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Abstract

Background Transgender patients face a higher burden of cardiovascular morbidity due to
structural and biological stressors, particularly in low-resource settings. No studies exist
comparing machine learning model development strategies for this unique patient cohort
and limited literature exists comparing data/outcomes between transgender and cisgender
populations.
Methods We compare machine learning models trained solely on transgender patients
against models developed on a size-matched and ratio-matched cohort of cisgender
patients and a 300-fold larger, ratio-matched cohort of cisgender patients undergoing
obstetric/gynecologic procedures in the National Surgical Quality Improvement Program
from January 1, 2005 through December 31, 2019. All models were developed to predict
the outcome of hypertension. Statistical significance betweenmodels was calculated using
5-by-2 fold cross validation hypothesis testing.
Results Among 626,102 patients having an obstetric/gynecologic surgery, there are 1959
transgender patients of which 85,405 (13.7%) have hypertension requiring medication.
Saliently, the logistic regression machine learning models trained selectively on the
transgender cohort have an AUC of 0.865 (95% CI: 0.83–0.90), with an accuracy of 85%
(95%CI: 0.80–0.87) compared to (p < 0.05) the logistic regressionmodel trained on the 300-
fold larger combined cohort which has an AUC of 0.861 (95% CI: 0.82–0.90), with an
accuracy of 83% (95% CI: 0.80–0.87).
Conclusion Machine learning models can be trained on smaller, selectively transgender
populations and may perform similarly or better to predict cardiovascular outcomes in
transgender patients, thanmodels developed onpredominantly cisgender patients; this can
be useful in lower-resource settings with smaller-volume transgender patients.

Predicting hypertension in transgender patients, remains a challenge,
and the efficacy of machine learning (ML) models developed solely on
transgender cohorts to predict cardiovascular outcomes compared
to traditional ML models trained on predominantly cisgender cohorts
has been undocumented in the medical literature. Transgender
individuals have a current gender identity or expression that differs

from their assigned sex at birth. Though the prevalence of transgender
individuals as reported in medical literature is rising, there
currently exists no medical literature examining the efficacy of ML in
predicting surgical outcomes for transgender patients1. Current ML
models are trained on large cohorts of patients, themajority of which are
cisgender2. Cisgender patient cohorts do not accurately reflect the
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Plain language summary

Transgender patients face a higher burden of
cardiovascular disease. Statistical models
that predict cardiovascular disease-related
outcomes, such as high blood pressure
(hypertension), may be useful to clinicians to
guide treatment, but existing models are
mainly developed in cisgender populations.
Here, we developed models to predict
hypertension in patients undergoing surgery,
and compared models developed using data
from cisgender patients, transgender
patients, or mixed populations to see if this
affected howwell thesemodels could predict
hypertension in the transgender population.
We ultimately found that one of our models
trained on a much smaller cohort of solely
transgender patients outperformed the same
model trained on a 300-times larger popula-
tion of mixed cisgender and transgender
patients. These findings might help to guide
future efforts to develop statistical approa-
ches to accurately predict health outcomes in
transgender patients.
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unique sociologic, demographic, and clinical features of transgender
patient cohorts3,4.

Current literature indicates that in addition to notable structural health
disparities, transgender individuals also have differing complex clinical
features in comparison to cisgender individuals5,6. Transgender patients
often face violence, discrimination, and barriers in access to health care
disproportionately more often than cisgender patients which can serve as a
risk factor for heart disease5,7. Multiple studies have shown an increased
prevalence in cardiovascular disease among transgender patients8,9. This
high hypertensive disease burden in transgender populations, compared to
their cisgender counterparts, compared to any other comorbidity is why
hypertension was selected as the outcome variable for this study. Hyper-
tensive comorbidity is associated with more complex clinical management,
increased health care costs, andworse health outcomes accounting formore
cardiovascular disease deaths than any othermodifiable risk factor10. Given
that interpreting health data with reference levels and statistics specific to
transgender patients can improve patient outcomes, further study of
hypertension in transgender patient populations can help inform a physi-
cian’s decision to prescribe anti-hypertensivemedications to reduce the risk
of cardiovascular disease in transgender patients11. The development of
automated prediction models trained solely on transgender cohorts, to
prognose cardiovascular outcomes for transgender patientpopulationshave
not been studied to date.

