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Carcinoma of unknown primary (CUP) is a type of metastatic cancer, the primary
tumor site of which cannot be identified. CUP occupies approximately 5% of cancer
incidences in the United States with usually unfavorable prognosis, making it a big
threat to public health. Traditional methods to identify the tissue-of-origin (TOO) of CUP
like immunohistochemistry can only deal with around 20% CUP patients. In recent
years, more and more studies suggest that it is promising to solve the problem by
integrating machine learning techniques with big biomedical data involving multiple
types of biomarkers including epigenetic, genetic, and gene expression profiles, such
as DNA methylation. Different biomarkers play different roles in cancer research; for
example, genomic mutations in a patient’s tumor could lead to specific anticancer drugs
for treatment; DNA methylation and copy number variation could reveal tumor tissue
of origin and molecular classification. However, there is no systematic comparison on
which biomarker is better at identifying the cancer type and site of origin. In addition,
it might also be possible to further improve the inference accuracy by integrating
multiple types of biomarkers. In this study, we used primary tumor data rather than
metastatic tumor data. Although the use of primary tumors may lead to some biases
in our classification model, their tumor-of-origins are known. In addition, previous
studies have suggested that the CUP prediction model built from primary tumors could
efficiently predict TOO of metastatic cancers (Lal et al., 2013; Brachtel et al., 2016). We
systematically compared the performances of three types of biomarkers including DNA
methylation, gene expression profile, and somatic mutation as well as their combinations
in inferring the TOO of CUP patients. First, we downloaded the gene expression
profile, somatic mutation and DNA methylation data of 7,224 tumor samples across
21 common cancer types from the cancer genome atlas (TCGA) and generated seven
different feature matrices through various combinations. Second, we performed feature
selection by the Pearson correlation method. The selected features for each matrix were
used to build up an XGBoost multi-label classification model to infer cancer TOO, an
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algorithm proven to be effective in a few previous studies. The performance of each
biomarker and combination was compared by the 10-fold cross-validation process. Our
results showed that the TOO tracing accuracy using gene expression profile was the
highest, followed by DNA methylation, while somatic mutation performed the worst.
Meanwhile, we found that simply combining multiple biomarkers does not have much
effect in improving prediction accuracy.

Keywords: tumor tissue-of-origin, DNA methylation, gene expression, somatic mutation, multi-classifier
XGBoost, pearson correlation algorithm

INTRODUCTION

Carcinoma of unknown primary (CUP) is a type of metastatic
carcinoma whose primary tumor site is unknown. CUP accounts
for approximately 3–5% of all human malignancies (Shaw
et al., 2007; Conway et al., 2019; Xu et al., 2019). Since the
treatment cannot be determined based on primary tumor site,
CUP patients usually have poor prognosis. The median survival
time of a CUP patient is 6–16 months even when empiric
combination chemotherapy is employed (Pavlidis and Fizazi,
2005; Pentheroudakis et al., 2011; Jeyaram et al., 2019).

In order to improve the treatment of CUP patients and
prolong their survival time, an accurate identification of tumor
tissue-of-origin (TOO) is essential. Currently, there is a clinical
practice for tracing the tissue origin of CUP, which involves
physical examination, laboratory testing, immunohistochemistry,
pathological imaging, and endoscopic examination. However,
the results could be highly subjective and only the TOO
of about 20–30% CUP patients could be revealed (Horlings
et al., 2008; Bender and Erlander, 2009). For the past few
years, molecular profiling of tissue-specific genes had become a
promising technique for TOO tracing, due to its good diagnostic
accuracy on poorly differentiated or undifferentiated tumors
(Oien and Dennis, 2012).

