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Abstract

Alcoholic-related liver disease (ALD) is the cause of more than half of all liver-related deaths.

Sustained excess drinking causes fatty liver and alcohol-related steatohepatitis, which may

progress to alcoholic liver fibrosis (ALF) and eventually to alcohol-related liver cirrhosis

(ALC). Unfortunately, it is difficult to identify patients with early-stage ALD, as these are

largely asymptomatic. Consequently, the majority of ALD patients are only diagnosed by

the time ALD has reached decompensated cirrhosis, a symptomatic phase marked by the

development of complications as bleeding and ascites. The main goal of this study is to dis-

cover relevant upstream diagnoses helping to understand the development of ALD, and to

highlight meaningful downstream diagnoses that represent its progression to liver failure.

Here, we use data from the Danish health registries covering the entire population of Den-

mark during nineteen years (1996–2014), to examine if it is possible to identify patients likely

to develop ALF or ALC based on their past medical history. To this end, we explore a knowl-

edge discovery approach by using high-dimensional statistical and machine learning tech-

niques to extract and analyze data from the Danish National Patient Registry. Consistent

with the late diagnoses of ALD, we find that ALC is the most common form of ALD in the reg-

istry data and that ALC patients have a strong over-representation of diagnoses associated

with liver dysfunction. By contrast, we identify a small number of patients diagnosed with

ALF who appear to be much less sick than those with ALC. We perform a matched case–

control study using the group of patients with ALC as cases and their matched patients with

non-ALD as controls. Machine learning models (SVM, RF, LightGBM and NaiveBayes)

trained and tested on the set of ALC patients achieve a high performance for data classifica-

tion (AUC = 0.89). When testing the same trained models on the small set of ALF patients,

their performance unsurprisingly drops a lot (AUC = 0.67 for NaiveBayes). The statistical

and machine learning results underscore small groups of upstream and downstream comor-

bidities that accurately detect ALC patients and show promise in prediction of ALF. Some of

these groups are conditions either caused by alcohol or caused by malnutrition associated

with alcohol-overuse. Others are comorbidities either related to trauma and life-style or to

complications to cirrhosis, such as oesophageal varices. Our findings highlight the potential

of this approach to uncover knowledge in registry data related to ALD.
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Author summary

Alcoholic liver disease (ALD) is one of the most common chronic liver disease worldwide.

It progresses from fatty liver to alcoholic liver fibrosis then to cirrhosis. Unfortunately,

people with early-stage ALD have almost no symptoms, for which reason most patients

are only discovered when it is already too late. We have thus worked on finding an effec-

tive way to detect ALD at an early stage by searching for signs of alcohol over-use among

patients. To this end, we analyzed big data from the Danish National Patient Registry,

which covers the whole population of Denmark. We found that only 499 patients were

diagnosed with alcoholic liver fibrosis and that alcoholic liver cirrhosis is the most fre-

quent form of ALD in registry data. We identified typical diagnoses seen in patients before

they developed cirrhosis, many of which relate to the liver not functioning properly. How-

ever, we found that patients with fibrosis were much harder to identify based on their past

medical records, since most of them show very few signs of being sick.

Introduction

Alcohol-related liver disease (ALD) is caused by alcohol-overuse [1–3]. It is the third leading

preventable cause of death in the world and one of the major chronic liver diseases worldwide

[4, 5]. The mortality and morbidity rates from patients with ALD is very high. It accounts

for� 500,000 deaths from ALD annually worldwide, representing a huge financial and health-

care burden on society [6]. According to World Health Organization (WHO) Global Informa-

tion System on Alcoholic and Health (GISAH) [7], the harms related to Alcoholic result in

2016 in some 3 million deaths (5.3% of all deaths) worldwide with more than 2 million deaths

in USA. Unfortunately, our knowledge on ALD is still limited by a lack of large population

studies [8].

In sufficient quantities, it can potentiate important liver diseases over time such as alcoholic

liver fibrosis (ALF) and cirrhosis (ALC). Later, after a long period of liver-cell injury, the fibro-

sis might progress to cirrhosis and the liver becomes mostly scarred; this progression of the

disease takes 10–20 years [9]. Liver fibrosis is a reversible condition, which can regress the

harm to the liver caused by alcohol-overused. Cirrhosis, however, is characterized by lasting

structural changes to the liver and a reduced ability of the liver to regress fibrosis. Cirrhosis

and the accompanying hypertension are the leading cause of liver-related mortality [9].

Complications to cirrhosis include ascites and oesophageal varices, which have their own

diagnosis code and are thus available for a registry-based approach like in the present article.

Unfortunately, people with fibrosis or reversible early-stage cirrhosis of the liver usually are

asymptomatic, that is they do not exhibit any symptoms of disease. Most patients are thus only

discovered in late stages when complications to ALC cause the healthcare system to suspect

liver disease (75% of patients are diagnosed at a late stage, when 5-year survival may be down

to 12% [9]). In this context, we present a machine-learning approach for the early detection of

fibrosis or cirrhosis in ALD, that enables to identify at-risk patients with ALF and early cirrho-

sis before they reach the more advanced stage with complications to ALC [10].

To this end, we use the Danish National Patient Registry (NPR), a country-wide healthcare

database that stores patient information such as hospital encounters, discharge dates and diag-

noses. NPR is mainly used to handle reimbursement and quality assessment, but is also used in

public medical research to assist answering research questions and improve the healthcare pro-

cess [11–17]. The NPR dataset comprises diagnoses covering the entire population of Den-

mark during� 19 years (1996–2014). It covers 6.6 million patients and contains�101 million
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unique assignments of primary and secondary diagnoses, which are coded in the International

Classification of Diseases 10th Revision (ICD-10) [18], [19]. From this vast and complex NPR

data, we provide a knowledge discovery approach that relies on interesting high-dimensional

data mining, statistical and machine learning techniques for large-scale, time-dependent data

analysis. To identify features predictive of ALD, we perform an in-depth analysis of ALD

patients and matched controls by extracting 2-year time windows upstream and downstream

of the first ALF or ALC assignment date, i.e. other diagnoses assigned before and after the

diagnosis of interest. This is challenging due to the quality issues and many pitfalls of registry

data [20].

We present an approach to extract information from NPR helping to discover relevant

upstream diagnoses that assist understanding the development of ALF or ALC, and down-

stream diagnoses that represent its progression into a more complicated situation. Consistent

with the late diagnoses of ALD, we show that ALC is the most common form of ALD in the

registry data and that ALC patients have a strong over-representation of upstream and down-

stream diagnoses associated with liver complications, such as ascites and oesophageal varices.