It has been well documented that ML models are able to have
better prognostic potential when compared to clinical judgment,
highlighting the evolving importance of their role in managing patient
care12. The prediction power of ML models is largely dependent on the
composition of the training data; current ML models do not fit
transgender patients well due to the predominantly cisgender cohort
used to train models2. We hypothesized that ML models developed on
selectively transgender cohorts would be more accurate than general
ML models trained on mixed cisgender and transgender cohorts,
specifically for the prediction of hypertension severe enough to require
medication in transgender patients undergoing a gynecologic or
obstetric operation of any kind. Ultimately, we found that ML models
trained on transgender compared to ML models trained on much
larger cisgender cohorts were generally statistically similar with the
sole exception of logistic regression models. Logistic regression models
developed on solely transgender cohorts were able to statistically
outperform logistic regression models trained on primarily cisgender
cohorts that were over 300-fold larger in prediction hypertension for
transgender patients.

Methods
Data
The American College of Surgeons National Surgical Quality
Improvement Program (ACSNSQIP) database is a national surgical
registry utilized to measure risk-adjusted outcomes of multiple sur-
gical procedures spanning multiple surgical specialties. Over 700
hospitals report over one million surgical cases a year in the NSQIP
dataset. The data is audited for accuracy and prospective variables are
collected by trained clinical reviewers.

Study population
Patients in the ACSNSQIP database who were coded as having a gyneco-
logic or obstetric surgery within January 2005 through December 2019 and
were coded as having a Male sex met the inclusion criteria for the trans-
gender cohort for this study and patients coded as having a Female sex met
the inclusion criteria for the cisgender cohort for this study. This study was
exempt from IRB reviewpursuant to section 4ii of the of the IRBExemption
requirements and Brown University’s Institutional Guidelines and agree-
ment with the ACSNSQIP data use agreement was required. The American
College of Surgeons collects theACSNSQIPdatawith informedconsent and
provides the data tomedical researchers; therefore, therewas nonecessity to
reobtain patient consent.

Cohort development
We assembled 3 cohorts of patients for 2 main experiments (Table 1). The
first cohort consists of all transgender patients thatmet the inclusion criteria
(we will refer to this as the transgender cohort). The second cohort consists
of a volume-matched and class ratio-matched cisgender and transgender
patients available in the data (whichwewill refer to as the cisgender cohort).
The goal for the cisgender cohort was to create a smaller dataset that
emulated the observed compositions of the transgender patients and cis-
gender patients in the NSQIP dataset. The third cohort consists of all the
transgender patients and cisgenderpatientswhomet the inclusion criteria of
being recorded in the ACS NSQIP within January 2005 through December
2019 and were coded as having an obstetric or gynecologic surgery (which
we will refer to as the combined cohort).

The cisgender cohort and transgender cohort were derived from the
combined cohort. Cisgender patients were selected at random from cis-
gender patients in the combined cohort and transgender patients were
selected at random from the transgender cohort to create the volume and
ratio matched cisgender cohort of predominantly cisgender patients.

In the cisgender cohort, the total number of patients selected were
equal to the total number of patients in the transgender cohort, in order to
have a consistent sample size during model development. This cisgender
cohort was intended to be a microcosm of the combined cohort and was
therefore volume matched to the lower sample size of the transgender
cohort to get a fairer comparison between ML models developed on the 2
cohorts. The ratio of cisgender to transgender patients in this cisgender
cohort were directly predicated on the ratio of observed cisgender to
transgender patients in the combined cohort, to emulate the observed ratios
of transgender and cisgender patients in a real medical database. Therefore,
this cohort was predominantly cisgender, due to the lower representation of
transgender patients in the ACSNSQIP, representative of the lower pro-
portion of transgender patients documented in most medical databases.

