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A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel
modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to
enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of
a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending
signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its
application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet
transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general.
Fig. 1 Flow diagram of method for determining oxygen saturation and HR
from video signals
Two CWTs are computed, one for each input signal, and two RWAs are
computed. These are then combined to form a single ratio surface
1. Introduction: Remote acquisition of physiological signals from
video image streams is attracting much attention in the
bioengineering space. In particular, the video photoplethysmogram
may be used to derive the two main vital signs displayed on a
pulse oximeter device: heart rate (HR) and oxygen saturation
(SpO2). HR has been tackled by many groups using a variety of
signal processing approaches [1–8]. The more challenging task is
the determination of oxygen saturation. Kong et al. [8]
demonstrated a two-camera system for the determination of oxygen
saturation based on visible light where two narrow-band filters (at
660 and 520 nm) were mounted on the cameras. They found good
agreement with a traditional finger sensor. More recently,
Tarassenko et al. [9] employed autoregressive modelling and pole
cancellation of the red, green, blue (RGB) signals from a digital
video camera to determine HR and respiratory rate from patients
undergoing a dialysis session. They also demonstrated how
desaturation events may be tracked in obstructive sleep apnea
patients. The same group have also shown that it is possible to
monitor HR, respiratory rate and changes in oxygen saturation in
the neonatal intensive care unit [10]. The determination of oxygen
saturation using standard video equipment would negate the
requirement for specialist equipment and enable the rapid
dissemination of such technologies. In the work reported here, a
method for extracting HR and saturation trending from a standard
video signal (HRvid and SvidO2) is described which comprises a
number of distinct algorithm modules based on the continuous
wavelet transform (CWT) [11, 12].

2. Method: The flow diagram in Fig. 1 describes the method. Two
input signals are used: the R and G video signals (from RGB). This
was found to be the best performing of the three possible two-signal
combinations. (Note that others have used the R and B channels [9,
10]). A CWT, T(a, b), of each signal is first computed

T (a, b) = 1��
a
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where ψ*(t) is the complex conjugate of the wavelet function ψ(t), a
is the dilation or scale parameter of the wavelet, b is the location
parameter of the wavelet and x(t) is the signal under investigation
[11]. A tunable Morlet-based continuous wavelet was employed
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as it provides the ability to alter the shape of the time–frequency
footprints (Heisenberg boxes) of the wavelet in the transform
domain [13]. Running wavelet archetypes (RWAs) are then
generated from the two transforms. The RWA enables a time–
frequency ensemble averaging which takes place in the transform
domain and has the advantage over temporal methods of not
requiring a knowledge of signal fiducial points [14]. The
archetype transform, TRWA(a,b), is generated using a weighted
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Fig. 2 R signal with corresponding scalogram and associated RWA
a R signal
b Transform modulus plot
c Corresponding RWA scalogram

Fig. 3 Wavelet ratio surface constructed from two RWAs
averaging scheme as follows

TRWA a, b( ) = wT a, b( ) + 1− w( )TRWA a, b− P a( )( ) (2)

where w is a predefined weight, TRWA(a, b− P(a)) is the previous
archetype value separated from the current value by a period P(a)
and T(a, b) is the currently computed wavelet transform. In the
method, each time a value of T(a, b) is computed, it is used with
the previous archetype transform value to form a new value of
the archetype transform. As the wavelet transform already
separates out the signal information into natural temporal scales
according to the periodicity of the wavelet function, the
characteristic period of the wavelet may be used at each scale for
P(a). Thus, it can be seen that there is no requirement for the
determination of fiducial points in the method, as the wavelet
information is naturally ‘rolled up’ at each scale using P(a) based
on the wavelet function itself. The RWA method, fully described
in [14], produces a more coherent manifestation of the pulse
ridge in the transform domain.

Once the RWA is computed from the CWT, a ridge extraction
algorithm is employed to extract the instantaneous frequency of
the pulse ridge from the RWA transform. The ridge algorithm
detects local maxima of the pulse band with respect to wavelet char-
acteristic frequency. The ridge locus provides the instantaneous
video-based HR signal, HRvid. In addition, a wavelet ratio surface
is computed from the RWAs by dividing the modulus of the two
RWA transforms. (This is similar to the method described in
[15], but using the RWA transform moduli instead of the original
CWT moduli). The ratio surface provides a time–frequency decom-
position of all ratios which may be used to compute a value of
oxygen saturation. The HRvid ridge locus is projected onto the
ratio surface to determine the optimal ratio through time. This
ratio is then used to determine the oxygen saturation through cali-
bration with a reference pulse oximeter device (Nellcor N600x,
Medtronic, Boulder, CO).

3. Monitoring during an acute hypoxic event: The method
described above was applied to a standard video sequence from
a commercially available standard RGB video camera
112
This is an open access article published by the IET under the
Creative Commons Attribution License (http://creativecommons.
org/licenses/by/3.0/)
(Panasonic HDC-TM10 High Definition Video Camera). Video
footage was acquired during a porcine model undergoing a
rapid desaturation event where the arterial oxygen saturation
dropped from 100% to around 40% for 2 min before being
brought back to 100%. A Nellcor pulse oximeter (Medtronic,
Boulder, CO) was also attached and provided a reference HR
and oxygen saturation. The R and G signals were extracted
from the video image, which was zoomed in on visible skin
around the face region. The AC components from each signal
were extracted by high-pass filtering at 0.25 Hz to remove
respiratory and other lower frequency signal components, and
then normalised by their DC component. The normalised AC
signals were then wavelet transformed using a Morlet wavelet
with characteristic frequency ω0 = 15 [13]. The R signal is
shown in Fig. 2a with the corresponding wavelet modulus plot
in Fig. 2b. A distinct pulse band can be seen across the
transform modulus plot at around 85 beats per minute. The
corresponding processed RWA scalogram is shown in Fig. 2c,
where the smoothing of the band relative to the original
scalogram in Fig. 2b is evident.