With the increasing availability of high-throughput genomic
and transcriptional data, there are several molecular biomarkers
in The Cancer Genome Atlas (TCGA) including somatic
mutation, copy number variation (CNV), gene expression,
microRNA expression, and DNA methylation, which were used
to trace cancer TOO (Li et al., 2017; Tang et al., 2018).
The most popular biomarker used in TOO inference is gene
expression. For example, Ma et al. (2006) demonstrated an
overall success rate of 87% by using a 92-gene RT-PCR assay
to identify the tissue origin of 32 different tumor types. Xu
et al. (2016) identified a 154-gene expression signature that could
discriminate the origin of 22 common human tumor types with
an overall accuracy of 92%. DNA somatic mutation and CNVs
are also frequently used to infer TOO. For instance, genomic
profiling revealed an IDH1 somatic mutation, supporting the
diagnosis of cholangiocarcinoma in a malignancy of unknown
origin (Sheffield et al., 2016). In some reports, the tumor-
specific enrichment for mutations in certain genes (sometimes
mutations at specific locations within genes) had also been
observed and used to infer tumor location (Dietlein and Eschner,
2014; Lawrence et al., 2014). Based on this observation, mutation
burden in genes were used to infer tumor TOO; however,

the performances are usually not very well (He et al., 2020;
Liu et al., 2020). In addition, Küsters-Vandevelde et al. found
that particular CNVs may be associated with cancer metastasis
(Küsters-Vandevelde et al., 2017; Zhu et al., 2019). As such,
Liang et al. compared several computational methods using CNV
features and achieved good performances in inferring TOO for
six cancer types (Liang et al., 2020).

Finally, there are also a few methods to trace tumor TOO
by integrating multiple biomarkers. For example, Hoadley et al.
proposed a method to trace the origin of 12 cancer types based
on methylation and CNV (Hoadley et al., 2014; Zhang et al.,
2019). Marquard et al. (2015) applied both point mutations and
copy number aberrations (PM + CN) classifiers to obtain a
classification accuracy of 85% across six primary cancers. He et al.
(2020) combined molecular data of somatic mutation and gene
expression profiling to infer cancer TOO and achieved a 10-fold
cross-validation prediction accuracy of around 96% using the
random forest classification method across 20 solid tumors.

Although many previous studies have used molecular profiles
such as DNA methylation, somatic mutation, gene expression,
and their combinations to predict the tissue origin of CUP,
there is still no systematic comparison among them to our best
knowledge. In addition, the epigenetic studies on CUP are more
or less ignored. To address this need, we aim to compare the
predictive ability of these biomarkers and combinations in a
unified background. In addition, we aim to investigate whether
multi-biomarkers can significantly improve prediction accuracy
compared to single biomarkers.

MATERIALS AND METHODS

Data Preparation
The publicly available datasets for gene expression profile
(assembly_version: GRCh37, platform: Illumina HiSeq,
experimental_protocol: RNASeqV2_RSEM_genes1), somatic
mutation (assembly_version: GRCh37, platform: Illumina
GA sequencing, variation_calling_algorithm:TCGA-
MC32), and 450 k DNA methylation array data
(HumanMethylation450_after_2011_08_02) of the 21 different
tumor types were collected from the ICGC data portal3. We

1https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/
tumor
2https://gdc.cancer.gov/about-data/publications/mc3-2017
3https://dcc.icgc.org/releases/release_28/Projects
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used samples from 21 primary tumors as training and validation
datasets to construct and validate models for inferring CUP. The
data from raw TSV files were pre-processed by extracting and
deduplicating, respectively, generating three feature matrices
with “p” rows of the tumor samples numbers and “q” columns
of gene numbers across aforementioned three categories of
biomarkers. Each sample with histologically confirmed origins
was tagged for its type of cancer. In particular, the somatic
mutation data was extracted and deduplicated to form a feature
matrix according to information of icgc_donor_id, chromosome,
chromosome_start, and gene_affected before the feature value
divided by the length of the gene. In total, 7,224 TCGA samples
originating from 21 cancer types were downloaded in our work.
Detailed information on the number of samples of each cancer
type can be found in Table 1.

