent the amount of coincidence among mRNA and miRNA and

samples.

Four hundred twenty-seven mRNA probes and 7 miRNAs, identified as outliers, using

xmRNA
‘1;i1

; 1 � ‘1 � 5 and xmiRNA
‘2 ;i2

; 1 � ‘2 � 2 were selected. The seven selected miRNAs were: hsa-

let-7b, hsa-miR-125b, hsa-miR-143, hsa-miR-145, hsa-miR-21, hsa-miR-22, hsa-miR-99a.

Remarkably, 143, 145, 21, 22, 99a as well as let-7a, and 125a, which belongs to the same families

as 125b and let-7b, were also reported by the original study ([30], Table 1). The mRNAs associ-

ated with selected 427 mRNA probes are in S1 Table because of too many numbers.

In order to evaluate obtained mRNAs associated with the 427 selected mRNA probes and 7

miRNAs biologically, the mRNAs were uploaded for enrichment analysis using MSigDB [31]

and the miRNAs to DIANA-mirpath [32]. The top 10 enriched gene sets in MSigDB are chiefly

related to breast cancer (eight out of ten, see Table 2), while the top ranked pathways identified

DIANA-mirpath are “MicroRNAs in cancer” (Table 3). Thus, I concluded that our strategy is

successful despite fully unsupervised nature.

Next, type II tensor generated from mRNA and miRNA profiles was considered. Applying

TD to type II tensor,

~xi1 ;i2
¼
X

j

xi1 ;i2 ;j
¼
X

‘1

X

‘2

~Gð‘1; ‘2Þ~x
mRNA
‘1 ;i1

~xmiRNA
‘2 ;i2

;

Table 1. Top ranked 10 G(ℓ1, ℓ2, ℓ3)s with larger absolute values among 1� ℓ1, ℓ2, ℓ3� 10 when TD was applied to type I tensor generated from

xmRNA
i1 ;j

and xmiRNA
i2 ;j

(left) and xcontrol
i;t1

and xEGF
i;t2

(right).

multi-omics EGF treatment

ℓ1 ℓ2 ℓ3 G(ℓ1, ℓ2, ℓ3) ℓ1 ℓ2 ℓ3 G(ℓ1, ℓ2, ℓ3)

1 1 1 1.67 × 105 1 1 1 −4.03 × 104

2 1 2 −1.03 × 105 2 1 2 −1.56 × 103

4 1 4 7.48 × 104 1 2 2 1.49 × 103

3 1 3 −6.64 × 104 3 1 3 1.05 × 103

5 1 5 6.23 × 104 1 3 4 −5.79 × 102

3 2 3 3.00 × 104 4 1 5 4.24 × 102

1 2 3 −2.87 × 104 2 1 3 4.16 × 102

3 1 5 −2.33 × 104 5 1 6 3.25 × 102

2 2 3 −2.02 × 104 1 4 6 3.19 × 102

1 2 2 −1.48 × 104 4 1 4 −2.62 × 102

https://doi.org/10.1371/journal.pone.0183933.t001
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Table 2. Overlap between mRNAs identified (S1 Table) and MSigDB. Top 10 ranked gene sets are presented. Upper rows: type I, lower rows: type II ten-

sors are considered in each gene set name, respectively. The word “BREAST_CANCER/_DUCTAL_CARCINOMA” was presented in bold face in order to

emphasize the overlap with breast cancer related gene sets. K: The number of genes in each gene set, k: The number of genes overlapped.

Gene Set Name (K) Description (k) k/K p-value FDR

q-value

SMID_BREAST_CANCER_LUMINAL_B_DN 564 Genes down-regulated in

the luminal B subtype of

breast cancer.

100 0.1773 4.00E-105 1.36E-101

88 0.1560 2.34E-090 7.94E-087

SMID_BREAST_CANCER_BASAL_DN 701 Genes down-regulated in

basal subtype of breast

cancer samples.

91 0.1298 2.06E-082 3.50E-079

86 0.1227 6.42E-079 1.09E-075

DOANE_BREAST_CANCER_ESR1_UP 112 Genes up-regulated in

breast cancer samples

positive for ESR1

compared to the ESR1

negative tumors.

44 0.3929 5.78E-063 6.56E-060

38 0.3393 6.29E-053 4.28E-050

SMID_BREAST_CANCER_RELAPSE_IN_BONE_DN 315 Genes down-regulated in

bone relapse of breast

cancer.

— — — —

51 0.1619 1.17E-052 6.63E-050

JAEGER_METASTASIS_DN 258 Genes down-regulated in

metastases from

malignant tumors.

melanoma compared to

the primar

— — — —

43 0.1667 5.25E-045 2.55E-042

WALLACE_PROSTATE_CANCER_RACE_UP 299 Genes up-regulated in

prostate cancer samples

from African-American

patients compared to

those from the European-

American patients.

55 0.1839 5.86E-058 4.98E-055

— — — —

SMID_BREAST_CANCER_NORMAL_LIKE_UP 476 Genes up-regulated in the

normal-like subtype of

breast cancer.

61 0.1282 2.40E-054 1.63E-051

— — — —

FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 330 Genes which best

discriminated between

two groups of breast

cancer according to the

status of ESR1 and AR:

basal (ESR1- AR-) and

luminal (ESR1+ AR+).

54 0.1636 5.31E-054 3.01E-051

54 0.1636 5.03E-056 4.27E-053

POOLA_INVASIVE_BREAST_CANCER_UP 288 Genes up-regulated in

atypical ductal

hyperplastic tissues from

patients with (ADHC)

breast cancer vs those

without the cancer (ADH).

51 0.1771 7.55E-053 3.67E-050

— — — —

MCLACHLAN_DENTAL_CARIES_UP 254 Genes up-regulated in

pulpal tissue extracted

from carious teeth.

47 0.1850 1.12E-049 4.77E-047

— — — —

SMID_BREAST_CANCER_BASAL_UP 648 Genes up-regulated in

basal subtype of breast

cancer samples.

63 0.0972 1.38E-048 5.23E-046

78 0.1204 1.18E-070 1.34E-067

SMID_BREAST_CANCER_LUMINAL_B_UP 172 Genes up-regulated in the

luminal B subtype of

breast cancer.

