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ABSTRACT

Spt5 is the only known RNA polymerase-associated
factor that is conserved in all three domains of life.
We have solved the structure of the Methanococcus
jannaschii Spt4/5 complex by X-ray crystallography,
and characterized its function and interaction with
the archaeal RNAP in a wholly recombinant in vitro
transcription system. Archaeal Spt4 and Spt5 form
a stable complex that associates with RNAP
independently of the DNA–RNA scaffold of the elon-
gation complex. The association of Spt4/5 with
RNAP results in a stimulation of transcription
processivity, both in the absence and the presence
of the non-template strand. A domain deletion
analysis reveals the molecular anatomy of Spt4/5—
the Spt5 Nus-G N-terminal (NGN) domain is the
effector domain of the complex that both mediates
the interaction with RNAP and is essential for its
elongation activity. Using a mutagenesis approach,
we have identified a hydrophobic pocket on the Spt5
NGN domain as binding site for RNAP, and recipro-
cally the RNAP clamp coiled-coil motif as binding
site for Spt4/5.

INTRODUCTION

All cellular RNA polymerases (RNAPs) from the three
domains of life have common structural and functional
features, and contain genuine homologues of all bacterial
RNAP subunits (1). The archaeal and eukaryotic RNAPs
furthermore share a subset of subunits that are not
conserved in the bacterial enzyme and two of them, F/E,

play a role for the processivity of transcription (1,2).
Transcription elongation by all multisubunit RNAP is a
discontinuous process that is frequently interrupted by
pausing, stalling or arrest (3). This can be detrimental
for successful RNA synthesis but also productive in
the context of the regulation of gene expression. In
eukaryotes, nucleosomes represent an impediment to effi-
cient transcription elongation and a large array of factors
influence the progression of RNAP through chromatin
by remodelling its structure, but without necessarily inter-
acting with the RNAP itself (4,5). A plethora of elon-
gation factors regulate transcription elongation by
interacting directly with RNAP; these include transcript
cleavage factors such as eukaryotic TFIIS that increases
processivity by releasing arrested elongation complexes,
and Spt4/5, which mediates both positive and negative
regulation of transcription elongation (5,6).

Spt5 is the only known RNAP-associated transcription
factor that is universally conserved in evolution (7); two
domains of eukaryotic Spt5 are homologous to the bacte-
rial N-utilization substance G (NusG) factor: the NusG
N-terminal domain (NGN) and C-terminal Kyprides–
Ouzounis–Woese (KOW) domain (Figure 1E) (8,9).
Eukaryotic Spt5 variants include four to six copies of
the KOW domain and two C-terminal hepta- and octa-
peptide repeats (ctr-1 and -2) that are subject to
posttranslational phosphorylation (Figure 1E) (10,11).
Eukaryotic Spt4/5 has both positive and negative effects
on transcription. Human Spt4/5 (also called DSIF for
DRB-sensitivity inducing sensitivity factor) stimulates
the processivity of RNAPII in a purified system (12); it
is also required for promoter proximal stalling of RNAPII
site (13,14). In Bacteria, NusG has pleiotropic effects on
transcription elongation, and termination. NusG increases
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Figure 1. Structure of the archaeal transcription elongation factor Spt4/5. X-ray structure of M. jannaschii Spt4/5NGN complex (A). The interface
between Spt4 and Spt5 (B). Alignment of Spt4 and Spt5 NGN homologs. Highly conserved residues are depicted in bold. The Spt5 residues that are
mutated are indicated by asterisk. Mj, Methanocaldococcus jannaschii; Sc, Saccheromyces cerevisiae; Hs, Homo sapiens; Ec, Escherichia coli (C).
Structural comparison of bacterial NusG NGN from E. coli (left, pdb 2K06), the archaeal structure of M. jannaschii Spt4/5 NGN complex (middle)
and eukaryotic Spt4/5 NGN from S. cerevisiae (right, pdb 2EXU) (D). Domain architecture of Spt4/5 complexes in the three domains of life (E). A
model of the complete M. jannaschii Spt4/5 complex (F).
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the transcription elongation rate by suppressing pausing
and backtracking of RNAP (15–17). NusG enhances
rho-dependent termination but in combination with
other factors (including NusA, B and E) it binds to
RNAP and forms the anti-termination complex that
resists pausing and termination (18,19). Despite consider-
able efforts, the molecular mechanisms by which NusG
modulates RNAP are still not completely understood.
The NGN domains of NusG and its paralogue RfaH
have been shown to be necessary and sufficient for the
stimulation of transcription elongation (20,21), whereas
the KOW domain has been speculated to facilitate inter-
actions with additional factors (rho, NusA, B and E) and
nucleic acids (22).
Like bacterial NusG, archaeal Spt5 only contains one

