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Abstract

Background—Encephalopathic neonates undergoing therapeutic hypothermia have increased 

risk for coagulopathy secondary to perinatal asphyxia and effects of cooling on the coagulation 

enzyme cascade. Thromboelastography (TEG) allows for a comprehensive assessment of 

coagulation that can be regulated for temperature. TEG has not been previously evaluated in 

newborns undergoing hypothermia treatment.

Methods—Encephalopathic neonates treated with systemic hypothermia were enrolled in this 

prospective observational study. Daily blood specimens were collected for standard coagulation 

tests and platelet counts during hypothermia and after rewarming. Concurrent TEG assays were 

performed at 33.5°C and 37.0°C for comparison.

Results—A total of 48 paired TEGs from 24 subjects were performed. Mean (± SD) birthweight 

was 3.2±0.7 Kg, gestational age 38.4±1.4 weeks, and 40% were male. TEG results differed 

significantly between assays performed at 37.0°C versus 33.5°C, indicating more impaired 

coagulation at 33.5°C. TEG parameters K, α, MA and CI were significantly associated with 
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clinical bleeding (p<0.05). These remained significant (except for MA) after controlling for 

transfusion therapy.

Conclusions—TEG results are affected by temperature, consistent with the known association 

of hypothermia with coagulopathy. Several TEG parameters are predictive of clinical bleeding in 

newborns undergoing hypothermia. Selected cutpoints to predict bleeding risk are temperature 

dependent.

INTRODUCTION

Neonates with hypoxic ischemic encephalopathy (HIE) are at increased risk for 

coagulopathy (1, 2). Systemic oxygen deprivation impacting the liver and bone marrow 

impairs the synthesis of coagulation factors and platelets (3–6). It is also well established 

that a hypothermic environment exacerbates coagulation disturbances by decreasing 

enzymatic activity involved in the coagulation cascade (7–12). This phenomenon is 

increasingly important as therapeutic hypothermia is the current standard of care for infants 

affected by HIE(13–22).

There is wide variability amongst clinicians and institutions with regards to protocols for 

monitoring coagulation status in newborns undergoing therapeutic hypothermia. This is, in 

part, due to the uncertainty of whether transfusion therapy should target normalization of 

standard tests of coagulation versus a more conservative approach of initiating treatment 

only after clinical bleeding is observed. Algorithms to optimize transfusion therapy to be 

able to prevent clinical bleeding while minimizing exposure to excessive blood products are 

lacking. One difficulty arises from the fact that standard coagulation tests (i.e. activated 

partial thromboplastin time (aPTT), prothrombin time (PT) and international normalized 

ratio (INR)) are routinely performed at 37.0°C (8). This may not accurately reflect the in 

vivo condition of a patient undergoing moderate hypothermia who is maintained at a core 

temperature of 33.5°C (17). Alternative methods to assess coagulation status in this 

population are needed.

Thromboelastography (TEG) is a functional assay that evaluates the process of clot 

formation and degradation in a whole blood sample (23–26). In a single test, TEG 

comprehensively reflects the complex clotting process that involves coagulation factors, 

cellular components, enzymes, and highly organized feedback mechanisms that maintain 

equilibrium between clot formation and lysis (1). TEG can be easily calibrated to the 

temperature of the patient. Despite this advantage that is particularly attractive in neonates 

undergoing hypothermia, TEG has not been previously evaluated in this population at high 

risk for coagulopathy.

The aim of this study is to evaluate the utility of TEG in newborns undergoing therapeutic 

hypothermia. We hypothesized that TEG would demonstrate quantifiable differences when 

performed under normothermic (37.0°C) versus hypothermic (33.5°C) conditions. 

Secondarily, we hypothesized that TEG performed at 33.5°C would predict clinical bleeding 

in this high-risk neonatal population.
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METHODS

Study Population

This prospective observational study was conducted at an outborn level 4 neonatal intensive 

care unit (NICU) in an academic free-standing children’s hospital. All patients meeting 

established criteria for treatment with hypothermia between August 2011 – July 2012 were 

approached for enrollment. An additional two patients with encephalopathy secondary to 

hyperammonemia were treated with hypothermia under an experimental protocol and were 

also included. All patients underwent whole-body therapeutic hypothermia according to the 

NICHD Neonatal Research Network protocol (17). Patients were cooled to an esophageal 

temperature of 33.5°C with a servo-regulated Blanketrol II (Cincinnati Sub-Zero Medical, 

Cincinnati, OH) cooling blanket. Verbal consent was obtained from the parent(s) of each 

participant and need for written documentation of informed consent was waived for this 

minimal risk study. The Children’s National Medical Center Institutional Review Board 

approved the study and all data was collected in compliance with Health Information 

Portability and Accountability Act regulations.