38 0.2209 1.95E-043 6.63E-041

37 0.2151 3.29E-043 1.40E-040

DELYS_THYROID_UP_CANCER 443 Genes up-regulated in

papillary thyroid

carcinoma (PTC)

compared to normal

tissue.

— — — —

48 0.1084 5.47E-041 2.07E-038

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN 198 Genes down-regulated in

ductal carcinoma vs

normal ductal breast cells.

— — — —

36 0.1818 3.16E-039 1.08E-036

https://doi.org/10.1371/journal.pone.0183933.t002
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gives us two sample singular value vectors

~xmRNA
‘3¼‘1 ;j

¼
X

i1

~xmRNA
‘1 ;i1

xi1 ;j
;

~xmiRNA
‘3¼‘2 ;j

¼
X

i2

~xmiRNA
‘2 ;i2

xi2 ;j
;

The first five are shown separately in (Fig 1(b) and 1(c)). It is obvious that all of the ten sample

singular value vectors are significantly coincident with sample classifications.

To determine whether TD applied to type II tensors could depict latent correlation between

miRNA and mRNA, hierarchical clustering was performed between ~xmRNA
‘3 ;j

and ~xmiRNA
‘3 ;j

(1� ℓ3

� 10, Fig 7(a)). Here, ~xmRNA
‘3 ;j

; 3 � ‘3 � 10 are always paired with one of ~xmiRNA
‘3 ;j

; 3 � ‘3 � 10

(Fig 7(a)). Thus, TD applied to type II tensor could successfully identify latent correlation

between two views, i.e., mRNA and miRNA.

Additionally, I attempted to extract mRNAs and miRNAs using the first five mRNA and

miRNA singular value vectors, ~xmRNA
‘1 ;i1

,~xmiRNA
‘2 ;i2

, and 1� ℓ1, ℓ2� 5, respectively. In this example

two views were emplyed, as the type II tensor is occasionally the matrix ~xi1 ;i2
. Thus, the core

tensor, ~Gð‘1; ‘2Þ, is the diagonal matrix. Therefore, the first five feature singular value vectors

are automatically associated with the first five corresponding sample singular value vectors. 21

miRNAs (let-7a/b/f, miR-103/125b/141/142-3p/143/145/148a/199a/b-3p/19b/205/21/22/23a/

24/26a/30a/451/99a), identified as outliers using the first five miRNA singular value vectors,

~x‘2 ;i2 ; 1 � ‘2 � 5, were selected. Eight miRNAs (let-7a, miR-21/22/451/142-3p/143/145/99a)

were also reported in the original study ([30], Table 1). Three hundred seventy-four mRNA

probes, identified as outliers using the first five mRNA singular value vectors

~xmRNA
‘1 ;i1

; 1 � ‘1 � 5, were selected (associated mRNAs are in S1 Table) and were substantially

overlapped with those selected when type I tensors were considered (Table 4). In order to eval-

uate obtained mRNAs and miRNAs biologically, mRNAs associated with 374 probes were

Table 3. Results of DIANA-mirath using seven miRNAs identified. Top 10 significant KEGG pathway was presented. gene: number of genes overlapped

with miRNAs target genes, miRNA: number of overlapped miRNAs. Numbers both sides of “/” correspond to type I/type II tensors, respectively.

KEGG pathway FDR q-value gene miRNA

MicroRNAs in cancer 3.29E-88/4.68E-68 115/141 7/22

Proteoglycans in cancer 5.36E-12/9.48E-17 116/159 7/22

Cell cycle 1.26E-10/2.61E-12 80/104 7/22

Renal cell carcinoma —/2.25E-011 —/61 —/22

Protein processing in endoplasmic reticulum —/3.81E-10 —/134 —/22

Hepatitis B 6.57E-09/5.37E-09 79/107 7/22

Prion diseases 5.14E-08/— 16/— 7/—

Central carbon metabolism in cancer 2.76E-07/— 42/— 7/—

Hippo signaling pathway 3.27E-07/2.40E-07 78/109 7/22

Chronic myeloid leukemia —/2.40E-07 —/62 —/22

Viral carcinogenesis —/2.40E-07 —/158 —/22

Pancreatic cancer —/1.84E-06 —/55 —/22

Lysine degradation 1.15E-06/— 27/— 6/—

FoxO signaling pathway 2.89E-06/— 79/— 7/—

Prostate cancer 4.52E-06/— 56/— 7/—

https://doi.org/10.1371/journal.pone.0183933.t003
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uploaded to MSigDB, and miRNAs to DIANA-mirpath. DIANA-mirpath identified “MiRNAs

in cancer” as the most significant KEGG pathway (Table 3). Table 2 also shows the overlap

with MSigDB. Eight out of ten were breast cancer related, and one of the remaining two is

related to metastasis. Thus, these identified mRNAs and miRNAs are biologically reasonable.

In conclusion, TD applied to type II tensor works well.

Temporally differentially expressed genes

Although the application of TD based unsupervised FE to multi-omics data was successful,

one may wonder if the application to muti-omics data is reasonable, as synthetic datasets were

Fig 7. Hierarchical clustering of ~xmRNA
‘3 ;j

(x_mRNA) and ~xmiRNA
‘3 ;j

(x_miRNA). When TD was applied to type II tensor (a) and vℓ3,j (for mRNA, labelled as

PC), and v0
‘3 ;j

(for miRNA, labelled as PCM) when PCA was separately applied to miRNA and mRNA (b) (1� ℓ3� 10). Distances were negative signed

absolute values of Pearson correlation coefficients. Unweighted Pair Group Method with Arithmetic mean (UPGMA) was employed.

https://doi.org/10.1371/journal.pone.0183933.g007

Table 4. Comparison between 426 mRNA probes identified by TD based unsupervised FE applied to

type I tensor and 374 mRNA probes identified by TD based unsupervised FE applied to type II tensor,

or 427 probes identified by PCA based unsupervised FE separately applied to miRNA/mRNA. S:

selected, NS:not selected.