Outcome
The primary outcome variable analyzed was a diagnosis of hypertension
severe enough to requiremedication,whichmay impact thepatient’s risk for
cerebrovascular, renal and cardiac disease. To be documented as a positive,
the patient’s hypertension must be recorded in their medical record and
their hypertensionmust be severe enough that to warrant administration of
antihypertensive medication (like calcium channel blockers, diuretics, beta

Table 1 | Cohort development breakdown

Cohort Development Table

Cohort Name Transgender Cohort Cisgender Cohort (Volume-Matched) Combined Cohort

Number of Transgender 1959 (100%) 6 (0.31%) 1959

Patients in cohort (0.31%)

Number of Cisgender Patients in cohort 0 (0%) 1953 (99.7%) 624143
(99.7%)

Total Number of Patients in cohort 1959 1959 626,102

Cohort development breakdown table with number and proportion of transgender and cisgender patients per cohort.
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blockers, andACE inhibitors) within 30 days prior to their index surgery, or
during the time the patient is being considered as a candidate for surgery.
Furthermore, the patient must have been receiving or required (if non-
compliant) long-term treatment of their chronic hypertension exceeding
2weeks tobecodedas ayes for this outcome.Although this dataset consisted
of surgical patients because this variable was solely recorded preoperatively,
it can be used to model and predict hypertension in nonsurgical candidates
as well.

The class balance ratio for the hypertension outcome variable was kept
consistent between the combined cohort and the volume-matched cisgen-
der cohort. The ratio of cisgender patients that had hypertension to cis-
gender patients who did not have hypertension in the large, combined
dataset were preserved in the development of the smaller, volume-matched
cisgender cohort to emulate the real, observed distribution of hypertension
cases in cisgender patients. For transgender patients in the volume-matched
cisgender cohort, the same ratio of transgender patients with hypertension
to transgender patients without hypertension were kept constant to the
observed ratio in the transgender cohort.

Machine learning models
Any patients carrying blank/NULL values for the outcome variable column
were removed to eliminate any uncertainty/inaccuracy from the training.
These patients with missing values were omitted from the analysis to avoid
anyascertainment bias in erroneously classifying apositive case as anegative
case and vice versa. The recording of these values are audited by the NSQIP
and quality checked to ensure that they are accurately documented. Then,
blank data were handled by multivariate iterative imputation in order to
reduce bias in the data. Binary values that were imputed through multi-
variate imputation were rounded to the nearest whole number (0 or 1) to
maintain medical consistency and interpretability within the data. The
outcome variablewas removed from the data frameprior to this process and
was appended back on after imputation to avoid introducing inaccuracies in
model development.

The cohortwas split at the patient level such that no training data could
appear in the testing set.All variables studied in the analysiswere included in
the model to optimize the predictive potential of the model and preserve
intervariable correlations to optimize model performance.

Selecting individuals was done randomly to assemble all cohorts. For
each of the 3 cohorts, a 75–25% stratified train test split was performed to
preserve the hypertension class ratio between the training set and test set.
The test set for all models developed on all cohorts was a set of 25% of the
patients in the transgender cohort, unique from the patients in the training
set for transgender patients. This was done to ensure that the predictive
potential of all models specifically in the prognosis on cardiovascular out-
comes in transgenderpatientswasbeing evaluatedand compared.The scikit
learn package’s train-test-split function was used as a random assortment
algorithm were used to segment cohorts into training and testing sets to
reduce bias. Blinding was not possible due to need to develop ML models,
but no patients were fully observed at the individual level, patient data in the
NSQIP is de-identified, and aggregate patient data was stored in the form of
variables to mitigate bias.

MLmodels were selected based on existing literature2,12 and narrowed
to supervised models due to their higher accuracy rates and the presence of
labeled data in the training set. MLmodels were hyperparameter optimized
through a grid search andwas validated through a 5-fold cross validation to
obtain the optimal hyperparameters yielding the best results on the
testing set.

Variable importance
Variable importance was determined based on the model. For the ran-
dom forest model, variable importance (VI) is determined using the
mean decrease in Gini index/impurity. High mean decrease in the Gini
Index indicatesmore importance. For the logistic regressionmodel, VI is
found by taking the absolute value of coefficients of the ultimate model,
ranking the coefficients bymagnitude; a larger coefficient value indicates

higher importance. For the XGBoost model, VI is calculated for a
single tree’s importance by improving the node purity, and then sum-
ming the importance over each boosting iteration. The VI averages
all importances across each variable for all decision trees to
formulate a ranking. For this model, we used the gain of each tree to
formulate the importance rankings, where a larger gain indicates higher
importance12.