KOW domain and lacks the C-terminal repeat (ctr) motifs
(7). Like eukaryotic Spt5, archaeal Spt5 forms a complex
with Spt4, which has no homologues in bacteria (8).
Therefore, archaeal Spt4/5 (a small heterodimeric factor)
is a chimera of bacterial and eukaryotic features that is
likely to reflect the evolutionary transition state between a
relatively simple, small single subunit factor (bacterial
NusG) and a large highly regulated heterodimeric
complex (eukaryotic Spt4/5, Figure 1E). The evolutionary
conservation of Spt5/NusG leads to the intriguing specu-
lation that the molecular mechanisms by which it regulates
RNAP are evolutionary ancient, and that a NusG-like
precursor already was present in the Last Universal
Common Ancestor (LUCA).
Here, we report a structure–function analysis of

archaeal Spt4/5. We have solved the crystal structure of
the Spt4/5 core from the hyperthermophilic archaeon
Methanocaldococcus jannaschii. To investigate Spt4/5
function, we used our recombinant archaeal in vitro tran-
scription system (2,23–29). We have identified the minimal
domain configuration of archaeal Spt4/5 that is required
for the stimulation of elongation and the binding to
RNAP, and have identified the regions on Spt5 and
RNAP that mediate the interaction. Our results suggest
that Spt4/5 structure and function are universally
conserved in all three domains of life.

MATERIALS AND METHODS

Crystallization and structure determination of
M. jannaschii Spt4/5 NGN complex

The purified core Spt4/5 from M. jannaschii was con-
centrated to 30mg/ml and crystallization screens were per-
formed at the crystallization facility of the Max Planck
Institute of Biochemistry (Martinsried, Germany).
Crystal hits were optimized by fine grid screening
at 22�C with the hanging drop vapour diffusion method
by mixing 1 ml of sample solution with 1 ml of reservoir
solution, with the largest crystals appearing in 2–3 days
in 50mM MES pH 5.5–7.0, 20–30% PEG400. Crystals
were flash-cooled by plunging into liquid nitrogen and dif-
fraction data collected at beamline X06SA of the Swiss
Light Source using a Pilatus 6M pixel detector (30).
Raw data were processed with XDS. The structure was

solved by molecular replacement using PHASER (31)
with the structure of the core Spt5 from M. jannaschii
(32) together with Spt4 homolog 1RYQ (46% sequence
identity). The structure was built and refined using the pro-
grams COOT (33), REFMAC (34) and phenix.refine (35).

Comparative modelling

The Spt 5C-terminal domain was modelled based on the
crystal structure of Aquifex aeolicus NusG (pdb 1M1G)
(22) using Modeller (36). Structural alignment in VMD
(37) of the Spt 5N-terminal domain with the respective
N-terminus of A. aeolicus provided an initial orientation
for the Spt 5C-terminus, which then served as the
template. Stereochemistry of the resulting model was
assessed using Procheck v. 3.4. All protein structure
images were generated using MacPyMol.

Transcription elongation assay

Transcription assays were carried out as described in (2)
using the parental DNA TS and NTS and RNA primer.
The template DNA strand (TS) and the 14 nt RNA primer
were annealed in a 1:5 molar ratio for 1min at 96�C and
slowly cooled to ambient temperature. A RNAP were
pre-incubated with RNA/DNA scaffold at 65�C in
0.5�HNME buffer (20mM HEPES, pH 7.3, 125mM
sodium chloride, 1.75mM magnesium chloride, 0.05mM
EDTA, 2.5% glycerol and 10mM DTT). To prevent
non-specific binding of RNAP to nucleic acid scaffolds
and multiround transcription by reinitiation the reaction
mix was incubated for further 10min in presence of
0.05mg/ml Heparin at 65�C. Transcription reaction was
started by addition of nucleotides (750 mM ATP/UTP/
GTP, 2 mM CTP, [a-32P] CTP (5000Ci/mmol), in
presence or absence of 2.5 mM NTS. The radiolabelled
transcripts were separated on 16% denaturating PAGE
(8M Urea, 0.5�TBE), dried for 1 h at 80�C under
vacuum and visualized using an Fuji FLA 2000 reader
and Image Analyser software (Fuji, Japan).