Data Collection

Demographic data (including gestational age, birthweight, gender), and clinical data 

(including presenting characteristics, bleeding and transfusion data) were prospectively 

collected after enrollment. Significant bleeding was defined as clinically overt bleeding (e.g. 

pulmonary hemorrhage, gastrointestinal bleeding, gross hematuria, or mucosal bleeding) 

associated with a decreased hemoglobin by 2g/dL in a twenty-four hour period, bleeding 

that required blood products or surgical intervention for hemostasis, or bleeding that was 

found in critical organ systems (i.e. intracranial, pulmonary, or retroperitoneal) (27). 

Bleeding data were noted for the 24 hour period following each TEG determination. 

Transfusions with fresh frozen plasma, cryoprecipitate and/or platelets for each 

corresponding time period were also recorded.

Specimen Collection and Processing

Standard coagulation tests are routinely monitored daily during hypothermia and after 

rewarming per the CNMC NICU protocol. Up to 3 serial TEGs were performed per subject 

at 0–24 hours, 24–48, and 48–72 hours of cooling. Whole blood specimens (2.7 mL) were 

collected from indwelling arterial lines into vials containing 0.3 mL of 3.2% sodium citrate. 

One milliliter of blood was removed for TEG analysis while the remainder was used for 

clinically indicated PT, APT and fibrinogen assays (using the STA-R Evolution coagulation 

analyzer (Diagnostica STAGO, Parsippany NJ) per manufacturer’s instructions). A separate 

specimen was simultaneously collected to perform routine complete blood counts using the 

XE-5000, (Sysmex USA, Mundelein IL). Specimens were hand delivered to the central 

laboratory for processing within 30 minutes of collection.

TEG Determinations

TEG determinations were performed on the dual-channel Haemoscope’s TEG 5000 analyzer 

(Haemonetics, Niles, IL) after Kaolin activation according to the manufacturer’s 
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instructions. Briefly, 0.36mL of Kaolin activated, citrated whole blood is placed in a 

heparinase cup which is rotated 4°45’ six times per minute to imitate sluggish venous flow 

and activate the clotting cascade. A pin is suspended within the sample and as fibrin clot 

forms between the wall of the cup and the pin, the pin is displaced in synchrony with the 

cup. The transmitted rotation from the cup to the pin is transduced into a computer analyzer 

that produces a tracing called a thromboelastograph (Figure1). The four variables directly 

measured are: 1) Clotting Time (R): the time of latency until initial fibrin formation, 2) Clot 

Kinetics (K): the speed at which a specific level of clot strength is achieved (20 mm 

amplitude), 3) Angle (α): the rapidity of clot strengthening, and 4) Maximum Amplitude 

(MA): the ultimate strength of the clot. Additionally, a coagulation index (CI) is derived 

from the four directly measured variables. Finally, the LY30 measures the rate at which 

amplitude decreases 30 minutes after MA is achieved and is representative of clot 

breakdown or fibrinolysis. Therefore, impaired coagulation is reflected by a higher R, K, 

LY30 and/or lower MA, α, CI (23, 24). One channel of the TEG analyzer was calibrated to 

37.0°C and the second to 33.5°C for simultaneous determination of TEG under 

normothermic and hypothermic conditions. Six quantitative measures from the TEG trace 

(R, K, α, MA, CI and LY30) were recorded for each paired TEG. To minimize channel bias, 

temperature settings of each channel were alternated with each new specimen.