Statistical analysis
Descriptive statistical analysis was utilized to assess differences in the mean
clinical features for the cisgender and transgender cohort. Measurements
were taken fromdistinct samples. Initial analysiswas done by conducting an
independent, one-way analysis of variance (ANOVA) test, equivalent to a
2-tail t-test when done for two independent groups, of every independent
variable included in the models, segmented between the cisgender and
transgender cohorts, to compare if these features were represented more in
transgender vs cisgender cohorts.

After ML models were developed on the cisgender, transgender, and
combined cohorts, they were assessed on the testing set of transgender
patients, unique frommodel development, by calculating the area under the
curve (AUC) of the model’s receiver operating characteristic (ROC), which
was obtained through bootstrapping. The threshold-independent nature of
discrimination of the AUC makes it a strong metric for our analysis. A
salient limitation of using AUC ROC for imbalanced datasets include
sensitivity to changes in predictions for the minority class. For example, if
there are a lownumberofpatients forpositive class, then theAUCscoremay
vary widely depending on how the model predicts for the positive class,
whichmay not be indicative of how themodelwould prospectively perform
given the real distribution.

Furthermore, AUC scores in imbalanced data may be artificially
inflated because false positive rates do not drop as drastically when the
number of total true negatives is very large. This is why metrics like the
F1 score that account for precision (which is highly sensitive to false
positive rates irrespective of high true negative values) help to better
contextualize model performance. Because AUC ROC metrics can be
affected by class imbalance present within the data, the unweighted
F1 score and Matthew’s Correlation Coefficient (MCC) metrics were
also obtained for each model, along with a 95% confidence interval for
each metric across each model. The MCC is a statistical test evaluating
model performance by calculating the total discrepancy between the
model prediction and true value.

To compare the statistical significance between the performance
of the ML models developed on the transgender, cisgender, and
combined cohorts, 5 by 2 cross validation fold hypothesis testing was
utilized between the ML models developed on the transgender and
cisgender cohorts and between the ML models developed on the
transgender and combined cohorts13. Only ML models of the same
type, developed on the different cohorts, were compared against each
other. This hypothesis testing framework was chosen over other
frameworks like ten-fold cross validation due to its relatively lower
Type I error, its ability to be modified to overcome lack of inde-
pendence in the data, and its ability to obtain a strong estimate of
generalization error and variance of the generalization error between
the performance of the 2 compared models. In 5 by 2 cross valida-
tion, a paired t-test is conducted between the performance of the 2
models compared and a p value is generated under the null
hypothesis that that both models perform equally well on their given
dataset.

All analyses were conducted using the Sklearn version 0.24.2 package
and pandas version 1.5.0 package in Python (Python Software Foundation)
and R 4.1.0.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results
Cohort characteristics
The combined cohort contained 1959 transgender patients and 624,143
cisgender patients, totaling 626,102 patients having an obstetric or gyne-
cologic surgery logged in the ACS NSQIP database between the 2005 and
2019 calendar years. The transgender cohort contained solely the 1959
transgender patients from the combined cohort (and therefore 0 cisgender
patients). The cisgender cohort contained 6 transgender patients and 1953
cisgender patients, the same total size as the transgender cohort. The
transgender/cisgender ratio for the cisgender cohort was matched to be as
close as possible (rounding up) to the transgender/cisgender ratio observed
in the combined cohort. The 6 transgender patients in the cisgender cohort
were pulled from the test set of transgender patients to ensure that the
training set for the cisgender cohort and transgender cohort contained
different transgender patients to keep patient cohorts unique for optimal
comparison.

Out of 1959 patients in the transgender cohort, 418 had severe
hypertension. Out of 1959 patients in the cisgender cohort, 533 had
hypertension requiringmedical therapy. Out of 624,143 cisgender and 1959
transgender patients in the combined cohort, 85,405 had hypertension
requiring medication.

