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Abstract

Background: Comparative approaches using protostome and deuterostome data have greatly
contributed to understanding gene function and organismal complexity. The family 2 G-protein
coupled receptors (GPCRs) are one of the largest and best studied hormone and neuropeptide
receptor families. They are suggested to have arisen from a single ancestral gene via duplication
events. Despite the recent identification of receptor members in protostome and early
deuterostome genomes, relatively little is known about their function or origin during metazoan
divergence. In this study a comprehensive description of family 2 GPCR evolution is given based on
in silico and expression analyses of the invertebrate receptor genes.

Results: Family 2 GPCR members were identified in the invertebrate genomes of the nematodes
C. elegans and C. briggsae, the arthropods D. melanogaster and A. gambiae (mosquito) and in the
tunicate C. intestinalis. This suggests that they are of ancient origin and have evolved through gene/
genome duplication events. Sequence comparisons and phylogenetic analyses have demonstrated
that the immediate gene environment, with regard to gene content, is conserved between the
protostome and deuterostome receptor genomic regions. Also that the protostome genes are
more like the deuterostome Corticotrophin Releasing Factor (CRF) and Calcitonin/Calcitonin
Gene-Related Peptide (CAL/CGRP) receptors members than the other family 2 GPCR members.
The evolution of family 2 GPCRs in deuterostomes is characterised by acquisition of new family
members, with SCT (Secretin) receptors only present in tetrapods. Gene structure is characterised
by an increase in intron number with organismal complexity with the exception of the vertebrate
CAL/CGRP receptors.

Conclusion: The family 2 GPCR members provide a good example of gene duplication events
occurring in tandem with increasing organismal complexity during metazoan evolution. The
putative ancestral receptors are proposed to be more like the deuterostome CAL/CGRP and CRF
receptors and this may be associated with their fundamental role in calcium regulation and the
stress response, both of which are essential for survival.
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Background

The Guanine protein coupled receptor (GPCRs) family is
one of the largest receptor groups in vertebrates. Members
of this family are also present in unicellular eukaryotes
such as yeast and in plants which suggests that they are of
ancient origin [1]. In the human genome, GPCRs account
for approximately 2% of the coding genes [2,3] and they
bind structurally diverse ligands such as protons, odor-
ants, biogenic amines, peptides and glycoproteins [4,5].
Recent analysis of the human genome identified five main
GPCR subfamilies collectively known as GRAFS (Gluta-
mate, G; Rhodopsin, R; Adhesion, A; Frizzled, F; and
Secretin, S) [1,6]. This grouping was based on protein
motifs characterised by the presence of seven highly con-
served transmembrane domains (TM). Several authors
have proposed the existence of a common ancestral gene
in early metazoans that, as a consequence of successive
duplication events, generated the full complement of fam-
ily members in vertebrates [6,7]. Such a proposal is in gen-
eral agreement with the genome duplication theories of
Haldane 1932 [8], Muller 1935 [9] and Ohno 1970 [10].
All of which suggest that the existence of gene family
members in chordates is a consequence of genome dupli-
cation events in the vertebrate lineage during evolution
and that gene duplicates are an essential source of organ-
ism diversity.

The present work focuses on the secretin family (a.k.a
family B or 2) of GPCRs which represent one of the largest
receptor families for hormones and neuropeptides
involved in several important biological functions. Previ-
ous in silico analysis identified a total of 50 family 2 GPCR
members in the human genome [6,11,12]. However only
receptor members of the following groups: a) Cortico-
trophin Releasing Factor (CRF); b) Secretin (SCT), Vasoac-
tive Intestinal Peptide (VIP), Pituitary Adenylate Cyclase-
Activating Polypeptide (PACAP) and Growth Hormone
Releasing Hormone (GHRH); c) Glucagon (GCG), Gluca-
gon-Like Peptide (GLP), Glucose Insulinotropic Peptide
(GIP); d) Parathyroid Hormone (PTR) and e) Calcitonin
(CAL) and Calcitonin Gene-Related Peptide (CGRP)
[13,14] have been functionally characterised and identi-
fied in other vertebrates such as birds, amphibians and tel-
eosts [15-18]. So far, in invertebrates putative family 2
GPCRs have been found based upon sequence similarity
and phylogenetic studies ([1,14,17,19,20], but their evo-
lution and function is poorly described.

