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Abstract: Understanding the effects of missense mutations on protein stability is a widely acknowl-
edged significant biological problem. Genomic missense mutations may alter one or more amino
acids, leading to increased or decreased stability of the encoded proteins. In this study, we describe
a novel approach—Protein Stability Prediction with a Gaussian Network Model (PSP-GNM)—to
measure the unfolding Gibbs free energy change (∆∆G) and evaluate the effects of single amino acid
substitutions on protein stability. Specifically, PSP-GNM employs a coarse-grained Gaussian Net-
work Model (GNM) that has interactions between amino acids weighted by the Miyazawa–Jernigan
statistical potential. We used PSP-GNM to simulate partial unfolding of the wildtype and mutant
protein structures, and then used the difference in the energies and entropies of the unfolded wildtype
and mutant proteins to calculate ∆∆G. The extent of the agreement between the ∆∆G calculated
by PSP-GNM and the experimental ∆∆G was evaluated on three benchmark datasets: 350 forward
mutations (S350 dataset), 669 forward and reverse mutations (S669 dataset) and 611 forward and
reverse mutations (S611 dataset). We observed a Pearson correlation coefficient as high as 0.61, which
is comparable to many of the existing state-of-the-art methods. The agreement with experimental
∆∆G further increased when we considered only those measurements made close to 25 ◦C and neutral
pH, suggesting dependence on experimental conditions. We also assessed for the antisymmetry
(∆∆Greverse = −∆∆Gforward) between the forward and reverse mutations on the Ssym+ dataset, which
has 352 forward and reverse mutations. While most available methods do not display significant
antisymmetry, PSP-GNM demonstrated near-perfect antisymmetry, with a Pearson correlation of
−0.97. PSP-GNM is written in Python and can be downloaded as a stand-alone code.

Keywords: Gaussian network models; missense mutations; protein stability; Gibbs free energy
change; Miyazawa–Jernigan potential

1. Introduction

Genomic mutations are often random and can either be synonymous mutations that
do not alter the amino acid sequence of an encoded protein or non-synonymous muta-
tions that alter the amino acid sequence. Non-synonymous point mutations can lead to
structural changes, affecting the folding energy landscape and thermodynamic stability
of proteins [1–4]. They may sometimes have a neutral effect on the folding energy land-
scape of proteins; that is, there may be little difference in the thermodynamic stability of
the mutant and wildtype proteins. However, mutations often tend to change the folding
energy landscape, rendering the mutant proteins either more or less stable compared to
the wildtype [5,6]. Understanding the impact of non-synonymous point mutations on the
thermodynamic stability of proteins is regarded as a key biological problem. For instance,
many neurodegenerative diseases and genetic disorders have been linked to the incorrect
folding of polypeptides that is caused by mutations in genes [7]. It is therefore necessary
to understand how non-synonymous mutations impact the thermodynamic stability of
proteins to better associate their roles in different diseases.

Int. J. Mol. Sci. 2022, 23, 10711. https://doi.org/10.3390/ijms231810711 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231810711
https://doi.org/10.3390/ijms231810711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8319-0599
https://doi.org/10.3390/ijms231810711
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231810711?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 10711 2 of 21

Mutagenesis experiments that assess the change in the thermodynamic stability of
proteins measure the energies of the folded and unfolded states of the wildtype and mutant
proteins, providing an accurate picture of stability change upon mutations. However,
such experiments are time-consuming and expensive; thus, there is a need for alternative
computational methods that accurately predict the effects of mutations on protein stability.
Databases such as ProTherm [8], ThermoMutDB [9] and FireProtDB [10] have mined such
experimental data from the literature and have recorded details of changes in free energies
(∆∆G) upon mutations. Experimental ∆∆G is the difference in the Gibbs free energies (∆G)
of the mutant and wildtype proteins. Specifically, ∆∆G = ∆Gmut − ∆Gwt, where ∆Gmut
is the energy of the unfolded state minus the energy of the folded state of the mutant
protein (∆Gun f olded

mut − ∆G f olded
mut ), while ∆Gwt is the energy of the unfolded state minus the

energy of the folded state of the wildtype protein (∆Gun f olded
wt − ∆G f olded

wt ) [11]. A positive
∆∆G indicates greater thermodynamic stability of the mutant protein, while a negative
∆∆G indicates reduced stability. It is to be noted that forward mutants (wildtype residue
X→mutant residue Y) are antisymmetric to their corresponding reverse mutants (mutant
residue Y→ wildtype residue X) in terms of their folding free energies [12,13]. That is,
∆∆Gforward = −∆∆Greverse, which is a key outcome from mutagenesis experiments and is
often used to evaluate predictions for ∆∆G from computational methods.

Numerous computational methods have been developed to predict the ∆∆G be-
tween a wildtype protein and its non-synonymous mutant form. The review articles
by Marabotti et al. [14] and Sanavia et al. [15] provide a comprehensive overview of the
computational methods developed towards this effort. Existing methods may be broadly
classified into two categories: unsupervised and supervised methods. Unsupervised
methods are untrained methods and do not rely on machine learning. They can include
empirical methods that model the energy of a protein through an equation that includes
several parameters, with each parameter carrying a different weight. For example, the
FoldX empirical method [16] uses both the bonded and non-bonded energy terms to model
a protein’s energy, and then calculates the difference in the energies of the mutant and
wildtype proteins to estimate the ∆∆G. SDM [17] uses environment-specific amino acid
substitution tables and residue packing densities to calculate the ∆∆G. DDGun is another
unsupervised method that uses sequence and structural properties of proteins in linear
weighted combinations to estimate the ∆∆G [18]. Specifically, it is one of the few methods
that demonstrate the antisymmetric relationship between forward and reverse mutants.
Supervised methods employ machine learning and are trained on a large dataset (training
data) including features (e.g., amino acid physicochemical properties, protein geometric
properties, etc.) of the wildtype and mutant forms of different proteins and their associated
experimental ∆∆G. Such methods are then typically evaluated on an independent dataset
of wildtype and mutant proteins with known experimental ∆∆G.

Numerous supervised computational methods to predict stability changes in proteins
upon mutations have been developed in the past decade. These methods often employ ma-
chine learning models trained on diverse benchmark datasets obtained from the ProTherm
database. I-mutant [19,20] employs support vector machines (SVMs) [21] trained on a sub-
set of data taken from ProTherm and uses a set of sequence and spatial features, including
solvent accessibility, to predict the ∆∆G. It also gives the user an option to make predictions
using just the protein sequence in case the protein structure is not available. mCSM [22]
represents the environment of the mutation site as a distance-based graphical map and com-
bines it with pharmacophore counts to predict the effect of mutations using a trained linear
regression model. MAESTRO [23] uses statistical scoring functions and other sequence
and structural features, such as the accessible surface area, hydrophobicity and secondary
structure of the mutation site, to train artificial neural networks, SVMs and multiple linear
regression models, making consensus ensemble-based predictions. Dynamut [24] follows
a meta-prediction approach by using predictions from other methods, which use protein
structure and dynamics information to estimate ∆∆G, to arrive at a consensus prediction
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for ∆∆G. Dynamut2 [25] predicts ∆∆G using a Random Forest algorithm trained on protein
dynamics features calculated from normal mode analysis and graph-based signatures.

It has generally been observed that supervised computational methods outperform
unsupervised methods in predicting ∆∆G [25]. However, one of the key shortcomings of the
supervised methods is overfitting the training data, which largely comprises destabilizing
mutations. Consequently, only a handful of these methods satisfy the antisymmetric
property between forward and reverse mutations. Some of the more recently developed
supervised approaches, such as PremPS [26], ACDC-NN [27] and Thermonet [28] have
addressed this issue by training on both forward and reverse mutation data. Moreover,
supervised methods use an ensemble of features that are selected purely based on the
algorithms’ performance in cross-validation, not based on any theoretical model that
simulates the mutational perturbation behavior. It is always a challenge to associate such
features with mutational perturbation, understand how a mutation affects each of these
features and explain the biological significance and role of each feature in the context of
protein thermodynamic stability.