We also discover that the small number of ALF patients are less sick than those with ALC. The

results of the case–control study performed on the sets of patients with ALC, ALF and their

matched non-ALD controls highlight different groups of comorbidities. We find five main

groups of comorbid diagnoses that relate to: (i) alcohol-overuse as disorder behavior or dis-

eases of pancreas (ii) under/mal-nutrition as aneamia (iii) liver dysfunction as ascites (iv)

trauma and life-style as fracture or type 2 diabetes and (v) upper intestinal or respiratory

mucosal diseases as gastric ulcer or hemorrhage from respiratory passages. Some of these

comorbidities could be general predictors of ALD.

Materials and methods

In this section, we present the knowledge discovery approach of Fig 1, built integrating data

extraction, statistical and classification techniques. It is divided into six main steps: (i) prepro-

cessing and extraction of the NPR data; (ii) matched case–control study based on the stratifica-

tion of patients with ALD and on cohorts extracted from random sampling of NPR data in a

time-dependent manner; (iii) extraction of upstream and downstream data from cases and

controls; (iv) a discrimination analysis based on statistical methods, (v) and a prediction study

based on machine-learning techniques; and (vi) evaluation and interpretation of the results.

The whole pipeline was implemented in the Python programming language (version

2.7.12), using mainly scikit-learn (version 0.20.3), pandas (version 0.23.4), and numpy (version

1.15.4) libraries. The experiments were executed on a secure computing cluster.

Study design and population

The data used in this study is from the NPR, covering all public and private hospital admis-

sions in Denmark in the period 1994–2014. Admissions include all types of encounters: inpa-

tient (admitted to the hospital with overnight stay), outpatient (visit without overnight stay),

and emergency-room patients visits. The registry contains administrative information, pri-

mary and secondary diagnoses coded according to ICD-10, and operations performed over all

hospitals in Denmark [21]. Table A in S1 File defines the list of variables present in the NPR.

The dataset includes 6, 631, 923 million patients with a total of 163, 536, 557 million clinical

encounters, and contains� 101 million unique assignments of primary and secondary diagno-

ses. In total, 5, 390, 589 out of the 6, 631, 923 patients were still alive at the end of the study

period, 1, 008, 822 died, and 188, 129 patients were inactive (i.e. patients who missed 2
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successive annual visits without dropping out) at the end-date of the dataset. In this paper, we

use the entire spectrum of diseases from NPR [13, 22].

Data pre-processing and population

Herein, we perform with the help of medical doctors, a first pre-processing of the NPR data

that includes only ICD-10 codes relevant for ALD. This filtering step excludes all referral diag-

noses, encounters related to private hospitals as these were only recorded since 2002 [13]. To

Fig 1. Flowchart of the knowledge discovery approach. The approach is divided into six main steps, which cover data

preprocessing, extraction, statistical analysis, and machine learning.

https://doi.org/10.1371/journal.pcbi.1008244.g001
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avoid performing numerous unnecessary statistical tests, with the resulting loss in statistical

power, we further filtered out ICD-10 codes from ten chapters (VII, X, XII, XV, XVI, XVII,

XVIII, XX, XXI, and part of XIX), which were judged as irrelevant by medical doctors. The full

list of these diagnoses is given by Table B in S1 File. Only these specific diagnosis assignments

were removed, not the patients per se. We also grouped injury-related codes by type instead of

by anatomy. For example, we created one code that combines all fractures (fracture of skull

and facial bones (S02), fracture of neck (S12), etc.), since we are more interested in knowing

how severely patients were injured than where on the body. In this population-based registry

study, we use the ICD-10 level-3 codes (such as R18 for ascites) [13, 23], except for ICD-10

codes directly related to ALD (K70-K77), where we need to be more specific and use level 4

codes (such as K70.3 for ALF) to get the required resolution of all diagnoses related to ALD.

The sets of merged codes and level-4 codes are described in Table C in S1 File. The resulting

preprocessed NPR data is from hereon referred to as NPRpp.

Extraction of ALD cases and their matched controls

For the subsequent data analysis, we define three groups of ALD patients: (i) the first group

gathers the patients who got assigned ALC only; (ii) the second one contains patients who got

diagnosed with ALF but not ALC; (iii) and the third group includes patients who got discov-

ered on time and got diagnosed with ALF before ALC within six months. This time threshold

was selected based on the cumulative distribution of the number of days between ALF and

subsequent ALC diagnoses (Fig A in S1 File). Such fine-grained stratification of patients is rel-

evant for this study to overcome the bias of population and for Precision Medicine need. The

identified groups of patients could then be used as case cohorts for the case–control study

(step 2 in Fig 1).

We then need to extract a control cohort from the non-ALD dataset. The selection of popu-

lation controls is done through an automatic random-sampling process [13] that preserves

characteristics required to ensure comparability between the cases and controls [24]. The

matching process is performed subject by subject, referring to individual matching, and we

select five controls per case to not make negative examples a limiting factor in the subsequent

analyses, while also not making the dataset so unbalanced that it would cause problems for

machine-learning algorithms. We match the cases with respect to the following characteristics:

age (± 10 years), sex, encounter type (describes whether the patient is an in-hospital, out-hos-

pital or emergency-room visit patient), year of discharge (to address any differences in coding

over the years) and month of discharge (to correct for seasonal effects) [13]. We use this

approach to extract controls from the non-ALD patients for ALF and ALC patients separately.

Time-dependent data extraction approach

To address the knowledge gap regarding the course of development of ALC for clinical deci-

sion making, we need to split the data into upstream and downstream datasets based on the

first discharge date of the key diagnosis or outcome (either ALF or ALC). During the data

extraction phase, we present a time-dependent data extraction approach that considers differ-

ent filtering criteria to generate new subsets of data ready for a case–control analysis. Supple-

mentary Table D in S1 File presents the upstream filters applied to extract the case cohorts

depending on the outcome of interest (either ALF or ALC). All these filters are applied in

order to have a maximal homogeneity between diseased patients of the same mined cohort

and to extract a clear and accurate dataset to work on.

The first filter consists in discarding all patients having at least one of the ALD diagnoses in

upstream of ALF or ALC to only consider those having as a first ALD diagnosis ALF or ALC.
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Consequently, we eliminate all patients who were wrongly diagnosed with ALD and then work

on a clean set of patients diagnosed with ALF only or ALC only. Since we are primarily inter-

ested in upstream diagnoses, inactive or deceased patients are included in the study. The sec-

ond filter aims to retain only upstream data of ALF and ALC patients, by removing all the

downstream data or all the diagnoses assigned the same date or after the first assignment date

of the key diagnosis. The third filter is applied to discard all patients for whom we do not have

at least 2 years upstream data of the first diagnosis with ALF or ALC, i.e. removal of all patients

diagnosed with ALF or ALC less than 2 years after 01/01/1996 (first date of NPR). For the last

filtering criteria, we fix 2-year time window of data provided before the first date of the key

diagnosis since we aim to find a group of patients not yet having the key diagnosis. We also

perform a comparative study of the size of time window to show how it affects the size of the

final case cohorts. For the control cohort, we select 2-year data upstream of the first discharge

date of the key diagnosis of the matched patient in cases.