TD type II PCA

NS S NS S

TD NS 12856 110 12948 19

type I S 163 264 18 408

https://doi.org/10.1371/journal.pone.0183933.t004
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more difficult to deal with due to a lack of class labelling. Have I intentionally tried the easiest

case? In order to address this possible query, I considered two examples of a more difficult

problem: identification of temporally differentially expressed genes. The task is as follows:

Given more than one temporal gene expression, identify genes expressed differently among

multiple expressions at specific time points. For example, expression of a particular gene obeys

f(t) as a function of t under one set of conditions, while it obeys f(t) + C with a constant C
under another. Conventionally, this is differentially expressed between the two conditions;

however this kind of differential expression is often not of interest when temporal gene expres-

sion is considered. One distinction of note would be, for example, differences between expres-

sions at certain time points and not at others (a distinct time dependency between two

conditions). However, there are no de facto standard methods that automatically achieve this.

In order to address it, TD based unsupervised FE was applied to this problem.

The first example of this application is the comparison of non-small lung cancer cell

(NSCLC) line H1975, with and without EGF treatment [33]. Gene expression matrices were

divided into two groups (with and without EGF treatment). The type I tensor xt1,t2,i is then

generated as

xt1 ;t2 ;i
¼ xcontrol

i;t1
xEGF

i;t2

where xcontrol
i;t1

and xEGF
i;t2

are ith gene expressions of cell lines with and without EGF treatment, at

time points t1 and t2 after the EGF or control treatments. As they share features (though not

samples) in contrast to the previous application which was Case I data, this example uses Case

II data. As the samples in this example are divided into two groups based on EGF treatment, it

is not fully unsupervised. It is, however, unsupervised in the sense that the type of temporal dif-

ference sought is not defined. The tensor was expanded by HOSVD as

xt1 ;t2 ;i
¼
X

‘1

X

‘2

X

‘3

Gð‘1; ‘2; ‘3Þx
control
‘1 ;t1

xEGF
‘2 ;t2

x‘3 ;i

Fig 2(a) and 2(b) shows the xcontrol
‘1 ;t1

and xEGF
‘2 ;t2

for ℓ1, ℓ2 = 1, 2, respectively. Obviously, those

for ℓ1 = ℓ2 = 1 do not have any time dependence while those for ℓ1 = ℓ2 = 2 do. Some temporal

difference was observed in the latter, however its significance is unclear. In order to determine

said significance, genes identified as outliers had to be selected. This selection process began

with identifying the gene singular value vectors associated with xcontrol
‘1¼2;t1

and xEGF
‘2¼2;t2

. Table 1

shows the top ranked G(ℓ1, ℓ2, ℓ3)s with larger absolute values. It is obvious that xℓ3 = 2,i is asso-

ciated with xcontrol
‘1¼2;t1

and xEGF
‘2¼2;t2

, as the absolute values of G(2, 2, 1) and G(2, 1, 2) are the second

and the third largest in the table. Next, 558 mRNA probes (associated mRNAs are in S1 Table)

identified as outliers based on xℓ3 = 2,i were selected. Fig 2(c) shows the histogram of correlation

coefficients between the vectors generated by connecting xcontrol
‘1 ;t1

and xEGF
‘2 ;t2

vs the 558 selected

mRNA probes. These are highly correlated (adjusted P-values are less than 0.01). It is remark-

able since G(2, 2, 1) and G(2, 1, 2) are smaller than one tenth of G(1, 1, 1) whose absolute value

is the largest. This suggests that the amount of contributions of G(2, 2, 1) and G(2, 1, 2) is too

little to govern individual gene expression. The high correlation despite this fact speaks to the

soundness of our methodology.

The next step was to determine whether the 558 mRNA probes selected exhibit temporal

differences. The 558 mRNA probes selected are scaled, shifted, and over drawn as boxplot

(Fig 2(d)). Though it is difficult to observe, P-values were computed by two-sided t tests

between expressions, with and without EGF treatments at time points, 0.5, 1, 2, 4, 6 and 48

hours (Fig 2). These values are significant only at limited time points with and without EFG
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treatment. These were merely temporally differently expressed genes. Thus, TD based unsu-

pervised FE applied to type I tensors is effective.

To determine the biological reliability of the selected genes, genes associated with selected

558 mRNA probes were uploaded to MSigDB. The second significant gene set was found to be

KOBAYASHI_EGFR_SIGNALING_24HR_DN (the adjusted P value is 1.37 × 10−96), which is

reasonable as the genes sought were expressed differently with and without EGF treatments.

The next task was to determine whether type II tensors produce similar results. Type II ten-

sor ~xt1 ;t2
, which in this example is the matrix since two views are considered, is defined as a

summation of a type I tensor over gene index,

~xt1 ;t2
¼

X

i

xt1 ;t2 ;i

that is expanded by HOSVD, which is a simple SVD in the present case

~xt1 ;t2
¼

X

‘1

X

‘2

~Gð‘1; ‘2Þ~x
control
‘1 ;t1

~xEGF
‘2 ;t2

Fig 2(e) and 2(f) shows the ~xcontrol
‘1 ;t1

and ~xEGF
‘2 ;t2

for ℓ1, ℓ2 = 1, 2. Obviously, ~xcontrol
‘1¼1;t1

and ~xEGF
‘2¼1;t2

do

not have any time dependence while ~xcontrol
‘1¼2;t1

and ~xEGF
‘2¼2;t2

do, as in the case where TD was applied

to a type I tensor. Some temporal difference was observed between ~xcontrol
‘1¼2;t1

and ~xEGF
‘2¼2;t2

. Again,

the significance of this temporal difference was unclear. Genes identified as outliers had to be

selected to determine the significance of this temporal difference. While there are two gene sin-

gular value vectors,

~xcontrol
‘3¼‘1 ;i

¼
X

t1

~xcontrol
‘1 ;t1

xi;t1
; ~xEGF

‘3¼‘2 ;i
¼
X

t2

~xEGF
‘2 ;t2

xi;t2
;

485 and 471 mRNA probes identified as outliers were selected using ~xcontrol
‘3¼‘1;i

and ~xEGF
‘3¼‘2 ;i

, respec-

tively, among which 398 mRNA probes (associated mRNAs are shown in S1 Table) were com-

monly selected. Fig 2(g) shows the histogram of correlation coefficients between the vector

generated by connecting ~xcontrol
‘1 ;t1

and ~xEGF
‘2 ;t2

vs 398 commonly selected mRNA probes. These were

highly correlated (adjusted P-values are less than 0.01). This is noteworhty as the smallest con-

tribution from the second singular value vector was 1 × 10−5. This suggests that the amount of

contributions of the second singular value vector were too small to govern individual gene

expressions. As before, the high correlation despite this fact speaks to the soundness of our

methodology.