Recombinant proteins

RNAP were assembled as described previously (28).
Expression vectors for GST-fusion proteins
of M. jannaschii Spt4/5, Spt5 NGN (1-82), Spt5 KOW
(83–147) and Spt4 were generated by PCR amplification
from genomic DNA and subcloning into BamHI (Spt5)
and XhoI (Spt4) sites of pGEX-2TK (GE Healthcare).
Spt4 was subcloned into pET151/D-TOPO (Invitrogen)
producing an N-terminally His-tagged Spt4 variant. The
recombinant proteins were expressed in BL21 (Rosetta 2,
Novagen) for 5 h at 37�C, extracted in P300 buffer (28)
and purified via affinity chromatography (GST-TRAP
and HisTRAP, Invitrogen). Following cleavage of the
GST-tag overnight with thrombin at 4�C, GST was
removed by heat treatment (30min at 65�C) and
proteins were purified by size exclusion chromatography
(HiPrep-Sephacryl, S100HR 16/60 and S200 HR 26/60,
GE Healthcare).

4042 Nucleic Acids Research, 2010, Vol. 38, No. 12



Isotopic labelling of recombinant proteins

Spt4/5, Spt4/5 NGN, Spt5 and Spt5 NGN (100mg) were
radiolabelled using gamma 32P-ATP (Perkin Elmer) and
cAMP-dependent catalytic subunit PKA (New England
Biolabs) for 2 h at 37�C. This protocol generated
N-terminally 32P-labelled recombinant proteins via the
RRASV kinase recognition site in the vector linker of
pGEX-2TK vector. The His-Spt4 protein expressed from
pET151D was not suitable for labelling using this
approach.

Heat stability assay

Spt4/5 variants were incubated in P300 buffer for 20min
at 65�C or 75�C. Precipitated proteins were removed by
centrifugation at 14 000g for 10minutes and supernatants
were subjected to SDS–PAGE.

Transcription elongation assay

Transcription elongation assays were carried out as
described previously (2).

RNAP binding assay

Radiolabelled Spt4/5, Spt4/5 NGN, Spt5 and Spt5 NGN
(50 nM) were incubated with RNAP (250 and 500 nM) in
0.5�HNME buffer (29) in a total volume of 15 ml at 65�C
for 20min. Following the addition of 5 ml native PAGE
loading buffer the reaction was separated on 10% native
Tris–Glycine PAGE and the 32P signal signal was
visualized using a phosphor imaging plate and Image
Analyser (Fuji FLA 2000, Japan). The mobility of the
labelled Spt4/5 variants varies due to their different size
and charge. Spt5 forms a doublet that is likely to be due to
the dimerization of Spt5 in the absence of Spt4 (32).

RESULTS

Structure of M. jannaschii Spt4/5

An apparently stoichiometric heterodimer of the Spt4 and
the Spt5 NGN domain from M. jannaschii was purified
after co-expression of the two proteins in bacteria
(‘Materials and Methods’ section). The heterodimer was
crystallized by vapour diffusion and the structure was
solved by molecular replacement using the structure of
core Spt5 from M. jannaschii (32) and a Spt4 homologue
from Pyrococcus furiosis (1RYQ, ref http://www.ncbi.nlm
.nih.gov/pubmed/15858261) as search models (Table 1
and ‘Materials and Methods’ section). Four copies of
each search model were located in the asymmetric unit.
The structure was built and refined to a resolution of 1.9 Å
and shows very good stereochemistry (Table 1). The
presence of Zinc ions in the crystals was confirmed
by an X-ray absorption edge scan (Supplementary
Figure S6).

The Spt5 NGN domain consists of a four-stranded
anti-parallel b-sheet as part of an alpha–beta sandwich
(Figure 1A). Spt4 also contains a four-stranded b-sheet
stabilized by a zinc ion that is coordinated by the side

chains of four conserved cysteine residues (Figure 1A).
Mutations altering any of the four zinc-binding cysteines
in Saccharomyces cerevisiae Spt4 cause loss-of-function
phenotypes and in several instances greatly decrease
cellular levels of Spt4 (38,39), suggesting that the
zinc-binding site is an essential structural element of
Spt4 (8). In the Spt4/5 NGN heterodimer, the b-sheets
of Spt4 and Spt5 NGN are aligned edge to edge,
forming a continuous eight-stranded anti-parallel b-sheet
(Figure 1A). In addition to this b sheet interface, several
hydrogen bonds contribute to the specificity of Spt4–
Spt5NGN interactions. In particular, Ser39 from Spt4
forms a conserved hydrogen-bonding interaction with
Glu46 in Spt5NGN (Figure 1B). This hydrogen bond
fixes Glu46, which results in a strong acid-a-helix dipole
interaction (Guo et al., 2008; Nicholson et al., 1988).
Additional Spt4-Spt5 interactions are formed by helix a4
of Spt4 and helices a1 and a3 of the Spt5 NGN domain
(Figure 1B). Thus, Spt4 and Spt5NGN interact via
hydrophobic interfaces that are held in register by polar
interactions and alignment of their b sheets.