Equivalently, to select the 2-year downstream data for cases and controls, we maintain the

same set of patients identified during the upstream selection for both cohorts, i.e., for each

upstream generated dataset, we extract the list of patients and select their 2-year downstream

data from the first discharge date of the key diagnosis. We end up building a feature vector for

each patient, where each feature is a vector representing the set of diagnoses the patient got

assigned or not. Consequently, we obtain new binary data matrix of the form Individuals ×
Diagnoses ready for making data analysis.

Statistical data analysis

In the following, we perform a statistical data analysis as a first step to examine which diagno-

ses well separate cases from controls. For this, we rely on: Odds ratio (OR), Statistical signifi-

cance, Frequency (Freq.), Coverage (COV) and Matthews Correlation coefficient (MCC), to

provide different sets of ranked features “SRFi”, where i = {1� � �4}.

Odds ratio, statistical significance. The OR, as defined in Eq (SE.1), and its associated

confidence interval [25] enable determining if there is a relationship between the diagnosis

and the target disease. The further the OR is from 1, the stronger is the association between the

diagnoses and the disease. Hence, larger values of OR mean that the diagnosis is a good predic-

tor of the development of the disease, but smaller values indicate the opposite. We also need to

know if this relationship is statistically significant. Thereby, we calculate the corresponding sta-

tistical significance in a two-sided Fisher’s exact test, and we set a significance threshold of α.

To account for multiple testing, we use Bonferroni correction [26], which controls the proba-

bility of making one false positive call. A feature is then judged significant if its corresponding

p_value is� α/n.

Coverage. The COV metric is the number of patients among the cases who got assigned a

specific diagnosis (defined in Eq (SE.2)). This metric identifies the most frequent features

among the patient group of interest, but these features are not necessarily discriminatory.

Matthews Correlation Coefficient. The MCC metric [27], defined in Eq (SE.3), is used to

measure the correlation coefficient value between two binary variables, in our case having

ALF/ALC or not, and getting assigned a given other diagnosis or not. Its values vary between

−1 and +1, where +1 is perfect correlation, 0 is no correlation, and −1 is perfect inverse

correlation.

Data reduction for statistical analysis. Feature selection is used to choose a subset of rel-

evant features from the original feature set. Actually, we are looking to mine statistically signif-

icant and relevant features which are highly associated with the outcome. For this, we use as

input the new binary dataset of the form Individuals × Diagnoses on which we perform the
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sampling approach of the contingency table E in S1 File. Based on this contingency table, we

apply the four statistical techniques presented in this section and get different scores for each

feature that measure its relevance regarding the disease of interest. We then go through the

process of feature ranking by ordering them according to their scores for OR, p_value, COV

and MCC. The list is sorted ascending in case of statistical significance and descending for all

other metrics. Hence, we obtain four sets of ranked features “SRFi” where i = 1� � �4. Finally, we

compare the top-ranked features of the four statistical evaluation criteria and select a small

candidate subset of relevant and significant features from both statistical and medical points of

view.

Classification for discrimination and prediction analyses

Classification models. There are many classification approaches in the literature that can

be used to extract relevant features with high discriminatory power. However, choosing the

appropriate approach is a challenging step, requiring a careful study and good knowledge of

the existing techniques. In the present study, we select popular and widely used supervised

classification algorithms for analyzing medical diagnoses in the context of a binary classifica-

tion problems, as case–control studies. Thereby, we rely on three main classification

approaches from which we select popular supervised classification algorithms, appropriate for

decision-making problems. These approaches can be categorized broadly into:

1. decision tree classifiers: from the many ensemble decision tree-based learners proposed in

the literature [28], we choose two popular, modern algorithms, Random Forest (RF) [29]

and Light Gradient Boosting Machine (LightGBM) [30]. RF as an ensemble bagging [31]

(also known as bootstrap aggregating) algorithm that applies bagging to decision tree.

LightGBM as a high-performance gradient boosting algorithm [32] that applies boosting to

decision tree.

2. linear classifiers: besides the large choice of linear classifiers, we select the Naive Bayes (NB)

algorithm [33] that assumes a complete independence among features, and the Support

Vector Machine (SVM) with its linear kernel algorithm [34].

Classification analysis. To identify the set of features discriminating cases from control,

that could be predictive of the target disease, we apply four ML algorithms from sklearn to the

binary data matrix: Random forest (ensemble.RandomForestClassifier), LightGBM (lightgbm.
LGBMClassifier), Naive Bayes (naive_bayes.BernouilliNB), and SVM (svm). We randomly split

the data into a first training set (on average 75% of the samples), and a test set (the remaining

25% of the samples) for estimating the accuracy of the final classification models. We continue

by tuning the hyperparameters of each classifier by performing a grid search and optimizing

the cross-validated performance on the training data, using GridSearchCV package from

sklearn.model_selection. Once the best values have been identified for the hyperparameters,

we use the corresponding models as our final set of classifiers. We assess their performance by

constructing the Receiver Operating Characteristic (ROC) curve based on the independent

test set [35, 36].

Prediction analysis on new test set. To test if the predictors already trained on one form

of ALD can generalize to others, we use the trained classification models to make prediction

on new data selected from the groups of patients with ALD. The selection of this new set

depends mainly on which group of patients is used as cases during the classification phase, i.e.

if the cases are the patients with ALF, then the new data represents the set of patients with ALC

and their matched controls. Otherwise, if the cases represent the group of patients with ALC,
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then the new dataset includes the group of patients with ALF and their matched controls.

Afterwards, we assess the performance of the four fully-trained classifiers on the new selected

test set using the ROC curve [35], then we discuss and compare their relative performance dur-

ing both the learning and the testing phases. This prediction analysis is only performed on the

upstream dataset, since downstream diagnoses are obviously not available in the real clinical

context when predictions should be made.

Analysis of feature importance. To analyse the feature importance, we calculate the rela-

tive importance of each feature or diagnosis by using the corresponding importance metric of

each applied classifier. Thus, we use the weights of the features for SVM, the coefficients of the

features for NaiveBayes and feature importance for both tree-based classifiers. The scores

given by these metrics enable the ranking of the features and the assessment of their relevance

after classification. Then, we sort the features by relevance to obtain an optimal subset of top-

scoring predictive ones. In total, four subsets of ranked features are generated and combined

to compute their median rank [37]. One more time, we sort the combined features w.r.t their

median rank values and present the top ranked ones to medical doctors to underline if possible

the general ALD predictors [38].