The input data was sectioned off into binary features which were
represented as preoperative and clinical history features, found in Table 2,
and postoperative parameters and clinical outcomes found in Table 3.

Model variable importance
52 statistically significant clinical parameters were included in the model.
The model variable importance plots of all 3 models trained on the trans-
gender, cisgender, and combined cohort can be found in Fig. 1. The top
postoperative predictors of death, acrossmodels trained on all cohorts, were
age and weight. Interestingly, ML models developed on the transgender
cohort highlighted the presence of diabetesmellitus as a high-weight feature
for the prediction of severe hypertension in transgender patients, which
models trained on the cisgender and combined cohort failed to identify.

Modelperformance formodelsdevelopedontransgendercohort
The extreme gradient boostingmodel (XGBoost) had anAUCof 0.84 (95%
CI: 0.79–0.88), with an accuracy of 85% (95%CI: 0.79–0.86), and aweighted
F1 score of 0.72 (95% CI: 0.67–0.77).

The random forest (RF) model had an AUC of 0.85 (95% CI:
0.81–0.89), with an accuracy of 86% (95% CI: 0.81–0.87), and a weighted
F1 score of 0.74 (95% CI: 0.69–0.79).

The logistic regression (LR) model had an AUC of 0.86 (95% CI:
0.83–0.90), with an accuracy of 85% (95% CI: 0.80–0.87), and a weighted

F1 score of 0.73 (95% CI: 0.68–0.78). A comprehensive comparison of
model performance metrics across models developed on the transgender,
cisgender, and combined cohorts, respectively, is included in Table 4. A
comparative AUC ROC curve plot for the logistic regression model devel-
oped across the transgender, cisgender, and combined cohorts can be
observed in Fig. 2.

When hypothesis testing to compare the statistical significance
between the performance of the RF model developed on the transgender
cohorts compared to the RFmodel developedon the cisgender cohort, there
was no statistical significance found between the performance of themodels
(p > 0.05). The performance of the LRmodels between the transgender and
cisgender cohort was unable to be determined.

When comparing the performance of the RFmodels developed on the
transgender cohorts against the RFmodels developed on the 300-fild larger
combined cohort, there was also no statistical significance found between
the performance of themodels (p > 0.05). Lastly, the performance of the LR
models between the transgender and combined cohort was found to be
significantly different (p < 0.05).

Discussion
In ourultimate analysis, it was found that all 3MLmodels had thehighest or
equal raw accuracy when selectively trained on the transgender patient
cohort compared to the to-scale trans-cis cohort and the combined cohort.
It is important to note that while the confidence intervals for the accuracies
overlap across cohorts on all models, 95% confidence intervals from two
subgroups may overlap substantially and still have a statistically significant
difference14. To better ascertain whether the results between cohorts were
statistically significant, we used a 5 by 2 cross validation fold hypothesis
testing framework to ascertain statistical significance in the performance of
the RF and LR models between the transgender and cisgender cohorts, as
well as between the transgender and combined cohorts.

The lack of statistical significance found between the RF model
developed on the transgender and cisgender cohorts indicates that for
similar sized transgender and mixed, predominantly cisgender cohorts,
forest-based ML algorithms can perform similarly for the prediction of
severe hypertension in transgender populations. However, the presence of
similarly sized transgender and cisgender cohorts are unlikely to be found in
the vast majority of observed medical data, where the patients are pre-
dominantly cisgender. The lack of statistical significance found between our
RF models developed on the transgender cohort and the RF models
developed on the combined cohort is an important finding helping to
address this; it demonstrates that ML models developed on solely trans-
gender populations can perform statistically similar to ML models devel-
oped on predominantly cisgender cohorts over 300-fold larger in the
prediction of hypertensive morbidity in transgender populations. Interest-
ingly, the statistically significant difference in the performance of the LR
models developed on the transgender cohort versus the LR models in the
combined cohort indicate that simpler, logistic regression predicated clas-
sifiers have the potential to be comparatively better at capturing statistical
relationships unique to transgender cohorts for the prediction of outcomes
in transgender patients when compared against decision tree-based
classifiers.