Structural comparisons and modelling

The structure shows a high similarity to its yeast and
human counterparts (8,40) and to Escherichia coli NusG
(17) (Supplementary Figure S2 and S3). The NGN
domain structure does not change upon Spt4 binding, as
it is very similar in a free archaeal Spt5 NGN structure
(32) Comparison of the structures of Spt4 of M. jannaschii
and S. cerevisiae showed that a central zinc-binding site is
conserved in both structures, but also reveals differences
(Figure 1D and Supplementary Figure S3). In particular,
S. cerevisiae Spt4 contains three additional short helices
that flank the central beta sheet and zinc-binding
motif on the side opposite that forming the Spt5
NGN-binding face. The Spt4-Spt5 interface is conserved

Table 1.

Data collectiona

Space group P21
Unit cell axes (Å) 64.4 64.0 83.0 90.0 107.0 90.0
Wavelength (Å) 1.000
Resolution range (Å) 44.4–1.9 (2.0–1.9)b

Unique reflections 47 050 (7855)
Completeness (%) 92.1 (86.4)
Rsym (%) 4.6 (59.6)
I/s(I) 9.65 (1.40)
Redundancy 1.9

Refinement
Nonhydrogen atoms 4745
RMSD bonds (Å) 0.008
RMSD angles (�) 1.039
Rcryst (%) 20.8 (29.5)
Rfree (%) 25.5 (34.6)

Crystallographic data and refinement statistics for core Spt4/5 from
M. jannaschii
aDiffraction data were collected at the Swiss Light Source beamline
PX1 (X06SA) and were processed with program XDS.
bNumbers in parenthesis correspond to the highest resolution shells.
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to a large extent between the M. jannaschii and
S. cerevisiae heterodimers, including key conserved
residues mediating the interaction (Figure 1B, C and
Supplementary Figure S4).
To build a model of the complete archaeal Spt4/5, we

have combined our structure of M. jannaschii Spt4/5
NGN and a homology model (‘Materials and Methods’
section) of the Spt5 KOW domain based on the structure
of the A. aeolicus NusG KOW domain (Figure 1F). In the
model, we maintained the relative orientations of the
M. jannaschii Spt5 NGN and KOW domains observed
in A. aeolicus NusG. The model of the M. jannaschii
Spt5 KOW domain showed good stereochemistry with
the parent—model Ca-RMSD of 0.7 Å. This is generally
well correlated with model accuracy (41).

Archaeal Spt4/5 stimulates transcription elongation
in vitro

We have recently developed single round transcription
elongation assays for archaeal RNAP that make use of

synthetic DNA–RNA elongation scaffolds (2). In order
to test the effect of recombinant Spt4/5 on the transcrip-
tion elongation properties of RNAP, we carried out
transcription elongation assays using a recombinant
10-subunit core RNAP from M. jannaschii lacking
RNAP subunits F/E, which are not required for
promoter directed transcription (28). Like bacterial and
eukaryotic RNAPs, the archaeal RNAP can utilize a com-
bination of template DNA strand and RNA primer
for transcription elongation, and the addition of the
non-template strand (NTS) enhances the processivity
(Figure 2A and B) (2). Spt4/5 stimulates the formation
of the run-off transcripts both in the absence and in the
presence of the non-template strand (Figure 2A and B).
The stimulation is �2.5-fold in the absence, and 1.75-fold
in the presence of the NTS (Figure 2C and D), in good
agreement with observations from the bacterial
homologue NusG (17,42). The archaeal 12-subunit
RNAP has a higher processivity compared to the
10-subunit enzyme, and congruent with this result its

Figure 2. Archaeal Spt4/5 stimulates transcription elongation. Transcription assay using a synthetic elongation scaffold and recombinant 10-subunit
M. jannaschii RNAP (200 nM). Transcript synthesis was monitored over a time course of 2, 5, 10 and 20min in the absence of NTS (A), and 20, 40,
90 and 300 s in the presence of NTS (B). Recombinant Spt4/5 (10 mM) was added to the reaction in conjunction with RNAP. The full length ‘run off’
transcript was quantitated in the absence (C) and presence of the NTS, and normalized to the reaction end point in the absence of Spt4/5 (20min and
300 s w/o NTS, C, and plus NTS, D, respectively). The gels (A and B) are representative and all quantitations are based on at least three independent
experiments (arbitrary units, AU).
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response to Spt4/5 is near the detection limit of the assay
[(2) and data not shown]. Our results demonstrate that
archaeal Spt4/5 acts as a positive transcription
elongation factor, and that its stimulation of elongation
is not dependent on interactions with the NTS.