In this study, we present a theoretical and unsupervised method—PSP-GNM, which
simulates protein unfolding behavior using the Gaussian Network Model (GNM) [29] and
calculates ∆∆G for a pair of wildtype and mutant proteins. GNM is an elastic network
model that models a protein using a coarse-grained representation. Each amino acid
in GNM is represented by its alpha carbon, and the interacting amino acid pairs are
connected using hypothetical Hookean springs [29]. Previously, elastic network models
have been shown to capture the near-native dynamics of proteins [30] and have been used to
efficiently identify functional sites in proteins [31,32]. GNM has been previously employed
to study changes in protein dynamic communities upon mutations and has been shown
to possess the ability to identify stabilizing and destabilizing mutations in proteins [33].
In addition, GNM has also been previously utilized to study protein unfolding behavior
and identify the order of contacts broken during protein unfolding [34,35]. PSP-GNM
utilizes the knowledge of amino acid contacts that are broken at the mutation site during
theoretical protein unfolding to estimate the energy change. It is based on protein dynamics
obtained using a coarse-grained representation of the protein and provides useful insights
into the importance of the local dynamics of the mutation site and its interactions with
neighbors, helping us to understand protein stability changes upon mutation. We evaluated
the calculated ∆∆G from PSP-GNM on multiple benchmark datasets obtained from the
ProTherm database and compared the predictions from PSP-GNM with other state-of-
the-art methods. Despite being an unsupervised approach, PSP-GNM shows comparable
performance to many supervised approaches.

2. Results

PSP-GNM utilizes the coarse-grained Gaussian Network Model (GNM) to simulate
partial protein unfolding. Unlike the conventional GNM, which has interacting residues
connected with springs that have a uniform force constant of one, PSP-GNM weights the
interacting residues using their interaction energies obtained from the Miyazawa–Jernigan
potential [36]. We chose the Miyazawa–Jernigan potential for two reasons. First, a pilot
analysis (Table S1) suggested superior performance of the Miyazawa–Jernigan potential
compared to two other potentials: the Bastolla potential [37] and the Betancourt–Thirumalai
potential [38]. Second, the Miyazawa–Jernigan potential is a very popular choice with
a wide variety of applications and has been shown to outperform other potentials in
protein–protein docking [39] and protein folding [38].

To simulate partial protein unfolding, the residue–residue contacts with the highest
mean-squared fluctuations (MSFs) in their distance are first identified, both in the wildtype
and mutant proteins. In this context, MSF is the average change in internal distance for
a given pair of residues. These contacts are then removed from the amino acid contact
matrices of the wildtype and mutant. The new contact matrix is then used for MSF
calculations in the next iteration, and the same procedure of identifying and removing
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the contacts with the highest MSF is followed. We refer to this method of sequentially
identifying high-MSF contacts and removing them as protein unfolding. Previous studies
have successfully used this approach to study protein unfolding behavior [34,35]. We
consider a protein to be partially unfolded when 50% of all contacts observed in the starting
structure are broken. Contacts broken with the residue at the mutation position are identified
and ranked in the order they were broken. Broken contacts that share the same rank for a pair
of mutant and wildtype proteins are then considered for calculations of ∆∆G.

To calculate ∆∆G, PSP-GNM considers both residue-residue interaction energies and
entropies. While the residue–residue contact energies are obtained using the Miyazawa–
Jernigan potential statistical potential, the MSF in distance between a pair of residues
is a measure of their entropy. The difference between the energy and entropy terms of
the mutant and wildtype proteins constitutes the ∆∆G calculated by PSP-GNM. Figure 1
provides an overview of PSP-GNM. Details of calculations and a more elaborate flow
diagram are included in Materials and Methods.

Figure 1. An overview of the PSP-GNM approach. (A) The starting structure is an all-atom PDB
structure. (B) The PDB structure is coarse-grained into a bead-and-spring representation. Each amino
acid is represented as a bead, and the interactions with other amino acids within a cutoff distance
are represented as springs (lines). The interactions between pairs of residues are weighted by their
corresponding Miyazawa–Jernigan potentials. Both wildtype and mutant proteins are coarse-grained.
(C) Both mutant and wildtype forms are simulated for unfolding. Residue–residue contacts that have
the highest MSF in their distance are iteratively identified and removed. The iteration is performed
until 50% of contacts in the starting structure are broken. (D) The native state contacts (blue dashed
lines) for the residue at the mutation position (ASP-89) and the contacts broken (blue dashed lines
with ‘x’) during unfolding are shown for the wildtype. (E) The native state contacts (red dashed lines)
for the residue at the mutation position (GLU-89) and the contacts broken (red dashed lines with ‘x’)
during unfolding are shown for the mutant. The contacts broken are ranked in the order they were
broken (numbers on lines). Only those contacts that share the same rank between the mutant and
wildtype are considered for the calculation of ∆∆G.
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We used five benchmark datasets from the literature in this study. i. The S2298 dataset
includes 2298 forward mutations from 126 distinct proteins. It is by far the largest dataset
available in the literature and is often used for training supervised methods. ii. The
S350 dataset comprises 350 forward mutations spanning 67 proteins. We excluded one
PDB ID and its corresponding mutation, as the PDB record was obsolete, resulting in
349 mutations across 66 proteins. Together, the S2298 and S350 datasets constitute the
S2648 dataset, which contains 2648 mutations across 131 proteins. iii. The S611 dataset
includes 611 forward and reverse mutations and is a subset of the S350 dataset. We excluded
two mutations corresponding to an obsolete PDB record. iv. The S669 dataset includes
669 forward mutations across 94 distinct proteins. The proteins included in this dataset
share less than 25% sequence identity with the proteins in the S2298 and S350 datasets.
For this study, we also considered the reverse mutations corresponding to the forward
mutations on this dataset. v. The Ssym+ dataset includes 704 mutations (352 forward
and 352 reverse) across 371 proteins. This dataset is particularly useful for evaluating the
antisymmetric property.

First, we identified the optimal parameters for which PSP-GNM shows maximum
agreement with experimental ∆∆G. We used the S2298 dataset for this purpose. Ad-
ditionally, we investigated the extent of agreement between the residue mean-squared
fluctuations calculated by our method with the experimental temperature factors. Second,
we evaluated the extent of agreement between PSP-GNM-calculated ∆∆G and experimental
∆∆G on the S2298, S350 and S611 datasets for different experimental conditions. Finally,
we compared the performance of PSP-GNM with other state-of-the-art methods on the
S350, S611, S669 and Ssym+ datasets.

2.1. Optimal Parameters for PSP-GNM

Two essential parameters regulating the native state protein dynamics captured by PSP-
GNM are the cutoff distance (rc) between C-alpha atoms and the number of low-frequency
modes (Nmodes) used to reconstruct the inverse Kirchhoff matrix. While rc controls the
number of interacting residue pairs in a protein, Nmodes impacts the calculated MSF in
distance between a pair of residues. Using the S2298 dataset, we identified values for these
two parameters that maximized the agreement between the calculated and experimental
∆∆G. We chose the S2298 dataset because it provides a large and diverse set of mutations on
which the parameters can be generalized. Furthermore, numerous existing methods have
been trained using this dataset; the performance of PSP-GNM cannot be fairly compared
with other methods on this dataset.