The next task was to determine whether the genes selected exhibit temporal difference. The

genes selected are scaled, shifted, and over drawn as boxplot (Fig 2(h)). Though it is difficult to

observe, P-values computed by a two-sided t test between expression at time points, 0.5, 1, 2, 4,

6 and 48 hours (Fig 2) are significant only at limited time points with and without EFG treat-

ment. Although this is of less significance than TD applied to a type I tensor, these are merely

temporally differently expressed genes. Thus, TD based unsupervised FE applied to type II ten-

sor is effective.

In order to see the biological reliability of selected genes, the mRNAs associated with com-

monly selected 398 mRNA probes were uploaded to MSigDB. The second most significant

gene set was determined to be KOBAYASHI_EGFR_SIGNALING_24HR_DN (the adjusted P
value is 1.37 × 10−128), which, again, was reasonable as the genes sought expressed differently

with and without EGF treatments. Although the number of genes selected was less than that by

TD applied to type a I tensor, since the P-value is smaller, the significance was greater than

that of TD applied to a type I tensor.
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As a whole, both TD applied to type I type II tensors is effective.

The next temporally differentially expressed gene detection example is vaccine infection

experiment [34]. Patients were divided into three groups, P, D and NP. As sample classifica-

tion was used, it is also not fully unsupervised. It is, however, unsupervised in the sense that no

temporal functional forms are assumed. xP
i;t1

, xD
i;t2

, and xNP
i;t3

are the ith gene expressions of pro-

tected, delayed, and non-protected, patients at time points t1, t2 and t3 after vaccine treatments,

respectively. Type I tensor xt1,t2,t3,i, was defined as

xt1 ;t2 ;t3;i
¼ xP

i;t1
xD

i;t2
xNP

i;t3

xt1,t2,t3,i would be expanded by HOSVD as

xt1 ;t2 ;t3 ;i
¼

X

‘1 ;‘2 ;‘3 ;‘4

Gð‘1; ‘2; ‘3; ‘4Þx
P
‘1 ;t1

xD
‘2 ;t2

xNP
‘3 ;t3

x‘4 ;i;

however, the total memory required to store all of this expansion is too large to be prepared.

Fortunately, as can be seen in the application to the first temporally differentially expressed

gene identification, TD applied to a type II tensor that requires much smaller (1/N) memory

can be as effective as TD applied to type I tensor for temporally differentially expressed gene

identification. Thus, for this example, I employ only type II tensor ~xt1 ;t2 ;t3
, defined as

~xt1 ;t2 ;t3
¼
X

i

xt1 ;t2 ;t3 ;i

that can be expanded as

~xt1 ;t2 ;t3
¼
X

‘1

X

‘2

X

‘3

~Gð‘1; ‘2; ‘3Þ~x
P
‘1 ;t1

~xD
‘2 ;t2

~xNP
‘3 ;t3

by HOSVD.

Fig 3(a) and 3(b) shows the ~xP
‘1 ;t1

, ~xD
‘2;t2

and ~xNP
‘3 ;t3

for ℓ1,ℓ2 = 1, 2. Obviously, ~xP
‘1¼1;t1

, ~xD
‘2¼1;t2

and ~xNP
‘3¼1;t3

do not have any time dependence while those for ℓ1 = ℓ2 = ℓ3 = 2 do, as in the EGF

treated cell line cases. Though ~xP
‘1¼2;t1

, ~xD
‘2¼2;t2

and ~xNP
‘3¼2;t3

also seem to have some temporal dif-

ference, its significance is again unclear. To determine the significance of this difference, genes

identified as outliers had to be selected. There are three gene singular value vectors:

~xP
‘4¼‘1 ;i

¼
X

t1

~xP
‘1 ;t1

xP
i;t1
;

~xD
‘4¼‘2 ;i

¼
X

t2

~xD
‘2 ;t2

xD
i;t2

~xNP
‘4¼‘3 ;i

¼
X

t3

~xNP
‘3 ;t3

xNP
i;t3

Using these three gene singular value vectors with ℓ1 = ℓ2 = ℓ3 = 2, 104 mRNA probes identified

commonly as outliers were selected (S1 Table).

Fig 3(c) shows the histogram of correlation coefficients between the vector generated by

connecting ~xP
‘1 ;t1

, ~xD
‘2 ;t2

and ~xD
‘3 ;t3

vs selected 104 mRNA probes. These are highly correlated

(adjusted P-values are less than 0.01). This is noteworthy as ~Gð1; 2; 2Þ; ~Gð2; 1; 2Þ; ~Gð2; 2; 1Þ,
being the three largest core tensors associated with these three gene singular value vectors, had

the contributions as small as 1 × 10−3 of ~Gð1; 1; 1Þ, the largest one. This suggests that the

amount of contributions of the second gene singular value vector is too small to govern
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individual gene expression. The high correlation despite this fact suggests the soundness of

our methodology.

The next task was to determine whether the mRNA probes selected exhibit temporal differ-

ence. The mRNA probes selected are scaled, shifted, and overdrawn as boxplot (Fig 3(d)).

Though it is difficult to observe, P-values computed by categorical regression assuming three

classes (P, D, NP) at time points, 1, 2, 3, 4 and 5 days (Fig 3) are significant at all time points

between the three classes. This was clearly not due to simple baseline shifts, as can be seen in

Fig 3(d). This is due to as temporally differently expressed genes. Thus, TD based unsupervised

FE applied to type II tensor is also effective.