Spt4/5 function requires the conserved NGN domain

In order to characterize the functions of Spt4, and the
Spt5 NGN and Spt5 KOW domains, we prepared
domain deletion variants of the M. jannaschii Spt4/5
(‘Materials andMethods’ section). Based on structural and
amino acid sequence alignments of bacterial, eukaryotic
and archaeal NusG/Spt5 factors (Figure 1C), we split the
M. jannaschii factor at the C-terminal end of helix 3 (at res-
idue 82) into two domains Spt5 NGN (1–82) and Spt5
KOW (83–147), respectively. Recombinant forms of
Spt5 NGN and Spt5 KOW were soluble and expressed
at high levels, which suggests that the structural integrity
of the individual domains is not severely compromised.
We verified that the Spt5N variant is necessary and suffi-
cient for stable complex formation with Spt4. Spt4
co-purifies with the Spt5 NGN domain, but not with
Spt5 KOW, on affinity chromatography, and Spt4 and
Spt5 NGN, but not Spt4 and Spt5 KOW, co-elute as a
distinct complex from a size exclusion column
(Supplementary Figure S1).

The heterodimeric interface between Spt4 and 5 has an
area of 940 Å2 and contains 10 hydrogen bonds and 4 salt
bridges (Supplementary Figure S7). A mutagenesis
analysis of residues at the interface showed that no
single amino acid substitution was able to disrupt the
complex (32). To test whether Spt4 had any influence on
the stability of Spt5 at the reaction temperatures of the
M. jannaschii system we tested their solubility following a
30min incubation at 65 and 75�C. Whereas Spt4/5 and
Spt4/5 NGN are soluble and heat stable at these

temperatures, Spt5 and Spt5 NGN were soluble at 65�C
but precipitated at 75�C (Figure 3). This shows that Spt4
stabilizes the Spt5 NGN domain, and offers an explana-
tion of the temperature sensitive phenotype of spt4 null
mutants in yeast (43).
To identify the minimal domain configuration that is

necessary and sufficient for stimulation of transcrip-
tion elongation, we tested the Spt4/5 domain deletion
variants in elongation assays. Three of the variants,
Spt4/5, Spt4/5 NGN and Spt5 were able to stimulate tran-
scription elongation, whereas Spt5 NGN, Spt5 KOW or
Spt4 showed no activity (Figure 4 and data not shown).
Our results show that the Spt5 NGN domain is strictly
required, but not sufficient, for the stimulation of elonga-
tion. This result is reminiscent of the bacterial NusG and
RfaH variants from E. coli. However, in contrast to the
bacterial NGN domains, which are sufficient for the stim-
ulation of transcription elongation (20), the archaeal Spt5
NGN domain requires either Spt4 or the Spt5 KOW
domain for elongation activity.

Figure 4. Domain deletion analysis identifies Spt5 NGN as effector domain. Transcription elongation assays using recombinant 10-subunit RNAP
(200 nM) and Spt4/5, Spt4/5 NGN, Spt5, Spt5 KOW and Spt4 (each at 10 mM) in the absence of NTS. Samples were taken at 2, 5, 10 and 20min
(A and B). The full-length run-off transcript was quantitated and normalized to the end point (5min) in the absence of any added factors (C).

Figure 3. Spt4 stabilizes the Spt5 NGN domain. The Spt4/5, Spt4/5
NGN, Spt5 and Spt5 NGN variants were incubated at either 65 or
75 ˚ C. The heat stable and soluble fraction was resolved on SDS–
PAGE and the gel subsequently stained with Coomassie.
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Spt4/5 interacts with RNAP independently of nucleic
acids

To investigate the interaction of Spt4/5 with RNAP, we
established a semi-quantitative native gel electrophoresis
assay using recombinant RNAP and radio-labelled Spt4/5
variants. Incubation of labelled Spt4/5 with increasing
amounts of RNAP lead to a retardation of the Spt4/5
band and a new low mobility band indicating Spt4/5–
RNAP complexes (Figure 5A). We tested the specificity
of the Spt4/5–RNAP interaction by adding unlabelled
Spt4/5 to the binding reaction, which resulted in an effi-
cient competition of the Spt4/5-RNAP signal (Figure 5E).
This demonstrates that the interaction of archaeal Spt4/5
with the RNAP, similar to NusG in bacteria does not
depend on the nucleic acid scaffold of the elongation
complex.
In order to identify the Spt4/5 domains that are

involved in RNAP binding, we tested the wild-type and
domain deletion variants of Spt4/5 in binding and compe-
tition experiments. Labelled Spt4/5 NGN, full-length Spt5
and Spt5 NGN were able to bind to RNAP, albeit with
reduced affinity (Figure 5B–D). Spt4/5 and Spt4/5 NGN
were able to compete for the binding of Spt4/5, whereas
Spt5 KOW and Spt4 could not compete for the binding of
Spt4/5 to RNAP (Figure 5E). We tested whether the

RNAP subunits F/E contributed to the interaction with
Spt4/5. Both the 10-subunit RNAP �F/E and the
12-subunit RNAP were equally able to recruit Spt4/5,
implying that the interaction between Spt4/5 and RNAP
is not substantially affected by F/E complex (Figure 5A).