Data Combination
We combined the feature matrix of gene expression, somatic
mutation, and DNA methylation, respectively, and generated
seven different feature matrices, including a 7,224 × 20,501 gene
expression feature matrix, a 7,224 × 34,618 somatic mutation
feature matrix, a 7,224 × 13,869 DNA methylation feature
matrix, a 7,224 × 55,119 both gene expression and somatic
mutation feature matrix, a 7,224 × 34,370 both gene expression
and DNA methylation feature matrix, a 7,224 × 48,487 both
DNA methylation and somatic mutation feature matrix, as

TABLE 1 | Sample information of each cancer from TCGA database.

Available cancer types Abbreviation Samples

Amount Percentage

Bladder urothelial carcinoma BLCA 271 3.75%

Breast invasive carcinoma BRCA 942 13.04%

Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CESC 225 3.11%

Colon adenocarcinoma COAD 383 5.30%

Glioblastoma multiforme GBM 131 1.81%

Head and neck squamous cell
carcinoma

HNSC 461 6.38%

Kidney renal clear cell carcinoma KIRC 338 4.68%

Kidney renal papillary cell carcinoma KIRP 211 2.92%

Acute myeloid leukemia LAML 119 1.65%

Brain lower grade glioma LGG 433 5.99%

Liver hepatocellular carcinoma LIHC 227 3.14%

Lung adenocarcinoma LUAD 472 6.54%

Lung squamous cell carcinoma LUSC 407 5.64%

Ovarian serous cystadenocarcinoma OV 186 2.57%

Pancreatic adenocarcinoma PAAD 111 1.54%

Prostate adenocarcinoma PRAD 352 4.87%

Rectum adenocarcinoma READ 137 1.90%

Skin cutaneous melanoma SKCM 423 5.86%

Stomach adenocarcinoma STAD 415 5.74%

Thyroid carcinoma THCA 486 6.73%

Uterine corpus endometrial carcinoma UCEC 494 6.84%

Total 7,224 100%

well as a 7,224 × 68,988 the feature matrix that combines
these three biomarkers. Then, only the samples shared in the
seven feature matrices were selected for a fair comparison.
In addition, we performed the L1 normalization on the
columns of each feature matrix such that each entry was
divided by the sum of the corresponding column. So, the
samples data of 7,224 tumor samples in these 21 different
tumor types after filtering data and normalizing each feature
matrix are obtained.

Gene Feature Identification
In order to minimize the number of genes while maintaining the
highest primary tracing accuracy possible, we employed Pearson
correlation algorithm as the feature selection method. According
to the mechanism of feature selection, we screened out the sets
of genes by Pearson correlation algorithm (Hall, 1998; Saeys
et al., 2007) using one-vs-all method where one cancer was used
as positive and the other cancer types were together used as
negative. Next, the selected genes were ranked in descending
order according to their importance, with the most informative
ones appearing at the top of the list. We identified the top N genes
from each cancer type and merged into a list after removing the
redundant ones, and then we further used all of the identified
genes to classify each sample among all the TCGA samples
separately for internal cross-validation.

Multi-Classifier XGBoost
XGBoost (Extreme Gradient Boosting) was a learning framework
based on boosting tree models for solving supervised learning
problems. In this study, all genes obtained from the above step
were used to train the classification model based on XGBoost
because of its excellent scalability and operation (Ji et al., 2019; Lv
et al., 2020; Yu et al., 2020). XGBoost performed a second-order
Taylor expansion on the loss function and it could automatically
use the CPU’s multithreading for parallel computing. We first
used bootstrap method to generate k training sets and then
each train set that consists of a set of samples was used to
construct a tree. After XGBoost mapped each sample to its
corresponding leaf node, its final predicted value was the sum
of the corresponding leaf node values for each tree. To control
the complexity of the model and prevent overfitting, the L2
regularization term was applied and the maximum depth was
set to three. Normally, we could not enumerate all possible tree
structures and pick the best, so we chose a greedy algorithm
instead: we started with a single leaf and iterated and split to
add nodes to the tree. When splitting a node, in order to restrain
the growth of the tree and help avoid overfitting of the model,
a splitting threshold for information gain was added. The leaf
node was allowed to split if and only if the information gain is
greater than the splitting threshold. In addition, for obtaining
relatively stable and reliable results, possibly minimizing the
percentage of false positives and false negatives, 10 times 10-
fold cross-validation based on the whole dataset was used. The
XGBoost method for classification had proper separation of
training and test data during features selection; in other words,
feature selection is performed from the training set once in each
10-fold cross-validation.
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RESULTS