A challenge for the development ofMLmodels on transgender patient
populations is the lower representation of transgender patients in ML
training data sets. This is since transgender patient populations have a
smaller observed representation in existing medical databases; this com-
paratively smaller sample size can be a deterrent to developing ML models
for transgender communities developed on cohorts who actually identify as
transgender patients. By demonstrating the potential benefit or statistically
similar performance of ML models developed on saliently smaller trans-
gender cohorts, we hope tomotivate further development ofMLmodels on
transgender patient populations helping to address the observed lack ofML
models for transgender populations, who face a disproportionately higher
disease and discrimination burden compared to their cisgender
counterparts15.

Table 2 | Preoperative Variable Features

Characteristic Transgender
N = 1959

Cisgender
N = 1959

p value OR

Inpatient/
outpatient status

1125 (57%)
834 (44%)

1089 (56%)
869 (44%)

0.25 0.87

Age of Patients 45 ± 1 49 ± 1 >0.99 1.03

Principal
anesthesia
technique

1958 (100%)
1 (<0.1%)

1958 (100%)
1 (<0.1%)

<0.001 217,970.00

Disseminated
Cancer

1930 (99%)
29 (1.5%)

1922 (98%)
36 (1.8%)

0.38 0.64

Open Wound
(with or without
infection)

1941 (99%)
18 (0.9%)

1952 (100%)
7 (0.3%)

0.014 0.22

ASA
Classification

345 (18%)
1614 (82%)

229 (12%)
1730 (88%)

<0.001 1.15

Summary table comparing preoperative variable features between transgender and cisgender
patients, where hypertension requiring medication is the outcome variable.
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Table 3 | Postoperative Variable Summary Table

Characteristic Transgender N = 1959 Cisgender N = 1959 p value OR 95% CI

Length of total hospital stay 1.46 ± 0.13 1.53 ± 0.13 0.46 0.98 0.91, 1.06

Occurrences Superficial Surgical site 0.36

No Complication 1940 (99%) 1933 (99%)

Superficial Incisional SSI 19 (1.0%) 25 (1.3%) 1.19 0.60, 2.32

Open Wound/Wound Infection 0.070

No 1952 (100%) 1957 (100%)

Yes 7 (0.4%) 1 (<0.1%) 0.06 0.01, 0.71

Occurrences Organ Space SSI 0.60

No 1941 (99%) 1943 (99%)

Yes 18 (0.9%) 15 (0.8%) 1.05 0.48, 2.30

Occurrences Wound Disrupt 0.44

No 1950 (100%) 1952 (100%)

Yes 9 (0.5%) 6 (0.3%) 0.82 0.24, 2.75

Occurrences Pneumonia 0.32

No 1949 (99%) 1952 (100%)

Yes 10 (0.5%) 6 (0.3%) 0.22 0.05, 0.88

Occurrences Unplanned Intubation >0.99

No 1957 (100%) 1957 (100%)

Yes 2 (0.1%) 1 (<0.1%) 0.16 0.01, 2.90

Occurrences Pulmonary Embolism 0.50

No 1956 (99%) 1956 (99%)

Yes 3 (0.2%) 2 (0.2%) 0.38 0.05, 2.83

Occurrences Ventilator > 48 H >0.99

No 1957 (100%) 1958 (100%)

Yes 2 (0.1%) 0 (0%) 0.00 0.00, Inf

Occurrences Progressive Renal Insufficiency >0.99

No 1958 (100%) 1957 (100%)

Yes 1 (<0.1%) 1 (<0.1%) 2.44 0.12, 51.7

Occurrences Acute Renal Fail 0.50

No 1959 (100%) 1957 (100%)

Yes 0 (0%) 1 (<0.1%) 1,138,109 0.00, Inf

Occurrences Urinary Tract Infection 0.91

No 1922 (98%) 1920 (98%)

Yes 37 (1.9%) 38 (1.9%) 0.86 0.52, 1.42

CVA/Stroke with neurological deficit >0.99

No 1958 (100%) 1958 (100%)