In order to determine the biological reliability of selected genes, the mRNAs associated

with the selected 104 mRNA probes were uploaded to MSigDB. The top six significant gene

sets were determined to be: GSE13485_X_VS_Y_YF17D_VACCINE_PBMC_DN,

GSE10325_MYELOID_VS_LUPUS_MYELOID_DN, GSE13485_X_VS_Y_YF17D_VACCI-

NE_PBMC_DN, GSE13485_X_VS_Y_YF17D_VACCINE_PBMC_DN, GSE13485_X_V-

S_Y_YF17D_VACCINE_PBMC_DN, and

GSE13485_X_VS_Y_YF17D_VACCINATION_PBMC_DN, where (X, Y) = (CTRL, DAY7),

(DAY1, DAY7), (CTRL, DAY3), (DAY3, YF17D), and (PRE, POST) in this order, which are

associated with adjusted P-values, 2.97 × 10−66, 2.98 × 10−57, 3.69 × 10−55, 4.86 × 10−53,

5.43 × 10−51, and 6.36 × 10−49, respectively. As five out of six are related to vaccination, TD

based unsupervised FE selected biologically feasible sets of genes.

In conclusion, TD based unsupervised FE is also effective also for the identification of tem-

porally differentially expressed genes.

Discussion

In the following section I discuss the strategy for applying TD based unsupervised FE to ten-

sors built from matrix products, methodological points of view, and outcomes obtained by

applying this strategy to multi-omics datasets from the biological point of views.

Comparisons with various methods applicable to synthetic data

The synthetic datasets that presented in the above sections are very difficult to analyse using

standard supervised statistical analysis methods. In the supervised methodology, all back-

ground knowledge of given datasets is required, e.g., classification labels or assumed functional

forms (for example, monotonic increase/decrease or periodicity). Alternatively, TD applied to

type I tensors is Eq (3) and applied to type II tensor is Eq (4), which can be performed in the

synthetic dataset prepared without any information in advance. To my knowledge, there are

no applicable supervised methodologies for the synthetic datasets presented above. Thus, in

the following I discuss only unsupervised methods.

As the first N0 features are derived from the common bases shown in Fig 4(a)–4(c), it is pos-

sible to detect them by computing correlations between them. However, as can be seen in

Fig 4(d)–4(f), the correlations are highly non-linear, and it is therefore impossible to detect

them (in actuality, the Pearson correlation between two variables shown is Fig 4(f) is as small

as -0.01).

One may wonder if correlation analysis considering linear combinations, e.g., canonical

correlation analysis (CCA), can depict latent correlation. However, in CCA, as M dimensional

vectors as numerous as N must be compared, it is an overcomplete problem when M< N (and

this is the present case). Thus, canonical correlation coefficients generated from linear combi-

nations are always 1.0. This means that there is no way to detect latent correlation between

N0(<N) features.
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Similar problems stand for nonlinear correlation analysis like kernel CCA (kCCA). KCCA

was applied to matrices X(k), k = 1, 2 in the above synthetic examples. The ten components

(this is the kCCA default) generated are classified into two types, each of which are distinct

from the first N0 features and remaining (Fig 8(a)–8(d)). Thus, the correlation is apparently

successful, however, both results in the correlation coefficients were as large as 1.0 meaning

that kCCA evaluated the correlation of two views between the first N0 features and that

between remaining features the latter composed of simple random numbers as demonstrated

in the above. Thus, kCCA cannot distinguish between latent correlation between the first N0

features and random numbers, and cannot be successfully applied.

Finally, PCA based unsupervised FE, which was recently proposed and successfully applied

to various integrated analyses of multi-omics datasets, was again applied here. As PCA is

equivalent to singular value decomposition (SVD),

xð1Þi1 ;j ¼
X

‘1

u‘1 ;i1l
1=2

‘1
v‘1 ;j; xð2Þi2 ;j ¼

X

‘2

u0
‘2;i2

l
01=2

‘2
v0
‘2 ;j

Fig 8(e) and 8(f) are vℓ1 = 1, j and v0
‘2¼1;j, respectively. uℓ1,i1,ℓ1 = 1, 2 is Fig 8(g) and uℓ2,i2

, ℓ2 = 1, 2

is Fig 8(h). λℓ2
and λℓ3

are the eigen values computed with PCA. Thus

xð1Þi1 ;jx
ð2Þ

i2 ;j ¼
X

‘1

X

‘2

v‘1 ;jl
1=2

‘1
l
01=2

‘2
v0
‘2 ;j

u‘1 ;i1 u0
‘2 ;i2

Fig 8. Two alternative methods applied to synthetic data. (a) to (d): The results of kCCA. Vertical axes are the coefficients used for linear

combinations of N features, Horizontal axes are i1 and i2, i.e., indices attributed to N features. (a) and (b): the first view, (c) and (d) the second view.

(a) and (c): the first type of kCCA results and (b) and (d): the second type of kCCA results. The distinction between the two types of kCCA results is

coincident with the distinction between features with latent correlation (1� j� N0) and those without correlation (N0 < j�N). However, as computed

correlation coefficients were as high as 0.99, kCCA failed to identify latent correlation. (e) to (h): PCA separately applied to two views in synthetic

data. (e) and (f): the first PC loadings attributed to M samples in each view. (g) and (h) the first and the second PC scores attributed to N features in

each view. Red open circles are features with latent correlation (1� j� N0). Black circles are those composed of random numbers (N0 < j�N).

https://doi.org/10.1371/journal.pone.0183933.g008
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Compared with Eq (3), if

X

‘3

Gð‘1; ‘2; ‘3Þx‘3;j ¼ v‘1 ;jl
1=2

‘1
l
01=2

‘2
v0
‘2 ;j

x‘1;i1 ¼ u‘1 ;i1 ;

x‘2;i2 ¼ u0
‘2 ;i2

and PCA is equivalent to TD applied to a a type I tensor. Alternatively, compared with

Eq (4), if

~Gð‘1; ‘2Þ ¼ l
1=2

‘1
l
01=2

‘2

X

j

v‘1 ;jv
0

‘2 ;j ð5Þ

~xð1Þ‘1 ;i1 ¼ u‘1 ;i1
~xð2Þ‘2 ;i2 ¼ u0

‘2 ;i2

then PCA is equivalent to TD applied to a type II tensor. However, HOSVD does not always

produce the solution satisfying the above. For example, since Eq (4) computed with HOSVD a

standard SVD, ~Gð‘1; ‘2Þ is diagonal, while Eq (5) cannot be diagonal since vℓ1,j is not orthogo-

nal to v0
‘2 ;j

.

Although PCA based unsupervised FE successfully identified the first N0 features associated

with latent correlations as outliers (Fig 8(g) and 8(h)), PC loadings attributed to samples

(Fig 8(e) and 8(f)) are almost identical to Fig 4(d) and 4(e), which are not correlated (Fig 4(f)).