Datasets Used in This Study
To compare the accuracy and robustness of different biomarkers
in terms of cancer type prediction, publicly available gene
expression profile, somatic mutation, and DNA methylation data
from 7,224 samples were collected from TCGA for this study.
The complete workflow is shown in Figure 1. We first download
the original data from the TCGA database and generate the
feature matrix after pre-processing such as extraction and de-
duplication, respectively. Second, 7,224 tumor samples were left
after the sample filtration. Third, the generated feature matrix
underwent the normalization treatment. Table 1 shows sample
information for each cancer, and we found that each of the 21
cancer types had a sample size of more than 100, while the largest
sample size was breast cancer (942 samples) and the smallest was
pancreatic cancer (111 samples).

A General Framework of This Study
Due to the intra-tumor heterogeneity, it was critical to
identify the most informative genes from the high-dimensional
datasets in order to better distinguish true mutation from
background noise. Pearson correlation-based feature selection
was characterized by fastness in operation speed and simple in
complex calculation, which made it a successful multi-variable

filtering method for high-dimensional data analysis. It was used
to assess correlations between cancer types and corresponding
gene features. Hence, we adopted Pearson correlation to
select the most informative genes from the generated seven
different feature matrices for classification detection. This process
consisted of the following four steps: First, we created an array
and binarized each row and column of 7,224 tumor samples. If
the samples belonged to the tumor type, they would be labeled
as “true;” otherwise, they would be labeled as “false.” Second,
we calculated the correlation of the feature with samples labeled
“true” for each cancer type and then sorted in decreasing order
according to their correlation. Third, we took the most important
signature, which appeared in the first N genes of the list for
each cancer type, where N was an integer. Fourth, we combined
the first N genes in lists of 21 cancer genes and removed the
redundant genes. Using a series of integers, we generated a
corresponding number of gene sets for further classification.

Gene Expression Profile Outperforms
Other Biomarkers and Combinations in
Inferring Tumor TOO
To evaluate the performance of the biomarker genes of gene
expression profiling, somatic mutation, DNA methylation, and
different combinations of them, a 10-fold cross-validation
method was used to train XGBoost classification model.

FIGURE 1 | Flow diagram of prediction on cancer tissue origin and performance evaluation. Seven different feature matrices, respectively, are gene expression
feature matrix, somatic mutation feature matrix, DNA methylation feature matrix, both gene expression and somatic mutation feature matrix, both gene expression
and DNA methylation feature matrix, both DNA methylation and somatic mutation feature matrix, and the feature matrix that combines these three biomarkers.
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Especially to avoid overfitting of XGBoost algorithm, we achieved
relatively stable and reliable results through 10 times 10-fold
cross-validation, and minimized the percentage of false positives
and false negatives as much as possible. The accuracies are shown
in Figure 2. Different gene sets were used for cross-validation,
and seven different polylines representing the accuracy of each
10 times 10-fold cross-validation were plotted. Clearly, using too
few genes did not achieve the desired classification effect, until a
list was used that combined the list of the 14 top-ranked genes for
each cancer type and removed redundant genes. Although a gene
set with more genes can achieve better accuracy, the growth was
slow. The best classification performance was given by using data
of gene expression (the mean accuracy was 94.63%), while the
worst classification effect was obtained by using somatic mutation
data (the mean accuracy was 43.33%), and other biomarker
combinations were in the middle level.

We compared the classification performance of various
combinations of biomarkers to get through the evaluation index
of recall rate, precision, and f1 score. We plotted the heat map of
mean value of recall, precision, and f1 score on the 14 top-ranked
genes for each cancer type. In Figure 3, the rows represented
the cancers and columns denoted the seven combinations of
biomarkers. The gene expression classification performance was
the best and the somatic mutation was the worst, which were
consistent with the previous results in Figure 2. Figure 3 shows
that the combination of multiple biomarkers did not necessarily
achieve higher classification accuracy.