Yes 1 (<0.1%) 0 (0%) 0.00 0.00, Inf

Occurrences Cardiac Arrest Requiring CPR >0.99

No 1958 (100%) 1957 (100%)

Yes 1 (<0.1%) 1 (<0.1%) 8.00 0.30, 215

Occurrences Bleeding Transfusions <0.001

No Bleeding Complication 1912 (98%) 1873 (96%)

Bleeding Complication 47 (2.4%) 85 (4.3%) 1.12 0.70, 1.78

Occurrences DVT/Thrombophlebitis 0.083

No 1956 (100%) 1949 (100%)

Yes 3 (0.2%) 9 (0.5%) 6.59 1.20, 36.2

Occurrences Sepsis 0.089

No 1947 (99%) 1953 (100%)

Yes 12 (0.6%) 5 (0.3%) 0.63 0.17, 2.26

Return to OR 0.038

No 1925 (98%) 1939 (99%)

Yes 34 (1.7%) 19 (1.0%) 0.54 0.28, 1.05

Days from operation to discharge 1.33 ± 0.11 1.41 ± 0.11 0.26 1.01 0.91, 1.11

Summary table comparing postoperative variable features between transgender and cisgender patients, where hypertension requiring medication is the outcome variable.
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Even with statistically similar results, our analysis reveals that a cohort
of just 1953 transgender patients can be used for the development of ML
models that perform statistically similarly and possibly better than ML
models trained on a combined cohort of 626,230 patients for the prediction
of hypertension in transgender patients. This is an important implication,
suggesting that healthcare providers can use models developed specifically
on smaller transgender patient cohorts to achieve comparable performance
to ML models trained on combined transgender and cisgender patient
cohorts that are larger by over 300-fold. Several healthcare institutions lack

the ability to develop robust ML models due to the lack of patient data
available for training combined with the large number of patients needed to
train an accurate model16. This challenge can be addressed for transgender
patients by using low-volume transgender patient cohorts for training ML
models in more healthcare settings to account for clinical differences found
in transgender patients6. This can help accelerate the development of ML
models and help to optimize clinical impact for transgender patients, who
can receive accurate, automated prognoses sooner, in a larger number of
locations.

Our results could be explained by the salient structural health dis-
parities faced by transgender individuals distinct from their cisgender
counterparts—specifically limited access to health care settings and adverse
physiologic effects from discrimination5. There is a clear need for ML
models with disadvantaged populations in mind17. Caceres et al. have
posited that sociodemographic, clinical, and discriminatory stressors are
correlated with poorer cardiovascular health outcomes and higher cardio-
vascular disease rates in Black and Latinx LGBTQadults, particularly sexual
minority women15. Additionally, cross-sex hormone therapy has been

Fig. 1 | Model variable importance plots.Model variable importance plots for Random Forest Model trained on all 3 cohorts. BUN blood urea nitrogen, ASA American
Society of Anesthesia.

Table 4 | Comparative model performance metrics

Comparative Model Metrics Between Cohorts

Model Accuracy
(95% CI)

ROC AUC
(95% CI)

F1 Score
(95% CI)

MCC
(95% CI)

ML Models Developed on Transgender Cohort

Logistic
Regression

85%
(80–87%)

0.86
(0.83–0.90)

0.73
(0.68–0.78)

0.48
(0.38–0.57)

Random
Forest

86%
(81–87%)

0.85
(0.81–0.89)

0.74
(0.69–0.79)

0.49
(0.39–0.59)

XGBoost 85%
(79–86%)

0.84
(0.79–0.88)

0.72
(0.67–0.77)

0.45
(0.35–0.55)

ML Models Developed on Cisgender Cohort

Logistic
Regression

80%
(79–86%)

0.85
(0.81–0.89)

0.72
(0.67–0.77)

0.45
(0.35–0.55)

Random
Forest

80%
(79–86%)

0.84
(0.80–0.88)

0.70
(0.65–0.75)

0.42
(0.32–0.52)

XGBoost 80%
(78–85%)

0.84
(0.79–0.88)

0.64
(0.59–0.70)

0.35
(0.25–0.46)