Therefore PCA based unsupervised FE cannot identify latent correlation. In the previous

applications of PCA based unsupervised FE aimed at integrated analysis of multi-omics data

[14, 22], it was critical to identify pairs of highly correlated PC loadings, otherwise it was not

possible to identify which PCs should be used for FE. In this context, PCA based unsupervised

FE failed to detect latent correlations among multi-views.

While PCA was unsuccessful, HOSVD was applied to type I tensors in an attempt to

decompose vℓ1,j and v0
‘2 ;j

(Fig 8(e) and 8(f)), which are not orthogonal, into orthogonal bases

xℓ3,j as shown in Fig 4(g)–4(i). For this reason, TD applied to type I tensors is superior to PCA

when applied to the matrix products of synthetic datasets and can depict latent correlation that

PCA failed to identify. As for HOSVD applied to type II tensors, Fig 6(b) and 6(e) correspond

to Fig 4(e) while Fig 6(c) and 6(f) correspond to Fig 4(d) shows HOSVD applied to type II ten-

sors can depict the latent correlation that PCA based unsupervised FE failed to detect.

Methodological discussion of TD based unsupervised FE applied to

multi-omics data

In contrast to synthetic data (to which no supervised methods apply), the supervised method

can be applied to the multi-omics data used in this study can be treated with supervised

method as the data uses class labels. Strictly speaking, there are no unsupervised methods

applicable to multi-view data processing other than TD based unsupervised FE. We can, there-

fore, even conclude that is the above strategy is sound. That said, it would be beneficial to dem-

onstrate that the unsupervised methodology is superior to the supervised methodology.

As mentioned in above, most multi-view data processing methodologies require optimiza-

tion of weights. I do not consider such methodologies, since optimizing weights is a compli-

cated unnecessary process. Therefore, they are not comparable with the unsupervised strategy,

which involves no parameter optimization processes.
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Thus, the multi-view data processing methodology is considered applicable to merged

matrices shown in Eqs (1) or (2), which does not include any weight optimization. Here, I con-

sider three alternative methodologies, Significance Analysis of Microarrays (SAM), [35]

Limma [36] and randomforest [37] (RF). As SAM and Limma evaluate features independently,

weights attributed to views are not required. Although RF evaluates features in more collective

ways, the evaluations are tree based, therefore the absolute values of each feature are not

important. Table 5 shows the pertinent results. All three methods are inferior to the methodol-

ogy presented above, as they failed to identify a significantly small number of features. Limma

selected all of 755 miRNAs as significant. Roughly speaking, at least half of mRNAs were iden-

tified by these three methods.

Although these might be enough to demonstrate the superiority of the methodology pre-

sented above, measures were also undertaken to reduce the number of mRNAs identified by

reducing threshold P-values ensuring that these three methods identify 426 mRNA probes,

which is the same number identified by TD applied to type I tensors. As threshold P-values

which are too small without any statistical justifications may not be acceptable, in order to

evaluate these three methods, unnatural threshold P-values were intentionally used. Top

ranked mRNAs selected by using intentionally reduced threshold P-values were uploaded to

MSigDB server. However, breast cancer was rarely identified (Table 6). Breast cancer was iden-

tified only once by SAM, and was not detected in either limma or RF. These outcomes are in

contrast to Table 2, where eight out of ten significant gene sets are breast cancer-related when

TD was applied to either type I or type II tensor. Thus, it is obvious that these methodologies

are inferior to the methodology presented above in the present study, i.e., TD based unsuper-

vised FE.

Finally, PCA based unsupervised FE was applied to mRNAs and miRNAs separately

(Table 5). PCA based unsupervised FE identified smaller numbers of mRNAs and miRNAs

than the above three methodologies. Especially, since mRNAs selected are almost identical to

those identified by TD based unsupervised FE applied to type I tensor (Table 4), PCA based

unsupervised FE is as effective for the identification of biologically reliable mRNAs. However,

it cannot identify latent correlation between miRNAs and mRNAs, as hierarchical clustering

of PC loading attributed to samples identified no pairs of miRNAss and mRNA (Fig 7(b)),

which were identified when TD applied to type II tensors was considered and without which

no integrated analysis of multi-omics datasets by PCA based unsupervised FE were successful.

This indicates that the present datasets were more complex and cannot be dealt with using

PCA based unsupervised FE in an integrated manner. Thus, I conclude that TD based unsu-

pervised FE applied to type I or type II tensors is the only method for achieving two tasks: (i)

identifying sufficiently small numbers of biologically important features, and (ii) identify latent

correspondence between multi-omics profiles.

Table 5. The numbers of identified mRNAs and miRNAs (multi-omics) and mRNAs (vaccination) using various methodologies. Multi-omics: Among

427 mRNA probes and 12 miRNAs identified PCA based unsupervised FE, 408 mRNA probes (Table 4) and 9 miRNAs were also identified with TD based

unsupervised FE applied to type I tensor.

SAM Limma RF PCA based unsupervised FE

multi-omics

mRNA 8055 6055 5079 427

miRNA 148 755 186 12

vaccine

mRNA 11739 9445 8300 18

https://doi.org/10.1371/journal.pone.0183933.t005
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Here, PCA based unsupervised FE is shown to be the only strategy that can compute with

the TD based unsupervised FE applied to matrix products. A more detailed comparison of

these two strategies may enable us to understand the functionality of TD based unsupervised

FE. As can be seen in the application to synthetic data, TD applied to type I tensors attempted

to decompose vℓ1,j and v0ℓ2,j into orthogonal bases xℓ3,j. This also occurred in the application to

multi-omics datasets. First, I identified that the first miRNA PC loading, v0
‘2¼1;j, dominates sub-

sequent PC loadings (more than 80%). Next, I also identified that the first mRNA PC loadings

attributed to samples vℓ1,j and 1� ℓ1� 5, are identical to the first five sample singular value

vectors xℓ3,j, 1� ℓ3� 5. The Pearson correlations between these five loadings and singular

value vectors are −0.94, −0.91, 0.88, −0.97 and −0.97 (Here the signs do not mean anything),

respectively. It is also shown the regression analysis of the first miRNA PC loading v0
‘2¼1;j with

the top five mRNA PC loadings, vℓ1,j, 1� ℓ1� 5,

v0
‘2¼1;j ¼ C0 þ

X5

‘1¼1

C‘1
v‘1;j; j ¼ 1; . . . ;M

covers more than 40% of the first miRNA PC loading v0
‘2¼1;j. Since the dimension of vector is