Results & discussion

Groups of patients with ALD

From the preprocessed registry data (NPRpp), we derive two main subcohorts: (i) a first subco-

hort of 33, 391 ALD patients; and (ii) a second subcohort of the remaining 6, 010, 942 non-

ALD patients with 63, 416, 907 clinical encounters. By looking at the individual diagnoses of

the patients in the subcohort of patients with ALD, we get six main ICD-10 codes. Each code is

part of the the block “Diseases of liver” (K70-K77) and represents a type/stage of ALD. ALC is

the most common form of ALD in the NPR data, with 23, 271 patients who got diagnosed

with ALC out of the total of 33, 391 patients with ALD. By contrast, we find only 499 patients

with ALF (also called alcoholic fibrosis and sclerosis of liver) among the ALD patients. For

the remaining ICD-10 codes of ALD, we get 5, 959 patients with Alcoholic fatty liver, 4, 275

patients with Alcoholic hepatitis, 5, 546 patients with Alcoholic hepatic failure and 5, 823

patients with Alcoholic liver disease-unspecified (the same patient can be counted under mul-

tiple codes).

Three main groups of patients with ALF and ALC

We stratify the 499 patients with ALF and obtain: a first group of patients who got diagnosed

with ALF but not with ALC, a second group of patients who got assigned both ALF and ALC

codes, from which we extract the third subgroup of patients who got assigned the ALF code

less than six months before ALC. Consequently, the classification of patients with ALD led to

the identification of three main groups of patients: (i) 23, 271 patients with ALC only, (ii) 212

patients with ALF but not ALC, and (iii) 88 patients who got diagnosed with ALF at least 6

months before ALC (Fig 2). To get a clean sets of patients and extract a 2-year upstream and

downstream time window of the first assignment date of ALC or ALF diagnosis, we apply the

filters of Table D in S1 File. New smaller sets of patients are derived: (i) 9, 373 of patients with

ALC; (ii) 12 patients with ALF but not ALC; and (iii) 23 patients with ALF at least 6 months

before ALC. A flowchart describing the number of patients with ALC at each filtering step is

given in Fig B in S1 File. It shows the first filter as the main discarding criteria since the num-

ber of ALC patients is largely reduced at this step (from 23, 271 to 14, 746 patients with ALC).

Additionally, we explain in Table F in S1 File how the size of the time window influences

the final results when processing the 2nd and 3rd filters of Table D in S1 File. It highlights that
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more patients are considered by using a time window of 2 years (8, 256 patients for 6-year

upstream data vs 9, 373 patients for 2-year data), and lower number of ICD10 codes are identi-

fied for the same dataset (871 of ICD10 codes for 6-year upstream data vs 811 codes for 2-year

data). The increasing of the number of patients when reducing the size of the time window is

explained by the application of the 3rd filter. By selecting a time window of 6 years, a lot of

patients diagnosed with ALC less than 6 years after 01/01/1996 are removed, but more ICD10

codes are extracted. Also, by selecting a time window of 1 year, we obtain smaller number of

patients (8, 626) and codes (750) than when selecting 2 years of upstream data. This decreasing

number of patients is explained by the fact that many patients did not have any contact with

the hospital within the year preceding the first diagnosis with ALC. The final numbers of ALF

and ALC patients underline the main motivation for this work, namely that the vast majority

of ALD patients are discovered only after ALF has progressed into the irreversible ALC.

To our surprise, only 12 ALF patients did not progress to ALC, for which reason it is not

statistically possible to derive relevant conclusions about the most discriminant diagnoses

among this group of interest. We then compute the most frequently assigned diagnoses among

these three groups of patients within a 2-year time windows upstream of their first ALF or

ALC diagnosis. We find that the group of patients who were diagnosed with ALF and never

developed ALC appears to be much less sick than the two groups of patients with ALC. ALF

patients are mainly over-represented by life-style diagnoses such as type 2 diabetes and hyper-

tension. Both groups of ALC patients reveal a strong over-represented by diagnoses caused by

liver diseases, such as ascites and oesophageal varices. Table G in S1 File gives an overview of

the list of most frequent features among ALC patients. Fig C and D in S1 File show the histo-

grams of top-10 most frequent upstream diagnoses among ALC and non-ALD patients,

respectively. They both share common diagnoses as fracture, open wound, superficial injuries

and type 2 diabetes mellitus.

Based on the group of patients with ALC (9, 373 patients), we select their matched controls

(5 controls per case) from the set of patients with non-ALD (6, 010, 942 patients) for a case–

control study. We then extract 2-year upstream data from controls and consider as starting

timing point, the first date of ALC assignment of their respective matched cases. This resulted

in 9, 082 ALC patients that match 43, 844 controls. For downstream data, we use the same set

of patients and further require 2-year downstream data, resulting in 6, 311 ALC patients and

30, 696 controls. The number of clinical encounters for upstream and downstream varies

between 68, 029 and 96, 728 (see Table H in S1 File), considering only those involving

Fig 2. The number of patients with ALF and ALC obtained from the filtering process. Three main groups of

patients are identified representing patients with ALC, patients with ALF but not ALC, and patients diagnosed with

ALF at least six months before being diagnosed with ALC.

https://doi.org/10.1371/journal.pcbi.1008244.g002
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diagnoses that remain after the filtering steps. ALC patients have an average of 4.38 unique

diagnoses within a 2-year upstream window, whereas the controls have an average of 1.82. It is

not surprising that the controls have fewer unique diagnoses than ALC patients, since diagno-

ses judged as irrelevant to ALD were filtered out before counting. The age and sex distribution

of all the groups of patients are shown in Fig E and F in S1 File, respectively. The majority of

the ALC patients, and their matched non-ALD controls, are male (67%) and between 45 and

80 years old. By contrast, the 12 patients with ALF stand are mainly women and younger than

the ALC patients.

To identify the small set of features that have an impact on the development and/or pro-

gression of ALC, we select both 2-year upstream datasets of the set of patients with ALC and

their matched controls. We then build a new data representation space made of binary tables

whose dimensions for cases (ALC) and controls (non-ALD) are respectively equal to 9, 082

patients × 820 codes and 43, 844 patients × 941 codes. Their combination gives a big unique

binary upstream dataset of 52, 926 patients and 969 unique codes. We use this case–control

dataset as a basis to make the statistical and discrimination/prediction analysis.