In summary, our results suggest that archaeal
Spt4/5 complex interacts with RNAP via the Spt5
NGN-domain. Since the fraction of Spt4/5 NGN that is
shifted into RNAP-containing complexes is smaller than
that of full-length Spt4/5, we suggest that the Spt5 KOW
domain increases the affinity of Spt4/5 for RNAP.
However, Spt5 KOW cannot alone compete for the
binding of Spt4/5. Likewise, because the shift of Spt5 is
weaker than that of Spt4/5, our results suggest that Spt4
increases the affinity for RNAP, but it cannot compete for
the binding of Spt4/5 to RNAP. Rather than directly
contributing to RNAP binding, Spt4 could stabilize Spt5
NGN, which is congruent with our heat inactivation
profile (Figure 3).

A hydrophobic depression on the NGN domain mediates
binding to RNAP

The above data suggest that RNAP binding of Spt4/5 is
mediated by the Spt5 NGN domain. Structures of
the NGN domains of bacterial NusG and eukaryotic
and archaeal Spt5 reveal a depression that is lined by
hydrophobic amino acid side chains that have
been proposed to interact with bacterial RNAP (17)
(Figures 1, 6A and Supplementary FigureS5). We
designed and introduced mutations into Spt5 that per-
turbed the hydrophobic nature of the putative RNAP
binding site and tested the ability of the heterodimeric
mutant Spt4/5 complexes to interact physically and func-
tionally with the archaeal RNAP (Figure 6A–C). All
recombinant Spt5 mutants were as soluble and heat
stable as the wild-type Spt5 protein, which suggests that
the structural integrity of Spt5 was not compromised by
the amino acid substitutions. The Spt5 A4R mutation
introduces both a bulky side chain and a positive charge
into the hydrophobic cavity. The resulting Spt4/5-4Arg

variant cannot bind RNAP. Likewise, the Spt5 Y42A
mutation replaces the phenolic aromatic side chain with
the smaller methyl group and renders Spt4/5-42Ala inca-
pable of binding RNAP. The Spt5 L44A mutation substi-
tutes an isopropyl side chain with the smaller methyl
group. The Spt4/5-44Ala variant is still able to interact
with RNAP, albeit with decreased affinity compared to
the wild-type factor. However, replacing Spt5 L44 with
arginine completely abrogates binding of Spt4/5-44Arg to
RNAP in our native gel assay. When we tested the Spt5
mutants in transcription elongation assays, the elongation
phenotypes of the mutants showed the same trend as their
RNAP binding properties (Figure 6C). Only the Spt4/
5-44Ala variant was able to stimulate elongation compara-
ble to the wild-type Spt4/5 (110% of full-length transcript
compared to wild-type Spt4/5). The activity of Spt4/
5-4Arg, Spt4/5-42Ala and Spt4/5-44Arg was 65%, 60%
and 80% of wild-type Spt4/5, respectively. Thus, all
three mutants retained a stimulatory activity at levels
above the negative control reactions (Figure 6C), which

Figure 5. Recruitment of Spt4/5 to RNAP depends on the Spt5 NGN
domain. Spt4/5 (50 nM) was radio-labelled and incubated with
recombinant 10- (�F/E) or 12-subunit RNAP (250 and 500 nM)
and the complexes were separated with native gel electrophoresis
(A). Radio-labelled Spt4/5 deletion variants (50 nM) Spt4/5 NGN
(B), Spt5 (C), Spt5 NGN (D) were incubated with 10-subunit RNAP
(250 and 500 nM) and separated on native gels. The specificity of the
RNAP–Spt4/5 interactions was ascertained by competition experiments
(E). Labelled Spt4/5 (50 nM) was incubated with RNAP (500 nM) and
10- to 50-fold excess of unlabelled Spt4/5, Spt4/5 NGN, Spt5 KOW
and Spt4 (500 nM and 2.5 mM) prior to separation with native gel
electrophoresis.
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in all likelihood reflects the higher sensitivity of the elon-
gation assay compared to the binding assay.