M = 161, only five components that can cover this amount is highly significant. This suggests

that TD can easily decompose single miRNA PC loadings v0
‘2¼1;j into five mRNA PC loading

vℓ1,j, 1� ℓ1� 5. The result is that the first five sample singular value vectors (xℓ3,j, 1� ℓ3� 5),

are almost identical to the first five mRNA PC loadings (vℓ1,j, 1� ℓ3� 5). Thus, TD based

unsupervised FE can decompose the first dominant miRNA PC loading into five basic

(orthogonal) mRNA PC loading. This result is analogous to that seen in the application to syn-

thetic dataset (Fig 4).

It is also important to show that the five mRNA PC loadings vℓ1,j, 1� ℓ1� 5 (or the first five

sample singular value vectors xmRNA
‘3 ;j

; 1 � ‘3 � 5) are distinct also from biological point of

view. To demonstrate this, five sets of outliner mRNA probes (associated mRNAs are in S2

Table) were selected using each of the first five mRNA singular value vectors

(xmRNA
‘1;i1

; 1 � ‘1 � 5) each of which is coincident with the first five sample singular value vec-

tors, (xmRNA
‘3 ;j

; 1 � ‘3 � 5)as G(ℓ1, ℓ2, ℓ3)s with 1� ℓ1 = ℓ3� 5 have larger absolute values

(Table 1). GO (biological process) BP term enrichments were tested by uploading S2 Table to

g:Cocoa in g:profiler [27] (S2 File). It is obvious that five sets of mRNAs identified as outliers

using each of the first five mRNA singular value vectors are biologically distinct from one

another.

Methodological discussion of TD based unsupervised FE applied to

identification of temporally differentially expressed genes

At certain time points in EGF treatment experiments, there is only one measurement, which

prevents the application of some statistical methods. Therefore, only vaccination samples were

considered. Again, SAM, limma, RF and PCA based unsupervised FE were considered. Here,

the samples are assumed to be classified into five time points times three treatments (P, D, NP)

equalling 15 classes. Results are shown in Table 5. As with multi-omics data, SAM, limma, and

RF failed to identify sufficiently small numbers. This is possibly due to the fact that there are

15 classes. Since even the detection of differences between pairs of any two of the 15 classes

can effect results, there are many genes identified as having significant differences. On the

other hand, 18 mRNA probes were identified by PCA based unsupervised FE with considering

TD based unsupervised FE applied to multi-view data sets
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common set when separately applied to three gene expression profiles, xP
i;t1

xD
i;t2

and xNP
i;t3

. Thus,

relatively successful.

In order to determine biological significance, a reduced number of gene sets was uploaded

to MSigDB. Similar to the multi-omics case, SAM indicated too many mRNAs with adjusted

P-value = 0, therefore no reduced sets could be generated. Two 300 top ranked mRNA probes

sets were generated from limma and RF and associated mRNAs were uploaded to MSigDB

together with the genes associated with 18 mRNA probes obtained by PCA based unsupervised

FE. Within top 10 ranked significant genes set, no vaccination related genes sets were identi-

fied for limma or RF. PCA based supervised FE has only two vaccination related genes sets.

GSE13485_X_VS_Y_YF17D_VACCINE_PBMC_DN, (X, Y) = (DAY3, DAY7) and (DAY1,

DAY7), were identified as the second (adjusted P = 1.86 × 10−6) and the fourth (adjusted

P = 4.30 × 10−5) significant genes sets, which were smaller than those identified when TD was

applied to type II tensors, which identified five gene sets associated with vaccination out of six

top ranked gene sets.

Thus, one of four tested methods, PCA based unsupervised FE, could produce some signifi-

cant results which were inferior to those produced by TD based unsupervised FE applied to

type II tensors. As a result, TD based unsupervised FE proved more effective than the other

methodologies analysed above.

Comparison with HO GSVD

To my knowledge, although there are no methods that comprise a tensor from multiple matri-

ces and applies TD to it, similar trials aiming integration of multiple matrices exist. For exam-

ple, higher order generalized singular value decomposition (HO GSVD) [25] is one such

method. Although HO GSVD does not generate tensor, the outcome is quite similar; a set of

feature singular value vectors and a unique (common) sample singular value vector which is

equivalent to what TD applied to type I tensors generated from Case I data produces. Although

Ponnapalli et al [25] employed the distinct terminology from the present study, I continue to

use my own terminology in this subsection to avoid confusion.

First, HO GSVD was applied to synthetic data. Fig 9(a)–9(d) shows the results. Its outcome

is close to that when PCA based unsupervised FE was applied to dataset (Fig 8(e)–8(h)). It is in

some sense reasonable, since HO GSVD is essentially PCA excluding the fact multiple views

share the unique sample singular value matrix, V, where the first the second column vectors

correspond to the first PC loading of the first and the second views, respectively.

Next, HO GSVD was applied to multi-omics data. Coincidence between sample singular

value vectors and class labeling is shown in Fig 1(d). Although four out of five vectors are sig-

nificantly coincident with class labeling, significance was substantially less than when TD was

applied to type I and II tensors, as the P-values were larger. Thus, HO GSVD can perform well

but is less effective than TD applied to type I or II tensors.

Next, 374 mRNA probes identified as outliers using the first five mRNA feature singular

value vectors were selected (associated mRNAs are shown in S1 Table). Uploading the mRNAs

associated with 374 mRNA probes to MSigDB, I found that only five out of ten top ranked sig-

nificant genes sets were related to breast cancer (Table 6), while eight out of ten were related to

breast cancer when TD was applied to type I or II tensors (Table 2).