Statistical Analysis

Descriptive statistics include mean (± 95% confidence intervals) or median (range) for 

parametric and non-parametric continuous variables respectively. Categorical variables were 

expressed as frequencies. Bivariate analyses were performed to assess the effect of 

temperature on each of the six parameters measured by TEG (R, K, α, MA, CI, LY30) with 

paired-samples T-tests. To account for intrasubject correlation due to repeated 

measurements in each subject, temperature effect was further evaluated by a random effects 

longitudinal regression model with covariables including day of measurement and baseline 

coagulation status (defined by INR obtained upon admission to the NICU). Logistic 

regression models were used to explore the role of TEG (and standard tests of coagulation 

aPTT and INR) to predict clinical bleeding controlling for transfusion therapy. Parameters 

that were associated with bleeding were further evaluated using receiver operator curve 

(ROC) analyses in which an area under the curve (AUC) of 1 denotes 100% agreement 

between predicted and actual outcomes, whereas an AUC of 0.5 signifies no significant 

model discrimination. Coordinates of the ROCs with significant AUCs were used to 

determine cut-points with optimal sensitivity and specificity to predict clinical bleeding.

RESULTS

Study Population Characteristics

A total of twenty-four patients were enrolled and received treatment with therapeutic 

hypothermia either for HIE (n=22) or hyperammonemia (n=2). Characteristics of the study 

population are summarized in Table 1. Of the twenty-four patients enrolled, seventeen 

patients demonstrated a total of 27 bleeding events. These events included pulmonary 

hemorrhage (n=14), GI bleeding (n=17), hematuria (n=3), and mucosal (i.e. profuse 

umbilical stump and arterial line site) bleeding (n=2).
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Effect of Temperature on TEG

A total of forty-eight paired TEGs were performed at 33.5°C and 37.0°C. Bivariate analyses 

demonstrated significant differences in TEG R, K, α and CI (p<0.01, Figure 2). Differences 

in each TEG measure indicated more impaired coagulation in the assays performed at 

33.5°C. These differences remained significant for TEG K (β=−0.148, SE 0.068, 95% CI 

−0.281 to −0.013, p=0.031) and α (β=1.167, SE 0.371, 95% CI 0.440 to 1.894, p=0.002) in 

the multivariate longitudinal regression models.

TEG to Predict Bleeding

Several TEG parameters including K, α MA and CI demonstrated an association with 

clinical bleeding (p<0.05). These associations were significant for K, α and CI at 37.0°C and 

α at 33.5°C after controlling for transfusion therapy. Logistic regression model results are 

summarized in Table 2. aPTT (p=0.961), INR (p=0.363) and platelet count (p=0.718) were 

not associated with clinical bleeding. Receiver operator curves demonstrated significant 

AUCs for TEG K, α and MA at both 33.5°C and 37.0°C, and CI at 33.5°C. (Figure 3). 

While ROCs were significant at both temperatures, the selected cutpoint differed based on 

temperature.

DISCUSSION

This is the first study conducted to evaluate the effect of temperature on individual TEG 

parameters and to evaluate the potential utility of TEG to monitor coagulation status in 

newborns undergoing therapeutic hypothermia. These data demonstrate quantifiable 

differences in coagulation status based on temperature, with more impaired coagulation 

under hypothermic conditions. Thus, standard tests of coagulation performed on blood 

warmed to 37.0°C may underestimate coagulopathy in patients that are undergoing 

hypothermia. An association with clinical bleeding could be demonstrated with several TEG 

parameters while standard tests of coagulation (aPTT and INR) were not associated with 

bleeding. This provides further evidence that TEG may serve as the preferred method of 

monitoring coagulation status in this population.

While TEG has been routinely utilized in adult populations for the past 20 years (24–26), it 

has only recently emerged for use in pediatrics. Early reports have demonstrated its utility in 

monitoring coagulation status in children requiring cardiac bypass, liver transplant, 

neurosurgery and extracorporeal membrane oxygenation (28–32). While normative data is 

available for pediatric patients (33), there is limited data reported in neonates. Only one 

study reported references ranges for newborns based on umbilical cord blood specimens 

(23). However, it is unknown whether these values represent normative values for neonates 

in the first days of life post-partum. The data provided in this study support that further 

evaluation in neonatal populations, particularly critically ill neonates at high-risk for 

coagulopathy, is warranted. An advantage of TEG is the ease of calibration for temperature, 

which is of particular interest in patients undergoing hypothermia. The two variables most 

influenced by temperature were K and α. These two parameters are the most reflective of 

clotting factor and enzymatic activity. Under hypothermic conditions, clot kinetics were 

slower indicating a delay in enzymatic activity and α was narrower indicating lower 
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efficiency in attaining maximum clot strength. Other TEG variables including clot reaction 

time and coagulation index also trended in a direction consistent with the hypothesis that 

hypothermia slows enzymatic activity and impairs the coagulation cascade. Of interest, MA, 

which reflects platelet activity, did not vary based on temperature although there is known 

cold inhibition on platelet function (34). It should be noted that TEG may be insensitive to 

mild qualitative platelet dysfunction and likely more sensitive to platelet count (i.e. 

thrombocytopenia). For example, effects of aspirin and clopidigrel used in Berlin Heart 

protocols were not readily reflected with regular TEG, and required platelet mapping (35). 