In this study, comparative analyses using phylogenetically
distant organisms have been used to study the evolution
of members of the family 2 GPCRs in metazoans (Figure
1). Gene family members were characterised in proto-
stome (nematode and arthropod) and tunicate (Ciona)
genomes and compared with their vertebrate homologues
(Takifugu and human). Putative family 2 GPCR receptor

http://www.biomedcentral.com/1471-2148/6/108

members were identified and isolated in silico from public
genome databases and their expression analysed by RT-
PCR. The gene structures and gene environments vis a vis
gene content of the protostome and deuterostome recep-
tors were compared and a model for the evolution of fam-
ily 2 GPCR receptors is proposed.

Results

Putative family 2 GPCRs in invertebrates

Initially, three, five and nine putative family 2 GPCR
genes were identified respectively in the protostome
genomes of the nematodes (C. elegans and C briggsae), the
arthropods (D. melanogaster and Anopheles gambiae) and
in the deuterostome genome of the tunicate C. intestinalis.
With the exception of the C.briggsae and mosquito recep-
tor genes, the protostome and tunicate predicted gene
sequences were edited taking into consideration EST data
available in order to minimise errors derived from in silico
gene predictions (Additional file 1). Sequence compari-
son and other in silico approaches revealed that of these
genes, only two in the nematodes, three in the fruit-fly,
one gene in the mosquito and eight in the Ciona genome
contained seven TM domains and were considered to be
putative family 2 GPCRs members (Figure 2, Table 1).
Database searches carried out in the prokaryote E. coli and
the unicellular eukaryote S. cerevisae genomes did not pro-
duce any significant alignments for family 2 receptor
genes.

Phylogenetic analysis

Because of gaps and errors in draft genome data, only 4
TMs were used in the full analysis: TM2, TM4, TM5 and
TM6 which were found to be common to all metazoan
genes analysed (Additional file 2). The amino acid
sequences of the TM domains of a total of 52 receptors
were concatenated and aligned using the ClustalX pro-
gramme (Blosum matrix and Gap opening penalty 10 and
Gap extension 0.2). The alignment produced (length 98,
with 99 informative sites) did not required the insertion
of gaps and was used for phylogenetic analysis and the
consensus tree obtained is presented on Figure 2. Family
2 GPCR members are suggested to have evolved via both
late and early gene duplication events, which have
occurred during metazoan evolution. Examples of specific
gene duplication events which are well supported by the
high bootstrap values of the tree nodes are the Ciona gene
pair CinS5A/CinS5B, CinS372/CinS752 and the gene pair
CinS50/CinS273. After neighbour joining, maximum par-
simony and minimum evolution phylogenetic analysis,
the protostome receptors and Ciona CinS93, CinS50 and
CinS273 genes tended to cluster with the deuterostome
CRF and CAL/CGRP receptor family members. In Ciona
orthologues of the majority of the vertebrate family mem-
bers such as CinS752 and CinS352 group with the PTR
receptor subfamily, whilst CinS5A, CinS5B and CinS70
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Phylogenetic position of the protostome and deuterostome genomes analysed. Simplified phylogeny of the meta-
zoan evolution based on molecular data indicating the positions of protostome (nematodes and arthropods) and deuterostome
(tunicate and vertebrate) genomes analysed (adapted from Giribet., 2002 [79]; Gerhart et al., 2005 [80; Delsuc et al., 2006

[81).

genes seem to be more related in sequence to the GCG/
GLP/GIP and PAC/VPAC/GHRH families however
CinS5A and CinS5B position in the tree was not clearly
defined.

Sequence comparative analyses

Comparison of the amino acid sequences of the putative
protostome and tunicate receptors with the vertebrate
homologues revealed the existence of conserved amino
acid motifs at the ligand-binding N-terminal region (Fig-
ure 3). Large N-terminal regions containing five conserved

cysteines were identified in all species analysed with the
exception of the Ciona CinS273 and CinS70 genes which
due to incomplete genome coverage and EST data availa-
ble lacked complete N-terminal regions and CinS50
where the putative initial methionine was not identified.
Other highly conserved amino acid residues such as the
amino acid aspartate (D) before the motif C-W-P and the
amino acid motifs C-W-P, C-P and G-X-W (where X is any
amino acid) (crucial for ligand binding in mammals)
[21,22] were also identified. Moreover, the amino acid
glycine (G) localised between this latter motif and the C-
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Phylogenetic relationship of the metazoan family 2 GPCRs. Consensus phylogenetic tree (neighbour joining method,
pairwise gap deletion, Poisson correction distance and 1000 bootstraps) produced with family 2 GPCR TM domains (TM2,
TM4, TM5 and TM6). The protostome (nematodes and arthropods) and tunicate (Ciona) receptors are underlined and the
bootstrap values for each fork is indicated. Bootstrap values less than 50 were removed. Annotation of the receptor sub-
families was carried out according to Donnelly (1997) [13]. The human (Hsa), Takifugu (Tru), nematodes, C. elegans (Cel) and C.
briggsae (Cbr), arthropod D. melanogaster (Dme) and A. gambiae (Aga) and Ciona (Cin) receptor sequences were obtained as

described in the methods section.
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Table I: List of putative invertebrate family 2 GPCRs identified
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Nematodes Arthropods