Six upstream groups of comorbidities according to statistical analysis

Before making the statistical analysis, we firstly discard rare diagnoses assigned to less than 8

patients, and obtain 652 codes out of the 969. Among these remaining codes, we identify 256

significant ones with a p_value< 0.001. We compute their OR, its confidence interval, COV

and MCC and obtain different sets of ranked codes depending on the metric of interest. How-

ever, the features with high OR are not necessarily the most frequent ones with the highest cov-

erage values. Thus, we select the 20 top-ranked features according to MCC, OR, and COV that

we list in Table G in S1 File and rank according to MCC. However, to extract the important

features, we rely on the top-20 best features according to MCC, since it is a good compromise

between both computed metrics OR and COV.

The top-20 diagnoses upstream of ALC fall into six groups: (i) diagnoses with the strongest

associations to liver dysfunction; (ii) diagnoses, other than liver diseases, which are often

caused by alcohol and minor psychiatric conditions; (iii) diagnoses related to under-nutrition,

that are neither caused by alcohol nor by liver disease; (iv) diseases related to trauma and inju-

ries; and (v) conditions in the upper gastrointestinal tract and finally (vi) other diagnoses.

Table 1 presents the six categories, and statistically evaluates the upstream diagnoses of each

one. All the selected diagnoses are statistically significant with a corrected p_value< 0.001 and

an OR> 2. Their MCC values vary between 0.02 and 0.44, showing a positive correlation with

the development of ALC among the patients.

The first group includes six diagnoses with the highest OR, which are either complications

to liver cirrhosis or codes that represent obvious signs of severe liver disease. While they appear

as upstream diagnoses in our analyses in the sense of which was discovered and coded first,

medically they are downstream consequences of ALC. This is either caused by coding compli-

cations to ALC prior to the proper diagnosis of ALC. Or firstly assigning liver failure diagnoses

to patients before knowing their alcohol overuse [39].

The second group consists of diseases that, like ALC, are caused by alcohol. Despite the

obvious example of mental diseases due to alcohol which is the most frequent diagnosis [40],

the most interesting example is other diseases of the pancreas, which we believe reflects a

vague coding practice for harm to the pancreas caused by alcohol overuse. The disease ‘alco-

holic polyneuropathy’, which is also caused by alcohol, is the most frequent among those

affected to the diagnosis ‘other and unspecified polyneuropathies’. The diagnosis related to

symptoms and signs involving appearance and behavior is used for assigning a code to a
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patient’s condition in the cases where medical examination did not find any disease and when

the doctor believes that the cause of the health care contact is best described caused by one of

the conditions coded in this category. A notable and frequent member of this category is the

code bad personal hygiene. Although it could be due to other causes than alcohol, we believe

that this coding is reflective of the social decline that is sometimes related to heavy alcohol

overuse.

The third group includes associations related to malnutrition or under-nutrition [41]. The

code ‘other anaemias’ that appears in upstream, reflects anemia due to malnutrition caused by

lack of vitamins and minerals such as vitamin-B12. We notice that alcohol-overusing patients

substitute regular food with alcohol and that this results in a poor nutrient intake that explains

this finding [42], [43].

The fourth group contains diseases related to trauma and injuries. Drunkenness is a known

risk-factor for enduring trauma, which sometimes lead to fractures, superficial wounds or

open wounds.

The fifth group contains diagnoses for damage of the mucosal membranes of the upper

intestinal tract. Alcohol is a known risk factor for these conditions. Diagnoses representing

ulcers of the gastrointestinal tract reflect that patients with ALC has a greater tendency to have

Table 1. Groups of statistically significant (p_value< 0.001) upstream diagnoses ranked according to their MCC values. For each diagnosis, we show its values for

MCC (Matthews Correlation Coefficient), OR (Odds Ratio), OR_CI (its confidence interval) and COV (Coverage).

ICD10 code MCC OR 99.9% OR_CI COV

1. Diagnoses related to liver dysfunction

Fibrosis and cirrhosis of liver 0.28 140.99 80.51-246.87 943

Ascites 0.28 67.63 45.83-99.81 977

Other diseases of digestive system 0.26 26.03 20.21-33.54 1,007

Oesophageal varices 0.25 141.21 74.00-269.44 727

Other diseases of liver 0.17 40.71 24.75-67.46 388

Hepatic failure, not elsewhere classified 0.16 67.97 33.85-136.48 326

Chronic viral hepatitis 0.13 20.24 12.86-31.86 269

2. Diagnoses related to alcohol-overuse

Mental-behavioral disorders due to alcohol 0.44 20.25 17.87-22.94 3,075

Other diseases of pancreas 0.13 10.30 7.60-13.96 364

Other and unspecified polyneuropathies 0.12 19.36 12.19-30.75 250

Symptoms and signs involving appearance and behaviour 0.02 19.32 1.43-260.6 8

3. Diagnoses related to malnutrition

Other anaemias 0.18 8.63 7.07-10.54 748

4. Diagnoses related to trauma and injuries

Fracture 0.13 2.68 2.41-2.98 1,709

Superficial injuries 0.10 2.28 2.02-2.57 1,215

Open wound 0.09 2.19 1.94-2.46 1,269

5. Diagnoses related to upper intestinal mucosal

Gastritis and duodenitis 0.17 11.01 8.57-14.14 560

Gastric ulcer 0.14 9.68 7.31-12.82 410

Duodenal ulcer 0.12 9.64 6.98-13.32 310

Oesophagitis 0.11 10.96 7.44-16.13 235

6. Others

abdominal and pelvic pain 0.10 3.56 2.96-4.27 578

https://doi.org/10.1371/journal.pcbi.1008244.t001
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a history of upper gastrointestinal bleedings. At a later state in their course of disease when

they have progressed to cirrhosis and the complication of varices of the oesophagus, they

might as well get upper gastrointestinal bleeding from the oesophageal varices. As shown later

in the downstream diagnoses, however, they maintain the tendency to bleed from ulcers which

are not caused by the liver disease but by the alcohol overuse that also causes the liver disease

[44].

The last group includes only the coding of abdominal and pelvic pain. This code might be

assigned to subclinical cases of alcoholic pancreatitis, i.e. patients with abdominal and pelvic

pain may have an undetected alcoholic pancreatitis during their examination [45].

Six upstream groups of comorbidities according to ML analysis

The four classification models perform similarly. To perform a machine learning

analysis, we use as input the whole upstream binary dataset and we apply the four selected

ML algorithms: Random forest, LightGBM, SVM, and Naive Bayes. The entire binary dataset

of ALC and non-ALD patients is partitioned into a training set (39,694 patients × 969 codes)
for training the classifiers, and an independent test set (13,232 patients × 969 codes) for

assessing the classification performance (Fig 3A). It compares the four classifiers in the ROC

plot by showing in a graphical manner the trade-off between clinical sensitivity and specific-

ity for all potential cut-offs for a test. We show both the full ROC curves and a zoom on the

low false-positive-rate part, which is most relevant for clinical applications. Reassuringly, the

AUC scores show that all of the ML algorithms perform about equally well on the same data

set. They all have a AUC = 0.89, except LightGBM classifier that has a very close AUC score

equal to 0.88.