The wavelet ratio surface derived by dividing the R RWA trans-
form modulus by the G RWA transform modulus is shown in Fig. 3.
There is an obvious flat ‘valley’ in the surface coincident where the
two dominant pulse bands divide each other out. Noise manifests on
the surface as distinct spikes in the off-pulse band regions. An
optimal ratio is extracted through time by simply projecting the
pulse rate onto the ratio surface. The pulse rate may be derived
by extracting the wavelet ridge frequency (i.e. the video-based
HR signal) over time. This is shown in Fig. 4a. Apart from localised
edge effects, the video and pulse oximeter HRs stay within 2 BPS of
each other during the period of investigation (see also Fig. 5c). The
projection of the pulse rate onto the ratio surface is shown in Fig. 4b
and the subsequent extracted ratio is shown in Fig. 4c. This ratio is
then calibrated using the existing oximeter reading. The calibrated
video saturation signal is presented in Fig. 5d along with the origin-
al oximeter-based saturation (SpO2) signal. The original R and G
signals and the extracted HRs are also shown in Figs. 5a–c, respect-
ively. Note that the SvidO2 appears to fall more rapidly than the
SpO2. This is a manifestation of the difference in filtering character-
istics of the two signals: one is wavelet based, applied to a video
signal, and the other uses traditional pulse oximeter algorithmic
components and is applied to a photoplethysmogram acquired at
the finger.
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Fig. 4 Ratio through time from ratio surface
a Ridge found from the RWA pulse band maxima
b Pulse band projected onto the ratio surface shown in Fig. 3
c Extracted surface heights (=ratio)
4. Conclusion: A method has been detailed for the computation of
HR and oxygen saturation from video signals comprising a series of
code modules built around manipulations of the CWT. The method
allows for the main vital signs currently measured by a pulse
oximeter to be measured using a video system. However, the use
of such CWT-based modular approach is advocated by the author
as a powerful methodology to deal with noisy, non-stationary
biosignals in general. In addition, other modules could be added
to further enhance the method. These include reassignment or
synchrosqueezing to enhance the definition of the pulse band
[16–19], cross-wavelet transforms to measure correlation and
phase coupling between the signals as a measure of stability and/
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or quality [20–23] and secondary wavelet feature decoupling to
extract additional (e.g. respiratory) information from the signals
[24]. In addition, alternative wavelet-based modules for
determining the optimal ratio-of-ratios may be employed; such as
one based on the three-dimensional Lissajous method [25].

The signals used in this study came from an opportunistic capture
of video during a porcine model of desaturation involving an
anesthetised animal where ambient light and motion noise was
not an issue. However, significant noise on the signal before and
after the hypoxic episode was observed when movement of the
investigators in the room caused major fluctuations in ambient
light levels. This caused poor-quality signal prior to the desaturation
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Fig. 5 Oxygen saturation
a Video R signal
b Video G signal
c Dashed line: pulse oximeter HRp. Full line: video HRvid

d Dashed line: pulse oximeter SpO2. Full line: video SvidO2
phase and also subsequent to resaturation. In addition, the method
as currently set up requires the input of calibration information
from an existing oximeter. In practice, this system may be used as
a trend and/or event monitor. Alternatively, the absolute saturation
value may be calculated in a system that employs intermittent calibra-
tion during bedside observation by the caregiver using a pulse oxim-
eter device. In the latter mode, the SvidO2 approximation of SpO2

may be calibrated during spot checks and calculated continuously
between these manual checks using the method described here.

In the preliminary investigation described in this Letter, close
agreement between the video-derived parameters and pulse oxim-
eter references was observed. A fundamental problem in attempting
to compare the ability of video-derived HR and SpO2 to track
oximeter-derived values is that both ‘devices’may produce a differ-
ent time sequence of output values due to internal filtering
characteristics and/or internal reporting delays. Thus, matching
the two signals may be difficult during rapid changes in the param-
eter (e.g. as observed in Fig. 5d ). The study described is, in effect, a
tougher challenge than that for a ‘standard’ oximeter hypoxia study
[26] where the measured SpO2 is altered in discrete steps (e.g. from
around 100, to 90, to 80, to 70% then back up again), and where at
each step or ‘plateau’ the values are measured only after they
become stable. These are then compared with either another
device or a reference comprising several blood draws for arterial
oxygen saturation values. In contrast, in the study described here,
the values were compared dynamically, which is much more chal-
lenging and does not lend itself to rigorous comparison. However,
this is a consequence of the nature of the study where the data was
collected opportunistically and there was no fine control over the
SpO2 changes.

Future work will include opportunistically adding video capture
to other ongoing in-house human hypoxia studies. However, in
addition, more specific trials are planned to consider motion and
lighting noise in a rigorously controlled environment with reference
to the ISO 8060-2-61:2011 (2011) [26] pulse oximeter standard for
the evaluation and qualification of pulse oximeter devices.
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