First, we set Nmodes to 10 and identified the rc in the range of 7Å–12Å that results in
maximum correlation between the calculated and experimental ∆∆G. We observed the high-
est Pearson correlation coefficient of 0.39 for rc = 9 Å (Table 1), which also had the highest
proportion of mutations with a calculated ∆∆G (94%). As previously noted, PSP-GNM can
only calculate a ∆∆G if there is at least one broken contact for the mutation position, both
in the mutant and the wildtype. Then, we set rc to 9 Å and observed the highest correlation
of 0.4 for Nmodes = 20 compared to 5, 10, 20, 30, 40 and 50 modes (Table 2). The correlation
for Nmodes = 10 was only marginally inferior (Pearson correlation 0.39), although we did
observe that using 20 modes resulted in a higher proportion of mutations (95.4%) with
a calculated ∆∆G. To choose between Nmodes = 20 and Nmodes = 10, we also considered
evidence from the literature. Previously, it has been shown that using the first 10 low
frequency modes is usually sufficient to capture the native state protein dynamics [40]. In
addition, we have previously shown that the stability differences between wildtype and
mutant structures can be well explained by using just the first 10 low frequency modes [33].
Consequently, we selected the parameters Nmodes = 10 and rcutoff = 9 Å and used these
parameters throughout this study. PSP-GNM, however, does provide an option to run
predictions using Nmodes = 20.
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Table 1. Predictive performance of PSP-GNM for different distance cutoffs evaluated on the
S2298 dataset. For all calculations, only the top 10 low-frequency modes were used. % Predic-
tions is the percentage of mutations in the S2298 dataset with a calculated ∆∆G. The best performance
is shown in bold.

Number of Modes Distance Cutoff (Å) Pearson Correlation RMSE (Kcal/mol) % Predictions

10 9 0.39 1.35 94
10 11 0.39 1.34 91.7
10 12 0.38 1.35 93.7
10 7 0.38 1.36 91.4
10 10 0.37 1.36 94.3
10 8 0.37 1.36 93.3

Table 2. Predictive performance of PSP-GNM for different low-frequency modes evaluated on the
S2298 dataset. For all calculations, the distance cutoff was set to 9 Å. % Predictions is the percentage
of mutations in the S2298 dataset with a calculated ∆∆G. The best performance is shown in bold.

Number of Modes Distance Cutoff (Å) Pearson Correlation RMSE (Kcal/mol) % Predictions

20 9 0.4 1.34 95.4
10 9 0.39 1.35 94
40 9 0.39 1.35 94.6
5 9 0.39 1.36 88.4
50 9 0.39 1.36 93.9
30 9 0.38 1.35 95.1

Using the S2298 data, we also investigated the extent of agreement between the residue
mean-squared fluctuations obtained using PSP-GNM and the experimental B-factors. We
performed this comparison on the 126 wildtype proteins that were represented as C-alpha
coarse-grained structures. Only 110 proteins were X-ray crystal structures and included
B-factors. We observed a median correlation of 0.46 between the mean-squared fluctuations
calculated by PSP-GNM and the experimental B-factors (Figure S1). We also note that this
agreement was weaker than GNM (correlation 0.57) when using rc = 9 Å and Nmodes = 10
(Figure S1).

2.2. Predictive Performance of PSP-GNM on Three Datasets

We evaluated the extent of agreement between the PSP-GNM-calculated ∆∆G and the
experimental ∆∆G on three datasets: S2298, S350 and S611. Specifically, we evaluated the
performance under different experimental conditions. We also used the S2298 dataset to
fit the regression line and obtain the scaling coefficients that were then used to scale the
calculated ∆∆G.

2.2.1. Performance on S2298 Dataset

Of the 2298 mutations in the S2298 dataset, PSP-GNM-calculated ∆∆G could be
obtained for 2159 mutations that had at least one broken contact involving the mutation
position. For cases without a calculated ∆∆G, we assigned a theoretical ∆∆G value of
0 Kcal/mol. As we previously noted, using the selected parameters rc = 9 Å and Nmodes = 10
gave a Pearson correlation of 0.39 and an RMSE of 1.35 kcal/mol (Figure 2A). To scale the
calculated ∆∆G, we used the equation of the regression line fit to the experimental ∆∆G.
Upon inclusion of the 143 mutations without any PSP-GNM-calculated ∆∆G (by assigning
them a theoretical ∆∆G of 0 kcal/mol), we did not observe any considerable change in the
agreement to the experimental data (Figure 2B).
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Figure 2. Performance on S2298 dataset. The extent of agreement between the experimental ∆∆G
and the PSP-GNM-calculated ∆∆G is shown for (A) 2159 mutants having a PSP-GNM-calculated
∆∆G, (B) all 2298 mutants, (C) 259 mutants with experimental temperatures ranging from 24 ◦C to
26 ◦C and pH ranging from 6.8 to 7.2. The regression line with the 95% confidence interval (shaded
gray) is shown for all three cases. The optimal agreement is seen for (C), with a Pearson correlation of
0.55 and an RMSE of 1.18 Kcal/mol. We used a theoretical ∆∆G value of 0 kcal/mol for cases without
a PSP-GNM-calculated ∆∆G.

The distribution of the experimental temperatures and pH for the 2159 mutations with
calculated ∆∆G indicated a peak around 25 ◦C and a pH close to 7 (Figure S2), suggesting
that the experimental measurements were performed mostly around this temperature and
pH. We then tested whether PSP-GNM showed better agreement with ∆∆G measurements
performed around 25 ◦C and a pH of 7. Of the 2159 mutations, we identified 259 muta-
tions with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH ranging from
6.8 to 7.2 and observed an improved agreement (Pearson correlation = 0.55, RMSE =
1.18 Kcal/mol) with the experimental measurements (Figure 2C). We then asked: how
does the agreement vary for mutations with experimental temperatures in the range of
24 ◦C–26 ◦C, but without any pH filter? How does the agreement vary for mutations
with experimental pH of 6.8–7.2, but no temperature filter? Interestingly, we observed
stronger agreement for mutations with experimental temperatures of 24 ◦C–26 ◦C (Pearson
correlation = 0.45, RMSE = 1.31 Kcal/mol) compared to mutations with pH of 6.8–7.2
(Pearson correlation = 0.36, RMSE = 1.41 Kcal/mol) (Figure S3), suggesting a certain degree
of bias towards measurements made at a particular temperature range.

2.2.2. Performance on S350 Dataset

The S350 dataset included 349 mutations from 66 unique PDB identifiers. On this
dataset, ∆∆G could be calculated with PSP-GNM for 325 wildtype–mutant pairs that
exhibited at least one broken contact involving the mutation position during partial unfold-
ing. We observed a Pearson correlation of 0.51 and an RMSE of 1.37 Kcal/mol for these
325 mutations (Figure 3A). When the remaining 24 wildtype–mutant pairs were included
by assigning them a ∆∆G value of 0 kcal/mol, we observed a decrease in the Pearson
correlation to 0.49 and an increase in the RMSE to 1.39 Kcal/mol (Figure 3B).

The experimental temperature and pH for the 318 mutants with calculated ∆∆G show
a similar distribution as that of the S2298 dataset, i.e., a peak around 25 ◦C and pH 7
(Figure S4). We observed a considerably stronger agreement with the experimental ∆∆G
when considering a subset of 89 mutations with experimental temperatures from 24 ◦C to
26 ◦C and pH from 6.8 to 7.2 than when considering all the data (Figure 3C). The associated
Pearson correlation and RMSE were 0.65 and 1.21 Kcal/mol, respectively. The agreement
was stronger when we considered a temperature range of 24 ◦C–26 ◦C without any pH
cutoff (Pearson correlation = 0.57, RMSE = 1.39 Kcal/mol) than when we considered a
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pH range of 6.8–7.2 without any temperature cutoff (Pearson correlation = 0.5, RMSE =
1.36 Kcal/mol) (Figure S5).