NaiveBayes, the best performing classifier on the test set of ALF patients. To underline

if it is possible to identify general ALD predictors, we consider the four classification models

trained on the set of ALC patients and test them on the small set of 12 ALF patients. For that,

we select the set of 12 ALF patients and their 5 matched controls and we transform the repre-

sentative space into binary. We obtain a second binary dataset representing ALF patients of

the form 60 patients × 969 codes. Only 60 patients got discovered due to the lack of matching 5

controls per case. Then, we test the four trained classifiers on the generated ALF binary dataset

and evaluate their performance based on the ROC curve of Fig 3B. The latter shows that the

performance of all the classifiers obviously drops a lot compared to Fig 3A. The Naive Bayes is

the classifier that drops the least with an AUC equal to 0.67, followed by SVM which has an

AUC of 0.61. Both tree-based classifiers (RF and LightGBM) are unable to score the majority

of the ALF patients, as they selected features (ICD-10 codes) that are not observed in ALF

patients and their matched controls. Conversely, the Naive Bayes and SVM methods assign

weights to all input features, for which reason they can be applied to the ALF dataset. Accord-

ingly, Naive Bayes is the best classifier that generalizes to ALF.

Quite similar groups of upstream comorbidities compared to the statistical results. To

gain insights into how the classifiers work, we compute the feature importance with regard to

each classifier and compare the feature lists to the results of the statistical results. For SVM, we

use the feature_weight’ scoring metric. For RF and LightGBM, we consider the Gain-based

metric. For Naive Bayes, we evaluate the features according to their coefficients. We sort the

features from each model according to their relevance scores and compute their median ranks

across all the models. Table 2 lists the top-20 features from machine learning according to

median rank. All these discovered features are statistically significant with p_value< 0.001.

The given table also ranks the remaining features w.r.t. each model and classifies them into six

main groups of comorbidities.
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The first group is related to liver damage. It includes diagnoses already identified by

the same group from statistical results. The second group contains a new diagnosis related

to alcohol over-use, which is ‘syncope and collapse’. This diagnosis is used when someone

has been admitted to hospital because either he has fainted or because doctors did not find

a medical cause for the loss of consciousness. This may have several reasons, but in our

case, we believe that this loss of consciousness is highly associated with drunkenness or

Fig 3. The performance of the classification models according to the ROC curves. [A.] presents the independent

test-set performance for ALC patients and their matched controls; the insert shows a zoom of the low-false-positive

part of the curves. [B.] presents the ROC curves of the SVM and NB models trained on the set of ALC patients, and

tested on the ALF patients and their matched controls. The RF and LightGBM models were found to not be applicable

to ALF patients (see main text). In both panels, the dashed line shows the random performance of a model with no

discriminatory power.

https://doi.org/10.1371/journal.pcbi.1008244.g003
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other substance use, when no other explanation is given. The third group contains only

one diagnosis which was already discovered by the statistical analysis, namely ‘other anae-

mias’ caused by malnutrition. The fourth group includes both conditions caused by trauma

(as fracture, superficial injuries and open wound), and lifestyle diseases (as type 2 diabetes).

We group the latter diagnosis together with accidents because the incidence of type 2 diabe-

tes is highly affected by people’s lifestyle. According to Table 2, these diagnoses are highly

ranked by the NaiveBayes, the classification model that best generalizes to ALF. They may

then have the strongest predictive power of ALD development with comparison to the oth-

ers groups. The fifth group related to upper intestinal or respiratory mucosal contains one

additional diagnosis, which is ‘hemorrhage from respiratory passages’. The connection

between these bleedings and alcohol is less obvious from a medical perspective. The last

group shows the same diagnosis as for the statistical results related to ‘abdominal and pelvic

pain’.

Importantly, by using machine learning classifiers to analyse 2-year upstream data of

patients with ALC and others with ALF, we discover a subset of features capable of detecting

ALC patients and that could be promising in predicting ALF.

Table 2. Groups of top-scored upstream diagnoses. They are identified from computing the Median rank on the basis of the results of RF, SVM, LightGBM (LGBM) and

NaiveBayes (NB), trained and tested on the set of patients with ALC and their matched controls.

ICD10 code Median RF SVM LGBM NB

1. Diagnoses related to liver dysfunction

Ascites 2 2 2 2 6

Other diseases of digestive system 4 3 9 3 5

Fibrosis and cirrhosis of liver 4 4 1 4 7

Oesophageal varices 5 5 3 5 11

Other diseases of liver 8 8 5 8 18

Hepatic failure, not elsewhere classified 9 10 4 9 22

2. Diagnoses related to alcohol-overuse

Mental-behavioural disorders due to alcohol 1 1 11 1 1

Other diseases of pancreas 17 11 57 16 19

Other and unspecified polyneuropathies 22 12 15 757 29

Syncope and collapse 25 26 180 19 25

3. Diagnosis related to malnutrition

Other anaemias 8 6 69 7 10

4. Diagnoses related to injuries & life-style

Fracture 6 7 231 6 2

Superficial injuries 13 17 294 10 4

Open wound 13 14 244 11 3

Type 2 diabetes mellitus 21 24 400 18 9

5. Diagnoses related to upper intestinal or respiratory mucosal

Gastritis and duodenitis 12 9 174 12 13

Gastric ulcer 15 13 158 15 15

Duodenal ulcer 19 16 168 14 23

Hemorrhage from respiratory passages 21 18 74 13 24

6. Others

Abdominal and pelvic pain 18 19 225 17 12

https://doi.org/10.1371/journal.pcbi.1008244.t002
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Downstream comorbidities

To identify the list of discriminant diagnoses that represent the progression of ALC to liver

failure, we perform a case–control study and work on 2-year downstream time window of the

first assignment date of ALC for cases and their matched controls. For this, we consider the set

of 6, 311 patients with ALC as cases and the set of 30, 696 patients as controls. Then, we con-

struct a new data representation space made of their binary tables that we combine to get a

new downstream unique binary matrix of 37, 007 patients and 959 unique codes. This new

matrix is then used as input to make only the statistical analysis since we are not looking for

predictive features in downstream of first ALC. For this, we proceed as for the upstream statis-

tical analysis, we compute the p_value, the OR and its confidence interval, the Coverage and

the MCC based on the downstream binary dataset. We then select statistically significant fea-

tures with a corrected p_value lower than 0.001, which are on the top-20 according to MCC.