In summary, our site-directed mutagenesis analysis of
the hydrophobic depression of the archaeal Spt5 NGN
domain strongly suggests that it serves as a binding site
for archaeal RNAP. Congruent with this result are muta-
tions in the corresponding region of E. coli NusG, which
also interfere with stimulatory effect of NusG on tran-
scription elongation (17) even though they have not been
shown to interfere with the binding of NusG to RNAP
directly. Thus, a conserved hydrophobic depression on the
Spt5 NGN domain surface is required for RNAP binding
and elongation stimulation.

Spt4/5 interacts with archaeal RNAP via the coiled-coil
motif of the RNAP clamp

Escherichia coli NusG and its paralogue RfaH interact
with the bacterial RNAP via a coiled-coil motif of its flex-
ible RNAP clamp (E. coli RNAP b0-residues 265–310)
(21,44). In order to test whether the same site on
archaeal RNAP is used for Spt4/5 binding, we replaced
the ten amino acids (mjA’ 255–264) corresponding to the
tip of the coiled coil with a tetra-glycine linker, and tested

the resulting RNAPCC-Gly4 variant for binding and elon-
gation stimulation by Spt4/5 (Figure 7). The catalytic
activity of the RNAP CC-Gly4 variant is identical to the
wild-type enzyme in promoter independent transcription
assays (data not shown) and both quantitatively and
qualitatively indistinguishable in transcription elongation
assays (Figure 7A), which demonstrates that the
reconstitution of the recombinant RNAP and the struc-
tural integrity of the active site is not compromised by the
CC-Gly4 mutation, like the corresponding mutation in
bacterial RNAP (21). Whereas transcription elongation
of the wild-type RNAP is stimulated by Spt4/5, RNAP
CC-Gly4 is unable to respond to Spt4/5 (Figure 7A–D)
and unable to recruit Spt4/5 in binding assays
(Figure 7E). In summary, both functional and physical
interactions between Spt4/5 and RNAP are abrogated
by a mutation in the tip of RNAP clamp coiled-coil
motif at the rim of the active centre cleft, suggesting this
site as a conserved interaction site of RNAPs.

DISCUSSION

Like the core RNAP subunits, Spt5 is present in all three
kingdoms of life and is one of the most ancient compo-
nents of the transcription machinery (8,45,46). In particu-
lar, the NGN domain of Spt5 shows striking structural
similarity between bacteria, archaea and eukaryotes. We
show here that this similarity extends to the mechanisms
that Spt5 uses to bind RNAP and to promote transcrip-
tion. We provide evidence that a conserved interaction
between the tip of the RNAP clamp coiled-coil and a
hydrophobic depression on the Spt5 NGN domain
mediates complex formation and elongation stimulation.
We have identified three hydrophobic residues (alanine-

4, tyrosine-42 and leucine-44) in the archaeal Spt5 NGN
domain that are apparently part of the RNAP-binding
site. These hydrophobic residues line a concave depression
that is located opposite of the Spt4 interaction surface and
oriented away from the Spt5 KOW domain of our model
of full-length Spt4/5, consistent with RNAP binding
without steric hindrance. We also showed that replace-
ment of ten amino acids forming the tip of the clamp
coiled-coil motif of the largest subunit of the M. jannaschii
RNAP (A’ residues 255-264) with a tetra glycine linker
abolishes Spt4/5 binding and Spt4/5 elongation stimula-
tion. Consistently, a similar mutation interferes with the
response of bacterial RNAP to the NusG paralogue RfaH
(21). Also consistent, a coiled-coil fragment of the E. coli
RNAP (b0 262–309) interacts with NusG (residues 1–132)
in a genetic assay (44), and the NusG NGN domain
mediates RNAP binding and elongation stimulation
(17). The elongation-stimulatory activity of Spt4/5 and
NusG are generally mild in vitro. Whereas we measured
a 1.8-fold increase in the formation of the runoff tran-
script, Landick and colleagues (17) report a 1.2-fold
increase, and Nudler and colleagues (42) obtain a
1.8-fold increase in the elongation rate of bacterial RNAP.
The elongation–stimulatory mechanism of Spt4/5 is

likely allosteric, since the Spt4/5 binding site on the tip
of the RNAP clamp coiled-coil is located far above

Figure 6. Site-directed mutagenesis of the Spt5 NGN domain identifies
a hydrophobic cavity as RNAP binding site. The residues Ala-4, Tyr-42
and Leu-44 line a hydrophobic depression in the Spt5 NGN domain
(A). Spt4/5-RNAP binding assays using labelled Spt4/5 mutants
(Spt5-4Arg, -42Ala, -44Ala and -44Arg, 50 nM) and 10-subunit RNAP
(50 and 400 nM) were separated with native gel electrophoresis (B).
Transcription elongation assays using 10-subunit RNAP (200 nM) and
Spt4/5 mutants (10 mM) in the absence of NTS (C).
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active centre on one rim of the polymerase cleft. Since this
site is close to the path of the NTS in the elongation
complex (47), Spt4/5 could modulate elongation by
altering RNAP–nucleic acid interactions, maybe by
facilitating DNA–RNA strand separation or upstream
DNA strand rewinding. However, our observation that