We then looked at the performance of XGBoost algorithm
using only gene expression values as the train features and
fitting the cancer type as labels. We used 10 times of the

10-fold cross-validation method to evaluate the classification
performance of each cancer on the 14 top-ranked genes. In
two cancer types (PRAD and THCA), the precision was 100%.
However, the precision obtained by READ and COAD was lower,
at 79.20 and 59.15%, respectively. The precisions corresponding
to each cancer were plotted as Figure 4. Gene ontology
(GO) enrichment analysis was performed to study the selected
signature genes in cellular component, biological process, and
molecular function. Figure 5A shows that the most biological
significance related to the 14 top-ranked genes of each cancer type
in gene expression data by GO analysis was biological processes
and molecular functions. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was also used to understand
the target genes from gene expression. Figure 5B shows the most
enriched KEGG pathways. For the visualization of samples from
21 tumor types, we performed cluster analysis as represented
by t-distributed stochastic neighbor embedding (t-SNE) plots
in Figure 5C. Samples from the 21 cancer types could be
roughly distinguished.

DISCUSSION

Data of gene expression profiling, somatic mutation, and DNA
methylation can be used to identify the primary site of tumors.
However, for the first time, the three biomarkers and their
combinations have been used to identify the origin of tumor
tissues, and their ability to trace the origin of primary tumors
has been compared and analyzed. We carried out a large number
of experiments by using a shared sample of 7,224 and combined

FIGURE 2 | The classification accuracy of using gene expression, somatic mutation, DNA methylation, and combination of the three biomarkers, respectively, on
each gene set.
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FIGURE 3 | The classification precisions, recall rates, and f1 scores for each biomarker combination on the 14 top-ranked genes for each cancer type. exp
represents gene expression profiling, meth represents DNA methylation, and snp represents somatic mutation.

data from 21 cancer types. By comparing their performance,
we found that the gene expression profile data obtained the
highest accuracy, while the combined data could not obtain better
classification performance. The comparison results are shown
in Figure 2. While it was difficult to know exactly what led to
some misclassification in combined datasets, the batch effects
of RNA-seq and methylation data may have had a negative
effect to our results.

XGBoost has been proven to have better performance than
other more traditional models in many machine learning tasks,

so we used the XGBoost algorithm to construct the classification
model and tested it on seven different biomarker combinations.
The results showed that the XGBoost algorithms can predict the
cancer type of unknown primary tissue with an efficient accuracy.
We chose the 14 top-ranked genes from each cancer and put
them together for classification. Our results indicated that the
gene expression data obtained an accuracy of 94.63%, which is the
highest prediction accuracy. However, the prediction accuracy of
the combination with gene expression data with other data was
slightly lower than that of using gene expression. The same thing
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FIGURE 4 | The precisions of XGBoost classifier using gene expression data on the 14 top-ranked genes for each cancer type. Precisions from 10 times of
cross-validations were averaged.

happened with DNA methylation data, which alone had a slightly
higher prediction accuracy of 87.59% than both data of DNA
methylation and somatic mutation on prediction of cancer tissue
origin. Somatic mutation had the worst classification of cancers
with a terrible prediction accuracy of 43.33%.

Due to the optimal classification performance of gene
expression profile, we further functionally annotate the union of
14 top-ranked genes of each cancer type in the gene expression
data. The enrichment results are shown in Figure 5. GO
analysis showed that the selected genes mainly participated
in embryonic organ development/morphogenesis, pattern
specification process/regionalization, gland development,
reproductive system/structure development, DNA-binding
transcription activator/repressor activity, RNA polymerase
II-specific, serine-type endopeptidase/peptidase activity, and