That LY30 did not appear to vary based on temperature is not surprising as this variable is 

reflective of a process less dependent on initial enzymatic activity (i.e. LY30 measures clot 

stability).

Previous multi-center cooling trials did not report increased rates of major hemorrhage or 

bleeding-related deaths in patients undergoing this therapy. However, consistent findings 

across studies include thrombocytopenia and prolonged PT/aPTT likely associated with 

need for transfusion therapy to prevent bleeding risk (13, 17–22). Overall rates of clinical 

bleeding requiring intervention are not well described by prior studies. Our study suggests 

that these events may occur frequently in this population. The definition of clinically 

relevant bleeding used in our study was based on recommendations by the International 

Society of Thrombosis and Haemostasis (27). While the bleeding events demonstrated in 

patients enrolled in this study were not life threatening in nature, they all required 

transfusion therapy or other active intervention (e.g. increase in positive end expiratory 

pressure in cases of pulmonary hemorrhage).. It is unclear whether transfusion therapy 

should be targeted to normalizing standard tests of coagulation or conservatively initiating 

therapy only after clinical bleeding is exhibited. Data from this study suggests that the 

former approach is problematic given the poor discriminatory ability of standard tests of 

coagulation to predict clinical bleeding. In an ideal setting transfusion therapy should be 

targeted to a specific product administered with an appropriate dose to prevent any bleeding. 

This study provides evidence that TEG may provide a better method to monitor bleeding 

risk and provide guidance for rational transfusion therapy.

Another benefit of TEG is that it provides a global measure of coagulation in a single test, 

utilizing a small blood volume (0.36mL). This is of particular interest in the critically ill 

neonatal population given the frequency of blood sampling is often problematic and can lead 

to iatrogenic anemia. Each of the current standard tests used to assess coagulation status 

(PT, aPTT, INR, fibrinogen and platelet count) evaluate one aspect of a complex clotting 

process. These are often ordered and interpreted as a battery of tests that may be replaceable 

with the information provided by TEG.

TEG parameters at both at 33.5°C and 37.0°C were found to be predictive of clinical 

bleeding. Of great importance, however, is the observation of different cutpoints to predict 

bleeding at the two temperatures. For example, the cutpoint for TEG K performed at 37°C is 

2.6 minutes, which actually falls within the normal adult range for this parameter. In 

contrast, when the assay is performed at 33.5°C (i.e. reflecting the hypothermic environment 

that the patient is experiencing) the cutpoint for TEG K is higher at 3.4 minutes. Thus for 

accurate interpretation, TEG assays should be performed under temperature-regulated 
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conditions (ie: at 33.5°C for patients undergoing therapeutic hypothermia). Depending on 

institutional or laboratory preferences, an alternative strategy would include performing 

TEG under normothermic conditions and using different interpretive thresholds as provided 

in this study. Regardless, it is notable that several TEG parameters were more predictive of 

clinical bleeding than aPTT and INR.

This study has limitations. Although repeated measures provided improved power for 

statistical analyses, the small number of patients included may have limited our ability to 

achieve statistical significance where statistical trends were observed. Thus, the association 

between TEG values and clinical bleeding warrants investigation in a larger population. 

Sample size limitations also affected our ability to evaluate if these relationships differed 

between the patients cooled for neonatal encephalopathy versus hyperammonemia. 

Although animal evidence suggests that elevated ammonia may impact platelet function 

directly, (36) the coagulation disturbances in this population are likely attributable to the 

association of hyperammonemia with transaminitis and liver dysfunction reflected by a 

decrease in hepatic synthetic function (37). These anomalies would be revealed in TEG 

measures as described. We attempted to define “clinically significant” bleeding events. 