Figure 3. Performance on S350 dataset. Agreement between the experimental ∆∆G and the PSP-
GNM-calculated ∆∆G is shown for (A) 325 mutants with a PSP-GNM-calculated ∆∆G, (B) all 349 mu-
tants, (C) 89 mutants with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH ranging
from 6.8–7.2. The regression line with the 95% confidence interval (shaded gray) is shown for all
three cases. The optimal agreement is seen for (C), with a Pearson correlation of 0.65 and an RMSE of
1.21 Kcal/mol.

Additionally, we investigated the extent to which PSP-GNM satisfied the antisymmet-
ric property of forward and reverse mutations using the S350 dataset. Ideally, the forward
and reverse mutations should be antisymmetric in terms of their ∆∆G, i.e., ∆∆Gforward =
−∆∆Greverse. We observed a strong negative correlation of −1 between the calculated
∆∆Gforward and ∆∆Greverse (Figure S6), suggesting that the calculations using PSP-GNM
satisfy the expected antisymmetric property.

2.2.3. Performance on S611 Dataset

In contrast to the S350 and S2298 datasets, the S611 dataset evaluated the performance
of PSP-GNM on both forward and reverse mutations. The S611 was created using a subset
of data from the S350 dataset and comprises 609 mutations from 66 unique PDB identifiers.
PSP-GNM could calculate ∆∆G for 564 wildtype–mutant pairs, as the remaining 45 pairs
did not involve a contact break for the residue at the mutation position.

When considering the calculated and experimental ∆∆G for the 564 mutations, we
observed a correlation of 0.57 and an RMSE of 1.25Kcal/mol (Figure 4A), demonstrating
stronger agreement than was observed for the 325 forward mutations in the S350 dataset.
As seen in Figure 4B, when we included the 45 mutations without PSP-GNM-calculated
∆∆G, we observed a decrease in the agreement (Pearson correlation = 0.54, RMSE =
1.26 kcal/mol). However, when we limited the analysis to only those mutations with exper-
imental temperatures of 24 ◦C–26 ◦C and pH of 6.8–7.2, we noted a considerable improve-
ment to 0.73 in the correlation and a reduction to 1.08 Kcal/mol in the RMSE (Figure 4C).
Interestingly, we did not observe considerable differences in correlations for measurements
made between 24 ◦C and 26 ◦C without any pH filter (Pearson correlation = 0.61) and those
made near neutral pH (6.8–7.2) without a temperature filter (Pearson correlation = 0.62)
(Figure S7).
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Figure 4. Performance on S611 dataset. Agreement between the experimental ∆∆G and the PSP-
GNM-calculated ∆∆G is shown for (A) 564 mutants with a PSP-GNM-calculated ∆∆G, (B) all 609 mu-
tants, (C) 152 mutants with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH ranging
from 6.8 to 7.2. The regression line with the 95% confidence interval (shaded gray) is shown for all
three cases. The optimal agreement is seen for (C), with a Pearson correlation of 0.73 and an RMSE of
1.08 Kcal/mol.

2.3. Performance Comparisons with Existing Methods on Four Datasets

We compared the performance of PSP-GNM with other state-of-the-art methods on
four datasets: S350, S611, S669 and Ssym+. On the S350 and S611 datasets, we assessed the
performance against nine existing methods: Dynamut2 [25], Dynamut [24], MCSM [22],
MUPro [41], ENCOM [42], DUET [43], SDM [17], I-Mutant2 [19] and Maestro [23]. While
ENCOM and SDM are unsupervised methods, the remaining methods use machine learning
for predicting ∆∆G. The recently developed Dynamut2 approach also considers the above
methods for comparison, and we considered them for this study because they are a good
mixture of supervised and unsupervised methods. On the S669 and Ssym+ datasets,
we reported performance comparisons against a broader set of 20 methods, including
8 methods considered for the S350 and S611 datasets.

For each dataset, we compared across methods by considering two groups of muta-
tions: Group 1, consisting only of those mutations that had a PSP-GNM-calculated ∆∆G,
and Group 2, consisting of the mutations in Group 1 with an experimental temperature
ranging from 24 ◦C to 26 ◦C and pH ranging from 6.8 to 7.2.

2.3.1. S350 Dataset

In Table 3, we report the comparisons made for Group 1 across the 10 methods using
data obtained from Rodrigues et al. [25]. Of the total 349 mutations in the S350 dataset, the
comparisons were made using the 325 wildtype–mutant pairs with a ∆∆G calculated. PSP-
GNM ranked sixth, with a correlation of 0.51 and a RMSE of 1.37 Kcal/mol, while DUET
showed the best performance, with a correlation of 0.67 and an RMSE of 1.16 Kcal/mol.
When we performed the same comparison on Group 2 mutants that had a total number
of 89 mutants, PSP-GNM ranked fifth, showing a correlation of 0.65 and an RMSE of
1.21 Kcal/mol, while Dynamut2 and DUET topped the list with a correlation of 0.73 and
an RMSE of 1.05 kcal/mol (Table 4).

2.3.2. S611 Dataset

In Table 5, we report the comparisons for Group 1 mutants from the S611 dataset
using data obtained from Rodrigues et al. [25]. The total number of mutations taken into
consideration in this group was 564. Remarkably, we observed that PSP-GNM performed
better than most of the other methods, ranking second with a correlation of 0.57 and an
RMSE of 1.54 Kcal/mol. The best performance was seen for Dynamut2 (correlation = 0.68,
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RMSE = 1.08 Kcal/mol). There were 152 mutants that were considered in Group 2 (Table 6).
PSP-GNM demonstrated strong agreement with the experimental ∆∆G by ranking second
with a correlation of 0.73 and an RMSE of 1.08 Kcal/mol. Overall, the best performance for
this group was seen for Dynamut2 (correlation = 0.79 and RMSE = 0.95 Kcal/mol).

Table 3. Performance on the S350 dataset for a subset of 325 mutations with a PSP-GNM-calculated
∆∆G. The 325 mutations had at least one contact broken, both in the wildtype and mutant forms, for
the residue at the mutation position when simulating unfolding with PSP-GNM. The performance
for PSP-GNM is shown in bold.

Method Pearson Correlation RMSE (Kcal/mol)

DUET 0.67 1.16
MCSM 0.66 1.19

Dynamut2 0.65 1.19
IMutant 0.54 1.32
Maestro 0.57 1.70

PSP-GNM 0.51 1.37
SDM 0.48 1.91

Dynamut 0.39 1.79
MUPro 0.18 1.63

ENCOM 0.15 2.23

Table 4. Performance on the S350 dataset for a subset of 89 mutations with a PSP-GNM-calculated
∆∆G and with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH ranging from 6.8 to
7.2. The 89 mutations had at least one contact broken, both in the wildtype and mutant forms, for the
residue at the mutation position when simulating unfolding with PSP-GNM. The performance for
PSP-GNM is shown in bold.

Method Pearson Correlation RMSE (Kcal/mol)

Dynamut2 0.73 1.05
DUET 0.73 1.05
MCSM 0.71 1.08
Maestro 0.68 1.72

PSP-GNM 0.65 1.21
SDM 0.63 1.68

Dynamut 0.55 1.7
ENCOM 0.54 1.56
IMutant 0.49 1.33
MUPro 0.23 1.65

Table 5. Performance on S611 dataset for a subset of 564 mutations with a PSP-GNM-calculated ∆∆G.
The 564 mutations had at least one contact broken, both in the wildtype and mutant forms, for the
residue at the mutation position when simulating unfolding with PSP-GNM. The performance for
PSP-GNM is shown in bold.

Method Pearson Correlation RMSE (Kcal/mol)

Dynamut2 0.68 1.08
PSP-GNM 0.57 1.25

DUET 0.49 1.42
MCSM 0.46 1.45
Maestro 0.38 1.45

SDM 0.36 1.96
IMutant 0.34 1.5

Dynamut 0.26 1.53
MUPro 0.15 1.69

ENCOM 0.14 1.81
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Table 6. Performance on the S611 dataset for a subset of 152 mutations with a PSP-GNM-calculated
∆∆G and with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH ranging from 6.8 to
7.2. The 152 mutations had at least one contact broken, both in the wildtype and mutant forms, for
the residue at the mutation position when simulating unfolding with PSP-GNM. The performance
for PSP-GNM is shown in bold.