ML Models Developed on Combined Cohort

Logistic
Regression

83%
(80–87%)

0.86
(0.82–0.90)

0.73
(0.68–0.78)

0.47
(0.37–0.57)

Random
Forest

85%
(82–88%)

0.89
(0.85–0.92)

0.76
(0.71–0.81)

0.53
(0.43–0.62)

XGBoost 85%
(82–88%)

0.88
(0.85–0.91)

0.76
(0.71–0.81)

0.52
(0.43–0.62)

Comparative model performance metrics (with 95% CI) across 3ML models independently
developed on the transgender, cisgender, and combined cohorts (MCC =Matthew’s correlation
coefficient).
CI confidence interval, AUC ROC area under the receiver operating characteristic curve,MCC
Matthew’s correlation co-efficient.

Fig. 2 | Comparative AUC ROC curves for Logistic Regression models. Com-
parative AUC ROC curves for Logistic Regression models developed on the trans-
gender, cisgender, and combined cohorts for the prediction of severe hypertension in
transgender patients. ROC receiver operating characteristic, AUC area under
the curve.
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shown to lead to adverse cardiovascular effects, such as increased risk of
thromboembolisms, hypertension, and cardiovascular mortality18,19. The
use of gender affirming hormone therapy has been shown to increase
visceral adipose tissue deposits which may mechanistically predispose
transgender patients to thromboembolic and myocardial infarction events.
The combination of these factors could explain the differences in trans-
gender patient cohorts in comparison to cisgender patient cohorts. Given
the importance of early intervention in cardiovascular disease, the use ofML
models to provide early diagnoses should improve patient outcomes20.

FutureMLmodels for transgenderpatient care canbe expanded foruse
in broader healthcare settings based on our findings. ML models can be
improvedwith training on data collected from larger cohorts of transgender
patients, suchas the long-termcross-sexhormone therapycohort studiedby
Asscheman et al.21. Being able to diagnose the presence of severe hyper-
tension earlier leads to improved outcomes for patients, especially for
patients at high-risk for cardiovascular disease complications residing in
lower resource settings. This is why all our models were trained with basic
clinical history data, preoperative lab tests, and postoperative outcomes22,
which are all easily obtained as a standard of care in most healthcare
settings22,23. This allows our models to be able to make predictions on
transgender patient populations residing in remote areas as a next step,
where it is more likely for patients to have undiagnosed hypertension
compared to their urban counterparts24. In these lower resource settings,
such as low- and middle-income countries, transgender individuals
experience a high burden of adverse health and disease outcomes25. Our
models can be scaled into an eventual mobile app, where healthcare pro-
viders can manually enter in corresponding clinical and operative features
for eachpatient inorder toget anML-drivenhypertensive risk score for each
patient, with models specifically tailored for their gender identity. In these
settings,MLmodels could help physicians with less training and experience
in treating transgender populations to develop earlier and more structured
diagnoses. Integration of ML models into electronic health records and
mobile health applications could contribute towards personalized, precision
healthcare as a future direction for transgender individuals with significant
barriers in access to healthcare26,27.

Conclusion
We have been able to demonstrate that ML models trained on selectively
transgender populations performs statistically similar (in the case of RF
models) may perform statistically better or similar with certain datasets (in
the case of LR models) to ML models developed on a combined cohort of
predominantly cisgender patients over 300-fold larger for the prediction of
hypertension in transgender populations. Overall, our findings serve as a
starting point for future ML models made specifically for transgender
patient populations, particularly in settings with lower volume patients to
train ML models upon.

Data availability
The data that support the findings of this study are available from the ACS
NSQIP but restrictions apply to the availability of these data, which were
used under license for the current study, and so are not publicly available.
Data are however available from the authors upon reasonable request with
written permission of the ACS NSQIP. Source Data File cannot be made
available in accordance with the ACS NSQIP Data Use Agreement, as
revealing source data to noncovered entities may render it possible, via
deliberate technical engineering, to reveal identifying information of par-
ticular persons, in violation of the NSQIP data use agreement, rendering
authors subject to penalties under statutes that apply to NSQIP data.

Code availability
Code file is publicly available28.
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