Commonly, iatrogenic trauma from nasogastric tube placement can lead to bloody gastric 

residuals, traumatic intubation can lead to bloody endotracheal tube secretions, and urinary 

catheter placement can lead to gross hematuria. These bleeding events may occur without 

underlying coagulopathy. These types of bleeding events were excluded unless they were 

observed repeatedly and met the defined criteria for clinically significant bleeding (i.e. 

decreased hemoglobin by 2g/dL in 24 hours, bleeding that required blood products for 

hemostasis or was found in critical organ). Due to obvious feasibility limitations, we were 

unable to obtain TEG data from healthy newborns for comparison. As previously discussed, 

normative data for TEG parameters in peripheral blood specimens from neonatal patients is 

lacking. Thus, the proposed cutpoints to predict bleeding cannot be interpreted in 

comparison to normative values for neonates.

CONCLUSIONS

TEG clot kinetics and angle are altered by temperature, providing a method to quantify 

impaired coagulation under hypothermic conditions. Several TEG parameters (K, α, MA, 

CI) are predictive of clinical bleeding in newborns undergoing therapeutic hypothermia 

while current standard measurements of coagulopathy (aPTT, INR) were not predictive of 

bleeding. TEG may be a preferable way to monitor bleeding risk and guide transfusion 

therapy in this high-risk neonatal population.
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1. 
Representative example of thromboelastograph with measured parameters depicted 

schematically.
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2. 
Effect of temperature on TEG parameters. The gray bars represent 37°C while the white bars 

represent 33.5°C. All bars represent mean ± 95% confidence interval. Significant differences 

by paired T-tests are shown with asterisks (*p<0.05, **p<0.001). Significant adjusted p 

values are marked with daggers (†p<0.05, ††p<0.01).
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3. 
Receiver operating curves for K, α, MA and CI. The diagonal line represents an Area under 

the curve (AUC) of 0.5, indicating a non-informative test. Panel A: K performed at 33.5°C. 

AUC = 0.7377, Cutpoint = 3.4 min, Sensitivity = 62.5% and Specfificity = 90.9%. Panel B: 

K performed at 37°C. AUC = 0.7876, Cutpoint = 2.6 min, Sensitivity = 76.9%, Specificity = 

81.8%. Panel C: α performed at 33.5°C. AUC = 07377, Cutpoint = 52.3 degrees, Sensitivity 

= 66.7% and Specfificity = 88.4%. Panel D: α performed at 37°C. AUC = 0.7955, Cutpoint 

= 57.6 degrees, Sensitivity = 76.9%, Specificity = 81.8%. Panel E: MA performed at 33.5°C. 
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AUC = 0.8172, Cutpoint = 56.1 mm, Sensitivity = 70.83% and Specfificity = 81.82. Panel 

F: MA performed at 37°C. AUC = 0.8217, Cutpoint = 58.1 mm, Sensitivity = 88.46%, 

Specificity = 61.18%. Panel G: CI performed at 33.5°C. AUC = 0.7173, Cutpoint = −4.6, 

Sensitivity = 70.83% and Specfificity = 76.19%. Panel H: CI performed at 37°C. AUC = 

0.6476, Cutpoint = −3.3, Sensitivity = 68%, Specificity = 66.67%.
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TABLE 1

Clinical and Demographic Characteristics of Study Population

HIE
(n= 22)

Hyperammonemia
(n=2)

Birthweight (grams)a 3273±699 3256±65

Gestational Age (weeks)a 38.74±1.36 38.65±0.92

Male Gender n(%) 11(50) 0 (0)

Cesarean Delivery n(%) 19 (86) 1 (50)

Sentinel Event n(%) 7 (32)

   Abruption n(%) 3 (42.8) N/A

   Cord accident n(%) 3 (42.8)

   Maternal collapse n(%) 1 (14.2)

Apgar at 1 minute 1(1,5) 8 (8,8)

   5 minutes 3 (1,9) 9 (9,9)

   10 minutes 4 (2,7) N/A

Presenting pH 7.01(6.65, 7.35) N/A

Base Deficit −16 (−34, −6) N/A

Hour of Life Hypothermia Initiated (hours:minutes) 4:40 (2:4, 5:58) 89:50 (28:54, 120:45)

EEG seizure n(%) 4 (18.2) 0 (0)

Data presented as median (range) except where indicated.

a
Mean ± standard deviation
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