Method Pearson Correlation RMSE (Kcal/mol)

Dynamut2 0.79 0.95
PSP-GNM 0.73 1.08

DUET 0.69 1.25
MCSM 0.65 1.34
SDM 0.6 1.76

ENCOM 0.6 1.32
Dynamut 0.51 1.41
Maestro 0.45 1.48
IMutant 0.32 1.62
MUPro 0.31 1.85

2.3.3. S669 Dataset

The S669 dataset was created as part of a recent study by Pancotti et al. [44] and
has <25% sequence identity with proteins included in the S2298 dataset. Consequently,
it provides an unbiased platform to compare those methods that were trained using
the S2298 dataset, or even the larger S2648 dataset. On this dataset, we compared the
performance of PSP-GNM with 20 existing methods that were studied by Pancotti et al. [44].
A detailed description of each method can be found in the original article.

In Table 7, we report the performance for these 20 methods over 584 mutations
(forward and reverse) with a PSP-GNM-calculated ∆∆G. We also include information on
bias and antisymmetry for each method, using data from Pancotti et al. [44]. The table
is sorted by Pearson correlation for the Forward + Reverse category. PSP-GNM showed
remarkably better performance compared to 17 existing methods when considering both
forward and reverse mutations (Pearson correlation = 0.61 and RMSE = 1.57 Kcal/mol).
It had 0 bias and a perfect antisymmetry of −1. The best performance on the Forward +
Reverse category was seen for PremPS and ACDC-NN. PSP-GNM performed better than
11 methods for the reverse mutations, while performing better than only 4 methods for the
forward mutations.

When we compared performance across all 669 mutations (by using a theoretical ∆∆G
value of 0 Kcal/mol for cases without a ∆∆G), PSP-GNM ranked fifth, with a Pearson corre-
lation of 0.59 for the Forward + Reverse mutants (Table S2). It showed better performance
than nine other methods for the reverse mutants but only three methods for the forward
mutants. Interestingly, we did not observe any performance gain when considering only
those mutations with experimental temperatures ranging from 24 ◦C to 26 ◦C and pH
ranging from 6.8 to 7.2 (Table S3).

2.3.4. Ssym+ Dataset

The Ssym+ dataset is an extension of the Ssym dataset and includes 352 forward
and 352 reverse mutations [13,45]. Importantly, each pair of forward-reverse mutants
has separate experimentally resolved PDB structures for the forward and reverse mutant.
Consequently, it serves as an excellent dataset to check the performance for forward and
reverse mutations and test for antisymmetry and bias. Like the S669 data, we compared the
performance of PSP-GNM against 20 existing methods for a subset of 341 mutations with a
PSP-GNM-calculated ∆∆G. The data were obtained from Pancotti et al. [44]. PSP-GNM
reported near-perfect antisymmetry, with a Pearson correlation of −0.97 and 0 bias (Table 8,
Figure S8). When considering both forward and reverse mutations, PSP-GNM ranked
seventh with a correlation of 0.64, while PremPS showed the best performance with a
correlation of 0.85 (Table 8). Considering the reverse mutations, PSP-GNM showed better
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performance than 10 other methods, with a correlation of 0.37. All methods outperformed
PSP-GNM on the forward mutation dataset. When considering all 352 mutations, PSP-
GNM ranked seventh on the Forward + Reverse category, with a correlation of 0.63. It
exhibited antisymmetry -0.96 and 0 bias (Table S4).

Table 7. Performance comparison on the S669 dataset for a subset of 584 mutations with a PSP-GNM-
calculated ∆∆G. The table is sorted by Pearson correlation in the Forward + Reverse category. The
performance for PSP-GNM is shown in bold.

Method

Forward Reverse Forward + Reverse Bias/Antisymmetry

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol) Bias Antisymmetry

PremPS [26] 0.4 1.57 0.41 1.56 0.62 1.56 0.09 −0.81
ACDC-NN [45] 0.45 1.56 0.44 1.57 0.62 1.56 −0.02 −0.98
INPS-Seq [46] 0.41 1.59 0.41 1.6 0.61 1.6 0 −1

PSP-GNM 0.36 1.57 0.36 1.57 0.61 1.57 0 −1
ACDC-NN-Seq [27] 0.41 1.6 0.41 1.6 0.59 1.6 0 −1

DDGun3D [18] 0.42 1.67 0.4 1.69 0.57 1.68 −0.04 −0.96
DDGun [18] 0.39 1.8 0.37 1.83 0.56 1.82 −0.06 −0.96
INPS3D [46] 0.42 1.56 0.31 1.85 0.55 1.71 −0.39 −0.52

Dynamut [24] 0.41 1.66 0.35 1.76 0.51 1.71 −0.07 −0.59
ThermoNet [28] 0.37 1.69 0.37 1.73 0.51 1.71 −0.05 −0.85
PopMusic [47] 0.41 1.56 0.27 2.17 0.47 1.89 −0.72 −0.36
MAESTRO [48] 0.48 1.51 0.21 2.18 0.45 1.88 −0.61 −0.26

DUET [43] 0.41 1.57 0.25 2.24 0.43 1.93 −0.7 −0.15
mCSM [22] 0.37 1.58 0.25 2.4 0.39 2.03 −0.89 −0.1

I-Mutant3.0-Seq [19] 0.34 1.6 0.21 2.32 0.38 1.99 −0.77 −0.46
Dynamut2 [25] * 0.34 1.58 0.17 2.16 0.36 1.9 −0.64 0.03
I-Mutant3.0 [19] 0.35 1.59 0.16 2.42 0.33 2.05 −0.83 −0.08

MuPro [41] 0.24 1.66 0.21 2.47 0.33 2.11 −0.96 −0.31
SDM [17] 0.4 1.74 0.14 2.25 0.32 2.01 −0.42 −0.4
FoldX [49] 0.21 2.41 0.22 2.6 0.3 2.51 −0.34 −0.18

SAAFEC-Seq [50] 0.35 1.59 0 2.5 0.27 2.09 −0.85 −0.03

* For Dynamut2, the performance metrics correspond to all the 669 mutations.

Table 8. Performance comparison on the Ssym+ dataset for a subset of 341 mutations with a PSP-
GNM-calculated ∆∆G. The table is sorted by Pearson correlation in the Forward + Reverse category.
The performance for PSP-GNM is shown in bold.

Method

Forward Reverse Forward + Reverse Bias/Antisymmetry

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol) Bias Antisymmetry

PremPS 0.82 1.02 0.73 1.2 0.85 1.12 −0.02 −0.93
ACDC-NN 0.63 1.44 0.6 1.5 0.71 1.47 −0.03 −0.98

ACDC-NN-Seq 0.6 1.46 0.6 1.47 0.7 1.47 0 −1
DDGun3D 0.59 1.43 0.56 1.49 0.67 1.46 −0.02 −0.99

DDGun 0.52 1.49 0.51 1.51 0.65 1.5 −0.01 −1
INPS-Seq 0.51 1.52 0.51 1.52 0.65 1.52 0 −0.99

PSP-GNM 0.41 1.49 0.37 1.52 0.64 1.51 0 −0.97
INPS3D 0.63 1.29 0.31 2.01 0.59 1.69 −0.51 −0.51

PoPMuSiC 0.66 1.25 0.26 2.26 0.53 1.83 −0.72 −0.29
Dynamut 0.56 1.54 0.37 1.82 0.52 1.69 −0.12 −0.59

FoldX 0.58 1.92 0.4 2.2 0.51 2.06 −0.56 −0.3
ThermoNet 0.44 1.67 0.38 1.74 0.5 1.7 −0.03 −0.9