These features are presented in Table 3. The top-10 most frequent downstream diagnoses

among ALC and non-ALD patients are given in Fig G and H in S1 File, respectively. Both lists

contain the diagnoses fracture, type 2 diabetes mellitus, superficial injuries and open wound,

which are also seen as frequent upstream diagnoses for both patient groups. All the selected

downstream diagnoses have an OR> 2 and MCC values that vary between 0.11 and 0.43,

Table 3. Groups of statistically significant (p_value< 0.001) downstream diagnoses ranked according to their MCC values. For each diagnosis, we show its values for

MCC (Matthews Correlation Coefficient), OR (Odds Ratio), OR_CI (its confidence interval), and COV (Coverage).

ICD10 code MCC OR 99.9% OR_CI COV

1. Diagnoses related to liver complications

Ascites 0.43 127.32 85.30-190.05 1,454

Oesophageal varices 0.40 365.31 173.69-768.36 1,214

Hepatic failure, not elsewhere classified 0.34 265.76 123.74-570.81 892

Fibrosis and cirrhosis of liver 0.34 142.08 82.25-245.42 945

Other diseases of digestive system 0.28 24.96 18.96-32.85 814

Other diseases of liver 0.24 66.85 39.12-114.25 518

Chronic viral hepatitis 0.16 17.76 11.76-26.82 290

Malignant neoplasm of liver-intrahepatic bile ducts 0.16 35.96 19.64-65.81 242

Other disorders of circulatory system in diseases classified elsewhere 0.13 696.37 25.61-18929.14 140

Peritonitis 0.12 14.39 8.77-23.61 173

Other disorders of fluid, electrolyte and acid-base balance 0.11 7.15 5.15-9.92 250

2. Diagnoses related to alcohol-overuse

Mental-behavioral disorders due to alcohol 0.43 18.33 15.91-21.13 2,223

Other diseases of pancreas 0.17 12.84 9.27-17.78 365

Other and unspecified polyneuropathies 0.11 11.22 7.21-17.46 182

3. Diagnoses related to malnutrition

Other anaemias 0.19 7.78 6.29-9.63 618

4. Diagnoses related to injuries

Fracture 0.13 2.90 2.53-3.34 993

5. Diagnoses related to upper intestinal mucosal

Gastric ulcer 0.15 11.25 7.97-15.88 299

Duodenal ulcer 0.12 10.18 6.9-15.00 221

Gastritis and duodenitis 0.15 9.13 6.81-12.24 360

6. Diagnoses related to sepsis

Other sepsis 0.13 5.9 4.54-7.65 355

https://doi.org/10.1371/journal.pcbi.1008244.t003
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indicating a positive correlation with ALC. The diagnoses most strongly correlated with ALC

are ‘ascites’ and ‘mental-behavioral disorders due to alcohol’. Compared to the remaining

diagnoses, they are the most correlated to the ALC disease. Ascites are an accumulation of

fluid in the abdominal cavity, which is most often caused by liver cirrhosis and alcohol abuse,

and its development indicates advanced liver disease [46].

As for the upstream data, we classify the downstream codes into six main classes: (i) coding

of the known complications to liver cirrhosis, but this time after the underlying disease has

been discovered; (ii) codes related to alcohol-overuse; (iii) malnutrition; (iv) injuries; (v) upper

intestinal mucosal; and lastly (v) sepsis.

In addition to the overlap between the upstream and downstream comorbidities, more

diagnoses related to liver complication show up in downstream, together with a new group

related to sepsis (Table 3). Four new downstream diagnoses are identified as part of the first

group, which are ‘peritonitis’, ‘other disorders of fluid, electrolyte and acid-base balance’,

‘other disorders of circulatory system in diseases classified elsewhere’, and ‘malignant neo-

plasm of liver-intrahepatic bile ducts’. The latter diagnosis contains ‘hepatocellular carcinoma’,

which is a cancer almost exclusively developed as a complication to liver cirrhosis [47, 22]. The

diagnosis of other disorders of circulatory system in diseases classified elsewhere contains ‘var-

ices of the oesophagus without bleeding due to disease classified elsewhere’. The diseases classi-

fied elsewhere are in this case related to liver cirrhosis. This diagnosis has the highest OR, but

weak MCC and Coverage values. The other diagnosis coded under peritonitis contains the

condition spontaneous bacterial peritonitis, which is a condition almost exclusively seen as a

complication to liver cirrhosis. The last new diagnosis of other disorders of fluid, electrolyte

and acid-base balance contains hyponatraemia is a frequent complication to liver cirrhosis

from a medical point of view.

Compared to the upstream data, we identify fewer diagnoses in the next four downstream

groups (ii–v). All of them are already discovered in upstream. The only diagnosis in the sixth

group is ‘other sepsis’, which is only identified in the downstream analysis. Most likely this

reflects that cirrhotic patients have an increased tendency to contract infections including the

most severe ones.

Conclusion

In this paper, we presented the—to our knowledge—first study of ALF and ALC using registry

data for an entire country aiming to identify up- and down-stream diagnoses. We used a

knowledge discovery approach to extract relevant information from patient registry data

related to ALD and examined if one can identify patients likely to develop ALF or ALC based

on their past medical histories. Stratifying the patients, we found that 499 patients were diag-

nosed with ALF, which highlights the need for earlier diagnosis of ALD. Through a statistical

comparison of ALC patients with matched non-ALD controls, we identified six groups of sta-

tistically significant upstream diagnoses, which relate to liver dysfunction, alcohol overuse,

malnutrition, trauma and injuries, upper intestinal mucosal, and other diagnoses. We similarly

identified downstream diagnoses of ALC, which additionally included other sepsis and more

diagnoses related to liver complication. We used four different machine-learning algorithms

to test how well future ALD diagnoses can be predicted based on upstream diagnoses.

Training models on ALC patients, we achieved good performance on an independent test set

(AUC = 0.89). To see if it is possible to identify ALD patients already at the ALF stage, we

tested the already trained models on the small number of patients diagnosed only with

ALF. While this shows promise, the performance drops considerably compared to ALC
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(AUC = 0.67 for NaiveBayes); this drop reflects that ALF patients are much less sick and thus

harder to identify from upstream diagnoses.

The study was approved by the Danish Data Protection Agency [SUND-DT-2017-57] and

the Danish Health Authority [FSEID-00003092].
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20. Vestberg K, Thulstrup AM, SÃ¸rensen HT, Ottesen P, Sabroe S, Vilstrup H. Data Quality of Administra-

tively Collected Hospital Discharge Data for Liver Cirrhosis Epidemiology. Journal of Medical Systems.