Fifteen miRNAs(miR-127-5p/128/181a/190a/301a/30e�/339-5p/340/361-5p/365 /452/454/

455-5p/874/135a) identified as outliers using the first and the second miRNA feature singular

value vectors were selected. None were reported in the original study ([30], Table 1). Upload-

ing 15 miRNAs to DIANA-mirpath, I found that “MiRNAs in cancer”, which was the top
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Fig 9. The results of HO GSVD applied to the synthetic data. Red open circles are features with latent correlation (1� j�N0). The first (a)

and the second (b) sample singular value vectors and the first vs the second feature singular value vectors of the first (c) and the second

views (d).

https://doi.org/10.1371/journal.pone.0183933.g009
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ranked when TD was applied to type I or type II tensors (Table 3), was not included in the top

ten ranked KEGG pathways.

HO GSVD cannot be applied to identification of temporally differentially expressed genes,

since HO GSVD can be applied only to Case I data where samples are shared between multiple

views.

These slightly poorer outcomes of HO GSVD than TD applied to type I or II tensors suggest

the usefulness of tensors when analysing multi-view datasets.

Biological validations of mRNAs identified in multi-omics data analysis

In the previous subsection, TD based unsupervised FE applied to product of multi-omica pro-

file matrices was validated chiefly from the methodological perspective, and validated partially

from the biological perspective.

In this subsection, I try to validate outcomes biologically in more detail, mainly based upon

the consideration from oncology.

The samples analysed are essentially proposing the comparison between tumors with and

without metastasis. Thus, it is expected that selected genes are mainly related to cancer onco-

genesis related to metastasis.

Since Farazi et al [30] who produced the original study, mainly discuss the aberrant expres-

sion of miRNAs among samples, there is no in depth discussion about the role of miRNA/

mRNA in metastasis. However, as can be seen in the below, much can be discussed from their

dataset.

In order to biologically investigate a set of mRNAs identified when type I tensors were con-

sidered, to the mRNAs were uploaded to g:profiler (see S3 Table). A large number of enrich-

ments of biological terms were identified.

For example, in GO BP terms, “leukocyte activation” (GO:0045321) was enriched. It was

reported to be related to metastasis. Ihnen et al [38] reported a tumor biological context of acti-

vated leukocyte cell adhesion molecules (ALCAM) for the development of metastases in breast

cancer. Strell et al [39] concluded that the first two steps of the extravasation of tumor cells and

leukocytes, rolling and adhesion, seem to have similarities with regards to the mechanisms and

receptors involved. King et al [40] identified ALCAM in metastasis of breast cancer cells to the

lung. These suggested that metastasis was mediated by the extravasation similar to that of leu-

kocytes. In relaton to this, “positive regulation of leukocyte chemotaxis” (GO:0002690) was

also enriched. Wu [41] reported the role of chemotaxis in cell migration. Gradient of chemo-

taxis mediates cell migration, and possibly metastasis, too.

In GO (cellular component) CC terms, “extracellular region” (GO:0005576) was enriched.

Cho et al [42] reported that Herceptin binds to the juxtamembrane region of HER2, identify-

ing this site as a target for anticancer therapies, while overexpression of HER2 is found in 20-

30% of human breast cancers, and correlates with more aggressive tumours and a poorer prog-

nosis. It is also primary biomarker of breast cancer in the original study [30]. More generally,

Versteeg et al [43] suggested the importance of extracellular signaling pathway in cancer

metastasis. It mediates blood vessel wall damage, which may allow tumours to migrate through

blood vessels.

In GO (molecular function) MF terms, “CXCR3 chemokine receptor binding”

(GO:0048248) was enriched. CXCR3 was reported as a molecular target in breast cancer

metastasis [44]; it inhibits tumor cell migration and promotes of host anti-tumour immunity.

As suggested in the above, chemotaxis mediates cell migration and chemokine receptor

CXCR3 agonist prevents human T-cell migration [45]. Other than in relation to metastasis,

inhibition of CXCR3 was also known to mediate tumor growth [46]. “RAGE receptor binding”
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(GO:0050786) was also enriched. RAGE was reported to mediate tumor progression and

metastasis through binding to S100A7 by modulating the tumor microenvironment [47]. It

recruits MMP9-positive tumor-associated macrophages and mediates cell migrations.

Other than in GO terms enrichment, transcription factor (TF) SOX9 target genes were

enriched. The relation between SOX9 and metastasis was pointed out by many papers. Got

et al [48] reported that co-expression of Slug and Sox9 promotes the tumorigenic and metasta-

sis-seeding abilities of human breast cancer cells. SOX9 protein, which is normally nuclear,

was instead localized in the cytoplasm of 25-30% invasive ductal carcinomas (IDCs) and

lymph node metastases [49]. Lei et al [50] also suggested that Sox9 expression is related to

breast cancer metastasis. Although the above are all related to breast cancer, Sox9 was fre-

quently reported to be related to metastasis in various other cancers.

KEGG pathway “Primary immunodeficiency” (KEGG:05340) was also enriched. Develop-

ment of cancer in patients with primary immunodeficiencies was reported [51]. Monozygotic

twin brothers with primary immunodeficiency presented with metastatic adenocarcinoma of

unknown primary [52].

In conclusion, our method and strategy correctly identified many cancer related biological

terms/concept enrichments, especially metastasis in breast cancer, which is coincident with

the purpose of the original study that did not produce results produced here.

Biological validations of miRNAs identified in multi-omics data analysis

As the relation between mRNAs identified and breast cancer metastasis can be shown, it is

necessary to demonstrate the relationship between the miRNAs identified and breast cancer

metastasis. Research of the litertature showsthat all seven miRNAs identified when type I ten-

sors were considered(let-7b [53], miR-125b [54–56], miR-143 [57–64], miR-145 [61, 62, 65–

68], miR-21 [69–73], miR-22 [74–78] and miR-99a [32, 79]), were reported to be related to

metastasis.

Although not all are strictly related to breast cancer, all seven miRNAs identified are fre-

quently reported to be related to metastasis.

Conclusion

In this paper, a new strategy aiming at multi-view data processing that makes use of tensors

generated from multi-view matrices products was proposed. As tensors can be generated from

individual measurements, observation under combined conditions, which is generally

required to produce tensors from datasets, is not necessary. FEs were performed using singular

value vectors generated from TD and biological feasibility was confirmed via comparisons

with previously generated annotated gene expression profiles. As this strategy is not restricted

to gene expression, its application to other datasets is feasible.
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