MUpro 0.76 1.06 0.08 2.61 0.47 1.99 −0.98 −0.03
MAESTRO 0.61 1.35 0.24 2.28 0.45 1.88 −0.64 −0.33

DUET 0.63 1.28 0.18 2.38 0.45 1.91 −0.75 −0.32
mCSM 0.62 1.3 0.15 2.53 0.42 2.01 −0.92 −0.28

I-Mutant3.0-Seq 0.59 1.36 0.09 2.32 0.42 1.91 −0.65 −0.33
I-Mutant3.0 0.65 1.27 −0.05 2.43 0.39 1.94 −0.7 0.03
Dynamut2 0.63 1.29 0.05 2.48 0.39 1.98 −0.78 −0.13

SDM 0.5 1.62 0.18 2.41 0.34 2.06 −0.54 −0.44
SAAFEC-SEQ 0.72 1.14 −0.42 2.85 0.26 2.17 −0.97 0.68
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We then considered mutations with experimental temperatures ranging from 24 ◦C
to 26 ◦C and pH ranging from 6.8 to 7.2. Only 10 mutations fell in this category, mak-
ing it a very small sample size. Therefore, we considered a broader temperature range
(20 ◦C–30 ◦C), while keeping the pH range the same. We observed improvement in the
agreement for both the forward mutants (Pearson correlation = 0.74) and reverse mutants
(Pearson correlation = 0.71), while noticing a drop in the correlation for the Forward +
Reverse category (Pearson correlation = 0.52). PSP-GNM ranked seventh in terms of its
performance in the Forward + Reverse category (Table 9).

Table 9. Performance comparisons on the Ssym+ dataset for a subset of 37 mutations with experimen-
tal temperatures ranging from 20 ◦C to 30 ◦C and pH ranging from 6.8 to 7.2. The 37 mutations had
at least one contact broken, both in the wildtype and mutant forms, for the residue at the mutation
position when simulating unfolding with PSP-GNM. The table is sorted by Pearson correlation in the
Forward + Reverse category. The performance for PSP-GNM is shown in bold.

Method

Forward Reverse Forward + Reverse Bias/Antisymmetry

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol)

Pearson
Correlation

RMSE
(Kcal/mol) Bias Antisymmetry

PremPS 0.86 0.95 0.8 1.19 0.82 1.08 0.06 −0.93
DDGun3D 0.69 1.33 0.69 1.33 0.69 1.33 0 −1
ACDC-NN 0.67 1.42 0.64 1.43 0.66 1.43 0 −0.99

INPS3D 0.49 1.58 0.64 1.53 0.59 1.56 −0.48 −0.77
DDGun 0.54 1.48 0.54 1.48 0.56 1.48 −0.01 −1

ACDC-NN-Seq 0.55 1.53 0.55 1.53 0.56 1.53 −0.01 −1
PSP-GNM 0.74 1.48 0.71 1.55 0.52 1.51 0 −0.97
PoPMuSiC 0.49 1.6 0.59 1.95 0.49 1.78 −0.85 −0.41
MAESTRO 0.63 1.44 0.48 2.1 0.48 1.8 −0.9 −0.44

FoldX 0.53 1.51 0.57 2.07 0.47 1.82 −0.57 −0.38
SDM 0.57 1.58 0.52 2.16 0.41 1.89 −0.53 −0.69

DUET 0.62 1.41 0.47 2.17 0.41 1.83 −0.85 −0.63
INPS-Seq 0.36 1.63 0.36 1.63 0.4 1.63 0 −1

mCSM 0.59 1.57 0.38 2.27 0.36 1.95 −1.03 −0.55
SAAFEC-SEQ 0.86 0.95 −0.45 2.33 0.34 1.78 −0.5 0.69

Dynamut2 0.66 1.43 0.22 2.15 0.34 1.82 −0.74 −0.26
Dynamut 0.45 1.59 0.34 1.81 0.32 1.7 −0.21 −0.46

I-Mutant3.0 0.17 1.81 0.22 2.14 0.17 1.98 −0.9 0.05
I-Mutant3.0-Seq 0.08 1.84 0.25 2.02 0.17 1.93 −0.79 −0.35

ThermoNet 0.35 1.67 −0.03 1.84 0.16 1.76 −0.02 −0.59
MUpro −0.01 1.97 0.19 2.31 0.04 2.15 −1.03 0.28

3. Discussions

The fundamental assumption underlying PSP-GNM is that during unfolding, the
contacts broken for the mutation position differ between the wildtype and mutant forms of
a protein. When contacts are ranked in the order in which they break with respect to the
mutation position, and the contacts that share the same rank in the mutant and wildtype
are considered, the difference in their free energies correlates with the experimental ∆∆G,
as demonstrated in this study. In this context, the free energy is the interaction energy
between a pair of residues given by the Miyazawa–Jernigan statistical potential, and the
entropy is the mean-squared fluctuation in distance between a pair of residues. The choice
of restricting the calculations to only a subset of contacts sharing the same rank is arguable.
However, an initial pilot test performed as part of this study revealed that including
all the broken contacts (irrespective of their ranks) resulted in poorer agreement with
the experimental ∆∆G when compared to the present scheme. A detailed examination
of various possible functions using knowledge of contacts broken to quantify ∆∆G is,
however, beyond the scope of the current work, and is a subject for future discussion.

In this study, we used a weighted Gaussian network model that used Hookean springs
of variable stiffness to simulate specific interactions between a pair of residues. An approach
of weighting the Hookean springs between interacting pairs of residues based on their
identity and chemical nature has been previously shown to improve the ability of elastic
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network models to capture the near-native protein dynamics [51]. Through PSP-GNM, we
demonstrated that despite maintaining a good agreement with the experimental B-factors,
such weighted formulations of elastic network models can also discriminate between
the native and mutant forms of a protein. The partial unfolding approach used in our
study is a modification of a previous method described by Su et al. [34] that was able to
successfully predict the order of contact break events. Additionally, to verify the extent of
concordance between PSP-GNM and the original GNM, we randomly picked two proteins
(PDB IDs 1AKY and 1CUN, chain A) from our dataset and obtained the residue–residue
cross-correlation heat maps for the wildtype using both methods (Figure S9). A visual
inspection suggests close correspondence between the cross-correlation maps obtained
from the two methods. Since PSP-GNM is an implementation of GNM with weighted
contacts, some difference in the cross-correlation maps is expected. Despite the differences,
the expected high correlations between contiguous residues of secondary structures are
still consistent with GNM.

A major limitation of PSP-GNM is its inability to provide a calculated ∆∆G if no
contacts involving the residue at the mutation position are broken in the wildtype and/or
in the mutant. To further understand why no contacts are broken for certain mutations,
we randomly selected two wildtype–mutant protein pairs from the S350 dataset and
observed that the residue contacts for the mutation positions were primarily within the
same secondary structure elements (Figure S10). Residue–residue contacts within secondary
structures are energetically stronger and less easily broken than tertiary contacts, possibly
explaining why they were not broken during partial unfolding. To address this limitation,
we re-defined partial folding by increasing the cutoff to 60%. That is, we considered a
protein to be partially unfolded if 60% of the native state contacts were broken. However,
we observed that the model became unstable by generating more than one zero eigen
values upon eigen decomposition of the Kirchhoff matrix, suggesting a sparse contact
matrix. Consequently, we assigned a theoretical ∆∆G value of 0 for such cases. Based
on the results presented for the S2298 (Figure 2B), S350 (Figure 3B) and S611 (Figure 4B)
datasets, we do not observe a considerable reduction in the agreement with experimental
∆∆G when assigning a PSP-GNM-calculated ∆∆G value of 0 for such cases.