endopeptidase/peptidase inhibitor activity. In the KEGG
pathway analysis, the top two significantly enriched pathways
were “Pancreatic secretion” and “Transcriptional misregulation
in cancer.” Other significant pathways included “Protein
digestion and absorption,” “Fat digestion and absorption,” and
“Maturity onset diabetes of the young.” Our signature genes were
involved in these pathways, which might be useful in inferring
cancer TOO. For example, ABCC1 is highly expressed in lung
cancer tissues. ALX1 plays a key role in tumor progression and
metastasis, and it has been shown to regulate the expression
of genes that induce epithelial to mesenchymal transition in
primary mesenchymal cells (Wu et al., 2008; Yuan et al., 2013;
Yang et al., 2015; Yao et al., 2015). Remarkably, we found that
KLK4 is ectopically expressed in human colon cancer and ovarian
cancer cells, which is one of the members of the cancer-related
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FIGURE 5 | GO and KEGG analysis. (A) Significantly enriched GO cellular component, biological process, and molecular function of selected 14 top-ranked genes
of each cancer type in gene expression data. (B) Significantly enriched KEGG pathways of the selected 14 top-ranked genes of each cancer type in gene expression
data. The dot plot shows the number of signature genes identified by enrichment analysis for each cell component, biological process, molecular function, and
KEGG pathway. The dot size represents the number of genes enriched in specific pathways and the dot color represents adjusted enrichment p-value. (C) The tSNE
visualization of all samples for the 21 tumor types. The x- and y-axis represent the first and second dimension of tSNE, respectively.

KLK family (Walker et al., 2014; Loessner et al., 2018). GATA3 is
an important transcription factor to regulate cell differentiation.
GATA3 is up-regulated in ulcerative colitis (Christophi et al.,
2012; Alhassan Mohammed et al., 2018), which is associated with
increased risk of colorectal cancer (Gupta et al., 2007). Genes
involved in these biological processes and KEGG pathways play
a role in distinguishing between different types of cancer.

In our study, all data came from the TCGA dataset, and the
batch effects of RNA-seq and methylation data may have had a
negative effect to our results. However, it is unclear whether the
batch correction methods will bring some additional bias and
which batch correction method is correct. In TCGA, each sample
was divided normalized such that the total number of transcripts
is 1,000,000, which actually performs a very rough batch

correction. Finally, we added Figure 5C, which suggests that the
samples from different tumors could be roughly separated. This
indicates that the batch effects might not dominate the results.

There are some limitations to our study. First, we constructed
and assessed the models based on TCGA primary tumor data
rather than metastatic tumor data, because it is extremely difficult
to collect metastatic samples with a known primary tumor site.
In the future, we will try to collect metastatic cancer samples
to construct CUP prediction models or test known models.
Second, we did not supply an independent dataset for validation
since we could not find a database other than TCGA, which
has data on gene expression, DNA methylation, and somatic
mutation simultaneously. Finally, we only simply concatenated
the features of different biomarkers. It might be better to test
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the effects of interaction terms since the biomarkers are not
independent biologically.

In summary, this is the first study to compare the power of
different biomarkers in inferring cancer TOO under the same
condition, including the same dataset, the same preprocessing
scheme, and the same classification algorithm. In the future,
we will try to include metastasis tumor samples into our
study, incorporate independent testing samples, and add
interaction terms and novel classification models for improving
prediction accuracy.

CONCLUSION

The identification of the origin of tumor tissue was a challenging
task. With a large number of molecular profiling, we can
use them alone or combine some of them to improve the
identification of primary tumor sites. Although we used primary
tumor data, the primary information they provided were the
most important to pinpoint the exact TOO for CUP. Machine
learning algorithms were also effective tools to help classify
cancers. The number of features used can greatly affect predictive
performance. In this study, we used gene expression profiles,
somatic mutation, and DNA methylation data to generate
the feature matrix. Then, the optimal number of genes was
obtained according to Pearson correlation algorithm, and the
classification model was established using XGBoost algorithm.
The same approach was used to compare the performance
among a combination of some of the aforementioned biomarkers.
The experimental results showed that the highest accuracy

can be achieved by using gene expression profiling, but
combining multiple biomarkers could not achieve better
prediction performance.
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