Spt4/5 stimulates elongation in the absence of the NTS
argues against these mechanisms. Alternatively, Spt4/5
could influence the active centre by altering the clamp
position, as suggested for the bacterial NusG paralogue
RfaH (21,48). Details of the Spt4/5 mechanism remain to
be investigated, including the mechanism of transmitting

Figure 7. A deletion-substitution (CC-Gly4) in the tip of the RNAP clamp coiled-coil domain abrogates Spt4/5 binding and stimulation.
Transcription elongation assays with 10-subunit RNAP and RNAP CC-Gly4 in the absence (A, 200 nM) and presence of NTS (C, 50 nM),
±Spt4/5 (10 mM). Run-off transcripts were quantitated and normalized to the end points of reactions carried out without Spt4/5 (B and D).
The binding of Spt4/5 to RNAP and RNAP CC-Gly4 was monitored with native gel electrophoresis (E). The location of the RNAP clamp coiled-coil
(highlighted in red), the active site NADFDGD motif (green) and metal ion (magenta) in archaeal RNAP (Sulfolobus shibatae RNAP, pdb 2WAQ).
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an allosteric signal, and the question whether Spt4/5 stim-
ulates elongation at the level of transcription rate, RNAP
processivity, or both. In eukaryotic transcription systems
it is exceedingly difficult to directly monitor the effect of
Spt4/5 on elongation by RNAPII, which require addi-
tional factors including the Paf-1 complex and Tat-SF1
(49). Thus, the archaeal transcription systems offer a
unique opportunity to unravel the molecular mechanisms
of Spt4/5.

Comparison of our data with published results reveals
interesting differences between archaeal and eukaryotic
Spt4/5. In particular, archaeal Spt4/5 binds directly
to RNAP and independently of the DNA–RNA nucleic
acid scaffold, whereas human Spt4/5 (DSIF for
DRB-sensitivity inducing factor) binding to RNAPII
apparently depends on the presence of the RNA transcript
(50), although another study showed that association
of Spt4/5 with elongating RNAPII was insensitive
to nuclease treatment (51). An RNA-dependency in
eukaryotic systems could be due to interactions between
the transcript and Spt5 domains that are not conserved in
the archaeal variant, including the additional copies of
KOW domain and C-terminal repeats. Alternatively, the
interactions between the hyperthermophilic archaeal Spt4/
5 and RNAP may be stronger owing to more stringent
requirements for the stability of RNAP–transcription
factor complexes at the biologically relevant high
reaction temperatures of M. jannaschii. Similarly, the
interactions between RNAP subunits in M. jannaschii
are stronger when compared to S. cerevisiae RNAPII
subunits (23).

Whereas the N-terminal NGN domain of NusG/Spt5
mediates a conserved RNAP contact, the C-terminal
KOW domain(s) in these factors apparently mediate addi-
tional, species-specific interactions. In the bacterial
system, an activity of NusG during transcription termina-
tion is dependent on both NGN and KOW domains, but
especially the latter has been implicated in facilitating the
recruitment and/or interactions with accessory factors that
include Rho, NusA, NusB and NusE (17,22). Eukaryotic
Spt5 harbours multiple copies of the KOW domain that
may mediate some of the multiple physical and functional
interactions of Spt4/5, including interactions with the neg-
ative transcription elongation factor NELF, kinases that
regulate NELF, Spt5 and RNAPII by phosphorylation,
including P-TEFb and Bur-1/Bur-2, and factors that are
involved in chromatin remodelling such as Spt6 and
FACT, and RNA processing factors such as the mRNA
capping enzyme and the cap methyl transferase (51).
Hitherto no factors have been identified that interact
with the Spt5 KOW domain in the Archaea.

Our results reveal that the structure and the elongation
function of Spt4/5 and NusG, including the interaction
site on the distinct RNAPs, are universally conserved
throughout the three domains of life. Considering that
eukaryotic Spt4/5 regulates both RNAPI and II (52),
Spt4/5 seems evolutionary ancient, and the molecular
mechanisms by which it regulates gene expression are
likely to have their origin prior to the diversification of
distinct classes of eukaryotic RNA polymerases, and
indeed before the split of the three main lineages of life,

Bacteria, Archaea and Eukarya. Since the transcription
factors that govern transcription initiation in Bacteria
and Archaea/Eukarya are not homologous, this lends
itself to the hypothesis that the regulation of transcription
elongation might even precede the regulation of transcrip-
tion initiation.
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