The performance comparisons made on the datasets in this study indicate superior
performance of many existing methods compared to PSP-GNM. In this context, a simple
investigation of the extent of sequence similarity of proteins in each of the test datasets
(S350, S669 and Ssym+) with the proteins in the S2298 dataset reveals that most datasets
showed considerable sequence identity (>30%) with the proteins in the S2298 dataset
(Tables S5–S8). The only exception was the S669 dataset, which had only four proteins
with >25% sequence identity. Because most of the methods evaluated in our study are
supervised and have mostly been trained on the S2298 dataset or its variants, a superior
performance on the S350, S611 and Ssym+ datasets is not unexpected. On the S669 dataset,
PSP-GNM outperformed many of the existing state-of-the-art methods, specifically when
considering the reverse mutations.

Three key observations were made in our study. First, we observed variation in the
extent of agreement between the calculated ∆∆G and the experimental ∆∆G for different
experimental temperatures and pH. We demonstrated that the agreement was strongest
for mutants with experimental temperatures close to 25 ◦C and near-neutral pH. For the
S350, S611 and Ssym+ datasets, we observed that the correlation was higher for PSP-
GNM than for most other methods. Previous studies have also used higher weights for
measurements made in the same temperature and pH conditions [11,52]. One must note
that the ProTherm database not only reports ∆∆G values based on thermal denaturation
experiments, but also ∆∆G values from chemical denaturation experiments. In the current
study, data from both experiments are treated alike, and it is assumed that the same scheme
for simulating unfolding may be used. It is also to be noted that PSP-GNM currently does
not consider the experimental temperature to weight the interactions between residues.
Based on the observed temperature dependence, however, using experimental temperature
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as a parameter for weighing residue–residue interactions could further improve the extent
of agreement with experimental ∆∆G. Second, considering just the contacts broken with
the mutation position and their order is key to the reasonably good correlation observed.
It strongly suggests the importance of geometric and energetic changes localized at the
mutation site in predicting the overall change in thermodynamic stability of proteins.
Finally, the assessment for antisymmetry made on the Ssym+ dataset demonstrates the
ability of PSP-GNM to maintain the antisymmetric relationship between forward and
reverse mutations, which is indeed a hallmark of this approach.

4. Materials and Methods
4.1. Datasets

We used five benchmark datasets from the literature. The composition of each dataset
is described in Table 10.

Table 10. Datasets used in this study. The S2298 dataset was used to optimize the parameters for
PSP-GNM. The remaining datasets were used to evaluate the performance of PSP-GNM.

Dataset Description
Original

Number of
Mutations

Number of
Proteins *

Number of
Destabilizing

Mutations
(∆∆G < 0)

Number of
Stabilizing
Mutations
(∆∆G ≥ 0)

Number of
Mutations
Excluded #

S2298
Largest dataset and subset of the

S2648 dataset that is often used for
training supervised methods [53]

2298 126 1791 507 0

S350 Subset of the S2648 dataset that has
been widely used for testing [53] 350 67 255 95 1

S611 Created using forward and reverse
mutations from the S350 dataset [25] 611 67 331 280 2

S669
Proteins included have less than 25%

sequence identity with proteins
included in S2298 [45]

669 94 499 170 0

Ssym+ Forward and reverse mutation pairs
observed in separate PDB IDs [13,45] 704 371 344 360 0

* Is defined as the number of unique PDB identifiers. # Mutations with non-existent wild type residues at the
mutation positions in their PDB files were excluded.

Of the five datasets, we used the S2298 dataset to obtain the optimal parameters
for PSP-GNM. We chose the S2298 dataset for this purpose because it includes a diverse
set of mutations. Furthermore, most of the existing supervised methods have used this
dataset for training. Therefore, predictive performances cannot be fairly compared on this
dataset. Each dataset contains information on non-synonymous point mutations and the
experimentally measured ∆∆G for different proteins. We excluded mutations that showed
mismatches for the wildtype residue in the PDB file and those with obsolete PDB entries.
A larger fraction of mutations in each dataset are destabilizing mutations, i.e., ∆∆G < 0
kcal/mol. It is to be noted that the Ssym+ dataset comprises separate PDB structures for
forward and reverse mutants and has previously been used to evaluate the antisymmetry
and bias for different methods. In this context, if x-N-y denotes a forward mutation from
amino acid x to amino acid y at position N and has ∆∆G = δ Kcal/mol, then the reverse
mutation (y-N-x) is antisymmetric to the forward mutation and has ∆∆G = −δ Kcal/mol.

4.2. PSP-GNM Algorithm

We represented the wildtype and mutant protein structures as coarse-grained systems
where each residue was represented by its alpha carbon. Additionally, we represented
the mutant protein structures by replacing the wildtype residues with their respective
mutant residues at the alpha carbon position. We then took a similar approach using
GNM to simulate protein unfolding and identify the sequence of residue–residue contacts
broken during unfolding, as previously described by Su et al. [34]. Specifically, Su et al.
demonstrated protein unfolding using GNM for two proteins (Barnase and Chymotrypsin
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inhibitor) and observed significant agreement in the sequence of unfolding events with
atomic molecular dynamics and Monte Carlo simulations. Like their approach, we also
used a weighted GNM where the strength of springs between interacting residues varies
with the interacting residue pair.

In GNM, the protein residues are represented by alpha carbons, and residue pairs
within a cutoff distance rc are hypothetically connected with Hookean springs of force
constant γ=1. In PSP-GNM, we weight the interactions between residues by their cor-
responding Miyazawa–Jernigan (MJ) contact potential [36], which is obtained from the
AAindex database [53] using the identifier MIYS960101 (upper half of the original MJ poten-
tial table).Specifically, the contact potential for a residue pair is converted into its Boltzmann
weight (by simply taking its exponential) and is then used to weight the interaction between
the pair of residues. The potential for PSP-GNM is given as

V =
1
2

γ

[
N

∑
i,j

∆RiΓij∆Rj

]
(1)

where ∆Ri is the fluctuation vector for residue i and ∆Rj is the fluctuation vector for
residue j. The fluctuation vector defines the instantaneous fluctuation of a residue from
its equilibrium position. The force constant γ is weighted for each interacting residue
pair depending on the type of interaction. Γij is the ijth element in the Kirchhoff matrix of
inter-residue contacts and is given as follows.

Γij =


− exp(−(min(MJ)− 1)), i f |i− j| = 1
− exp

(
MJij

)
, i f |i− j| > 1 and dij ≤ rc

0, i f |i− j| > 1 and dij > rc

−∑N
i, j 6=i Γij, i f i = j

(2)

In Equation (2), MJij is the contact energy between residue i and residue j as given in
the MJ potential matrix, dij is the distance between the alpha carbons of residues i and j
and rc is the distance cutoff for interacting residues. Stiffer springs were used to simulate
the stronger covalent interactions (|i− j| = 1) between adjacent residue pairs by using the
minimum value in the MJ potential matrix minus one.