1997; 21:11–20. https://doi.org/10.1023/A:1022835207287 PMID: 9172066

21. Schmidt M, Schmidt S, Sandegaard J, Ehrenstein V, Pedersen L, Sørensen H. The Danish National

Patient Registry: a review of content, data quality, and research potential. Clinical Epidemiology. 2015;

(7):449–490. https://doi.org/10.2147/CLEP.S91125 PMID: 26604824

22. Jepsen P, Lash TL, Vilstrup H. The clinical course of alcoholic cirrhosis: development of comorbid dis-

eases. A Danish nationwide cohort study. Liver International. 2016; 36(11):1696–1703. https://doi.org/

10.1111/liv.13151 PMID: 27124269

23. Beck MK, Jensen AB, Nielsen AB, Perner A, Moseley PL, Brunak S. Diagnosis trajectories of prior

multi-morbidity predict sepsis mortality. Scientific Reports. 2016; 6:36624. https://doi.org/10.1038/

srep36624 PMID: 27812043

24. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 2nd ed Lippincott Williams & Wilkins;

1998.

25. Andrade C. Understanding relative risk, odds ratio, and related terms: as simple as it can get. Journal of

Clinical Psychiatry. 2015; 76(7). https://doi.org/10.4088/JCP.15f10150 PMID: 26231012

PLOS COMPUTATIONAL BIOLOGY Registry view on alcoholic liver disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008244 September 22, 2020 18 / 19

https://doi.org/10.1111/j.1360-0443.2008.02493.x
https://doi.org/10.1111/j.1360-0443.2008.02493.x
http://www.ncbi.nlm.nih.gov/pubmed/19215600
https://doi.org/10.1016/j.jhep.2015.11.006
https://doi.org/10.1016/j.jhep.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26592352
https://doi.org/10.1053/j.gastro.2015.09.040
http://www.ncbi.nlm.nih.gov/pubmed/26435270
https://doi.org/10.3748/wjg.v20.i25.8040
https://doi.org/10.3748/wjg.v20.i25.8040
http://www.ncbi.nlm.nih.gov/pubmed/25009375
https://doi.org/10.1016/S2468-1253(16)30081-4
http://www.ncbi.nlm.nih.gov/pubmed/28404098
https://doi.org/10.1016/j.cgh.2019.07.060
http://www.ncbi.nlm.nih.gov/pubmed/31401364
https://doi.org/10.1056/NEJM199701093360201
https://doi.org/10.1056/NEJM199701093360201
http://www.ncbi.nlm.nih.gov/pubmed/8988884
https://doi.org/10.1016/S0895-4356(01)00454-1
http://www.ncbi.nlm.nih.gov/pubmed/11809351
https://doi.org/10.1038/ncomms5022
http://www.ncbi.nlm.nih.gov/pubmed/24959948
https://doi.org/10.1136/bmjqs-2013-002378
https://doi.org/10.1136/bmjqs-2013-002378
http://www.ncbi.nlm.nih.gov/pubmed/24443584
https://doi.org/10.1142/9789813207813_0036
http://www.ncbi.nlm.nih.gov/pubmed/27896991
https://doi.org/10.1056/NEJMoa1700732
http://www.ncbi.nlm.nih.gov/pubmed/29211679
https://doi.org/10.1023/A:1022835207287
http://www.ncbi.nlm.nih.gov/pubmed/9172066
https://doi.org/10.2147/CLEP.S91125
http://www.ncbi.nlm.nih.gov/pubmed/26604824
https://doi.org/10.1111/liv.13151
https://doi.org/10.1111/liv.13151
http://www.ncbi.nlm.nih.gov/pubmed/27124269
https://doi.org/10.1038/srep36624
https://doi.org/10.1038/srep36624
http://www.ncbi.nlm.nih.gov/pubmed/27812043
https://doi.org/10.4088/JCP.15f10150
http://www.ncbi.nlm.nih.gov/pubmed/26231012
https://doi.org/10.1371/journal.pcbi.1008244


26. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto

Superiore di Scienze Economiche e Commerciali di Firenze. 1936; 8:3–62.

27. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

Biochimica et Biophysica Acta (BBA)—Protein Structure. 1975; 405(2):442–451. https://doi.org/10.

1016/0005-2795(75)90109-9 PMID: 1180967

28. Rokach L. Ensemble-based Classifiers. Artif Intell Rev. 2010; 33(1-2):1–39. https://doi.org/10.1007/

s10462-009-9124-7

29. Breiman L. Random Forests. Machine Learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

30. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’16. ACM; 2016.

p. 785–794.

31. Breiman L. Bagging Predictors. Machine Learning. 1996; 24(2):123–140. https://doi.org/10.1007/

BF00058655

32. Mason L, Baxter J, Bartlett P, Frean M. Boosting Algorithms as Gradient Descent. In: In Advances in

Neural Information Processing Systems 12. MIT Press; 2000. p. 512–518.

33. Russell S, Norvig P. Artificial Intelligence: A Modern Approach. 2nd ed. Prentice Hall Press; 2003.

34. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20(3):273–297. https://doi.org/

10.1023/A:1022627411411

35. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27(8):861–874. https://

doi.org/10.1016/j.patrec.2005.10.010

36. He H, Garcia EA. Learning from Imbalanced Data. IEEE Trans on Knowl and Data Eng. 2009; 21

(9):1263–1284. https://doi.org/10.1109/TKDE.2008.239

37. Hogg RV, McKean JW, Craig A. Introduction to Mathematical Statistics. Pearson education interna-

tional. Pearson Education; 2005. Available from: https://books.google.dk/books?id=vIEZAQAAIAAJ.

38. Siegel E. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. 2nd ed. Hoboken,

N.J.: Wiley; 2016.

39. Poordad FF. Presentation and complications associated with cirrhosis of the liver. Current Medical

Research and Opinion. 2015; 31(5):925–937. https://doi.org/10.1185/03007995.2015.1021905 PMID:

25697811

40. Addolorato G, Mirijello A, Barrio P, Gual A. Treatment of alcohol use disorders in patients with alcoholic

liver disease. Journal of Hepatology. 2016; 65(3):618–630. https://doi.org/10.1016/j.jhep.2016.04.029

PMID: 27155530

41. Palmer LB, Kuftinec G, Pearlman M, Green CH. Nutrition in Cirrhosis. Current Gastroenterology

Reports. 2019; 21(8):38. https://doi.org/10.1007/s11894-019-0706-5 PMID: 31289936

42. Sayon-Orea C, Martinez-Gonzalez MA, Bes-Rastrollo M. Alcohol consumption and body weight: a sys-

tematic review. Nutrition Reviews. 2011; 69(8):419–431. https://doi.org/10.1111/j.1753-4887.2011.

00403.x PMID: 21790610

43. Berger D, Bradley KA. Primary Care Management of Alcohol Misuse. Medical Clinics of North America.

2015; 99(5):989–1016. https://doi.org/10.1016/j.mcna.2015.05.004 PMID: 26320043
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