To simulate unfolding, we iteratively identified residue–residue contacts with the
highest mean-squared fluctuations (MSF) in their distance [34,54] and then removed the
contacts between these residues. The MSF in distance between residues i and j, also referred
to as internal distance change, is the average fluctuation in their internal distance. A residue
pair with strong interaction energy would have lower MSF in their distance compared to a
residue pair with weak interaction energy. The MSF in distance between residue pairs i
and j is calculated as

< (∆R2
ij) > =

3KBT
γ

(Γ−1
ii + Γ−1

jj − 2Γ−1
ij ) (3)

where KB is the Boltzmann constant and T is the absolute temperature in Kelvin. Γ−1 is the
pseudo-inverse of the Kirchhoff matrix and is given as

Γ−1 =

(
3KBT

γ

) N−1

∑
k=1

λ−1
k VkVT

k (4)

As the determinant of the Kirchhoff matrix is zero, its inverse cannot be directly
calculated. Instead, we calculated the pseudo-inverse using the N−1 non-zero eigen values
and their corresponding eigen vectors. In the above equation, λk is the kth eigen value, Vk
is the kth eigen vector associated with λk and VT

k is its transpose.
The steps in our algorithm are outlined in Figure 5. Given the wildtype or mutant

C-alpha PDB structure, we first identified the total number of residue–residue contacts
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in the starting structure. A contact pair is a residue pair whose C-alpha atoms are within
9 Å. We then calculated the MSF in distance between all pairs of residues by using only
the 10 slowest non-zero modes to re-construct the Γ−1. The above values for the rc (C-
alpha distance cutoff) and number of modes parameters were used, as they resulted in
maximum agreement between the experimental ∆∆G and PSP-GNM-calculated ∆∆G on
the S2298 dataset. The contact pair with the largest MSF in distance was then identified,
the contact between the residue pair was broken, and the contact matrix was updated to
reflect this contact break. The updated contact matrix was then used in the next iteration
to identify the contact pair with the largest MSF and highest likelihood of contact break.
We repeated this scheme of breaking contacts based on the largest MSF until 50% of all
contacts in the starting structure were broken, resembling a partially unfolded protein, or
until the model became unstable, resulting in more than one 0-eigen values upon eigen
decomposition of the Kirchhoff matrix.

Figure 5. PSP-GNM workflow. The steps involved in PSP-GNM are outlined. The input is a
coarse-grained protein structure that includes only the residue C-alpha atoms. The protein is then
partially unfolded by sequentially identifying the residue contact pairs with the highest mean-
squared fluctuations in their distance and then removing the contacts between these residue pairs.
The process is repeated until 50% of native contacts are broken. These steps are repeated separately for
the wildtype and mutant proteins. The contacts broken for the mutation position are then identified
in the wildtype and mutant forms and ranked in the order they were broken. The subset of contacts
that share the same rank in the wildtype and mutant are then used to calculate ∆∆G.
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4.3. Calculation of ∆∆G Using PSP-GNM

PSP-GNM assumes a given mutant protein differs from its corresponding wildtype
by only one amino acid. That is, the current implementation of PSP-GNM can be used to
calculate ∆∆G given a mutant structure with a single amino acid change compared to its
wildtype. For a pair of wildtype and mutant proteins, the contacts broken with the residue
at the mutation position during partial unfolding are serially ranked (starting with a rank
of 1) in the order in which they were broken. The underlying assumption is that there is at
least a single contact involving the residue at mutation position that is broken during the
partial unfolding of the mutant and wildtype structures. Then, we only considered the set
of broken contacts that shared the same rank in the mutant and wildtype. ∆∆G was then
calculated as

∆∆GPSP_GNM = −
(

N

∑
j=1

(∆Gmut
i,j − ∆Gwt

i,j )−
N

∑
j=1

(∆Smut
i,j − ∆Swt

i,j )

)
(5)

∆∆GPSP_GNM = −
(

N

∑
j=1

(MJmut
i,j −MJwt

i,j )−
N

∑
j=1

(MSFmut
i,j −MSFwt

i,j )

)
(6)

In the above, ∑N
j=1(∆Gmut

i,j − ∆Gwt
i,j ) is the total difference in the interaction energies

of the mutant and wildtype; ∑N
j=1(∆Smut

i,j − ∆Swt
i,j ) is the difference in entropy. MJmut

i,j and
MJwt

i,j are the Miyazawa–Jernigan interaction energies between the residue at mutation
position i and the residue with rank j with which contact was broken in the mutant and
wildtype proteins, respectively. The MSF in distance is considered as a measure of entropy.
MSFmut

i,j and MSFwt
i,j are the mean-squared fluctuations between the residue at mutation

position i and the residue with rank j with which contact was broken in the mutant and
wildtype proteins, respectively. Re-arranging the terms, Equation (5) can be re-written as

∆∆GPSP_GNM = −
(
(

N

∑
j=1

∆Gmut
i,j −

N

∑
j=1

∆Gwt
i,j )− (

N

∑
j=1

∆Smut
i,j −

N

∑
j=1

∆Swt
i,j )

)
(7)

∆∆GPSP_GNM = −
(
(

N

∑
j=1

∆Gmut
i,j −

N

∑
j=1

∆Smut
i,j )− (

N

∑
j=1

∆Gwt
i,j −

N

∑
j=1

∆Swt
i,j )

)
(8)

A strong underlying assumption of PSP-GNM is that the local unfolding energetics of
the mutation position have considerable association with the unfolding free energy change.
Consistent with this assumption and based on Equations (5) and (6), the calculations for
∆∆G can only be made if there exists at least one broken contact involving the mutation
position in both the mutant and the wildtype. For mutations that do not exhibit a broken
contact involving the mutation position, the wildtype and mutant forms are less likely to
differ from each other in their partially unfolded states with respect to the mutation position.
Hence, we assigned a theoretical ∆∆G value of 0. The calculated ∆∆G was re-scaled using
the equation for the regression line obtained upon fitting the calculated and experimental
∆∆G on the S2298 dataset.

4.4. Calculation of ∆∆G for Reverse Mutations

To perform calculations for reverse mutations (∆∆Gmutant→∆∆Gwildtype), we simply
switched the wildtype and the mutant structures. Then, we followed the same steps as
described above to calculate ∆∆G.
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4.5. Evaluation Metrics

To estimate the extent of agreement between calculated ∆∆G and experimental ∆∆G,
we used the Pearson correlation coefficient and root mean squared error, as defined below.

PCC
(
∆∆GPSP_GNM, ∆∆Gexp

)
=

Covariance
(
∆∆GPSP_GNM, ∆∆Gexp

)
σ∆∆GPSP_GNM σ∆∆Gexp

(9)

RMSE
(
∆∆GPSP_GNM, ∆∆Gexp

)
=

√
∑i (∆∆Gi

PSP_GNM − ∆∆Gi
exp)

2

N
(10)

The extent of antisymmetry between the calculated ∆∆G for forward and reverse
mutants was evaluated using the Pearson correlation coefficient, as described previously
by Pancotti et al. [44].

Antisymmetry( f orward, reverse) = PCC(∆∆G f orward
PSP_GNM, ∆∆Greverse

PSP_GNM) (11)

We evaluated the bias towards any class of mutation (forward/reverse) using the bias
score (δ) [45].

Bias score(δ) =
∑N

i=1(∆∆G f orward
i , ∆∆Greverse

i )

2N
(12)

5. Conclusions

Understanding the thermodynamic stability changes induced by point mutations in
proteins facilitates an understanding of the role of mutant proteins in various diseases. Nu-
merous machine-learning-based methods have been developed to predict ∆∆G associated
with point mutations. Many of these methods can predict the effect of multiple point muta-
tions. In this study, we presented PSP-GNM, a novel approach utilizing the knowledge of
intrinsic protein dynamics to quantify the thermodynamic changes associated with single
amino acid substitutions in proteins. PSP-GNM differs from many of the existing methods
in the respect that it does not use a machine learning approach. Through PSP-GNM, we
have introduced a formulation of GNM in which interacting residues are weighted by their
interaction energies obtained from the Miyazawa–Jernigan statistical potential. PSP-GNM
utilizes the knowledge of putative contacts broken during partial protein unfolding to
estimate ∆∆G. Although there exist several methods that can predict ∆∆G simply by using
the protein sequence, PSP-GNM relies on protein structure to calculate ∆∆G. Additionally,
the present implementation of PSP-GNM can only calculate the ∆∆G for single amino
acid changes, i.e., for cases where the wildtype and mutant sequences differ by only a
single amino acid. Our method also highlights the role of near-native protein dynamics in
predicting changes to thermodynamic stability. Most importantly, the superior performance
of PSP-GNM compared to other methods incorporating protein dynamics information (e.g.,
ENCOM) suggests the importance of including information on local unfolding and contact
changes to predict stability changes upon mutations.
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