Tunicate

C. elegans (Cel) C.briggsae (Cbr) D. melanogaster (Dme)

CelCI8BI2.2 CbrCAE63268 DmeCG13758

CelCI3B9.4 CbrCAE70126 DmeCG8422

CelZK643.3 * CbrCAE62707* DmeCG12370*
DmeCG32843
DmeCG4395%#

A. gambiae (Aga) C. intestinalis (Cin)

AgaENSANGP000000 | 4363* Cin$93

AgaENSANGP000000 141 14+ Cin$2303+

AgaENSANGP00000020 1 76* CinS70

AgaENSANGP000000 14164 CinS5 (A and B)

AgaENSANGP00000004 | 25# Cin$273
Cin$752
Cin$372
CinS50

Names of the protostomes and tunicate receptor clones identified by sequence similarity searches using the vertebrate family 2 GPCRs (*) does not

have 7 TM domains; (#) TM4 was not identified; (+) incomplete

P motif was also found to be conserved amongst metazo-
ans however no functional role for this residue has been
yet assigned.

To strengthen previous analysis and in order to identify
novel amino acid and protein motifs that have been con-
served within each receptor subfamily, members that
might have a potential role in ligand binding in the pro-
tostome and deuterostome N-terminal regions of the
receptors were compared based on receptor clustering
groups previously obtained by phylogentic analysis. Puta-
tive protostome and tunicate members of the CAL/CGRP,
CRF, PTH and CGC/GLP/GIP receptor families were
aligned with the vertebrate homologue receptor genes
(Additional files 3456). Examples of novel conserved N-
terminal protein motifs identified are the W-S/T-N-Y/F
motif in CAL/CGRP receptors alignment (Additional file
3); the motif G-V/I-X-Y (X any amino acid) within CRF
receptor group (Additional file 4) which has been previ-
ously reported to be involved in ligand binding [23,24];
the motifs E-W, P-G; Y-I-Y/I-D-F-D/N-H and A-X-R (X any
amino acid) in the PTR group and amino acid HsaPTR1 R
186( Additional file 5) which was previously found to be
determinant for PTH binding [25] and the motif Y-L/I-P/
E-W within GCG/GLP/GIP receptor group (Additional file
6).

Short-range linkage mapping analysis

Short-range linkage analysis was carried out between the
protostome (C. elegans and D. melanogaster) with the deu-
terostome (Takifugu and human) homologous regions
which contain family 2 receptor genes. The linked genes
identified in both C. elegans and Takifugu were used to
identify homologous genes in the Drosophila (Figure 4)
and human (Figure 5) genomes. The protostome gene
environment was found to be conserved and linked genes
were identified between the nematode and insect
genomes. The Drosophila X chromosome and chromo-
some III of C. elegans showed the greatest number of
linked genes. Within the protostome genome three genes

namely 3H538, Clp-2 and him-4 in C. elegans were also
found to be conserved in the homologous deuterostomes
genome regions analysed (Figure 5). A number of Takifugu
scaffolds were found to share a similar gene environment
with C. elegans chromosomes II and X, and human chro-
mosomes 2, 3, 6, 7, and 17. This suggests that the nema-
tode chromosome regions may be very similar in terms of
gene content with the ancestral chromosomal region that
gave rise to this family of receptors in vertebrates (Figure
5).

Gene organisation in protostomes and deuterostomes
The gene organisation of the regions encompassing the
seven TM domains of the protostome and tunicate family
2 GPCR genes were characterised and compared with the
vertebrate human and Takifugu homologous regions (Fig-
ure 6). Different gene structures were observed between
protostomes and deuterostomes. This was mainly due to
an increase in intron number in the latter species. Com-
parison of exon/intron boundaries revealed total conser-
vation of splice sites (AG/GT) although intron phases are
generally poorly conserved with the exception of the TM1
and TM2 boundary (Figure 6).

Amongst protostome family 2 GPCR genes, organisation
is poorly conserved. In nematodes two different gene
organisations were identified for the receptors
CelC13B9.4/CbrCAE70126 (5 exons) and CelC18B12.2/
CbrCAE63268 (6 exons), respectively. In the Drosophila
genome, a different gene organisation also exists for each
of the three receptor genes analysed. TM1 and TM2 in the
Drosophila genes DmeCG32843 and DmeCG8422, in
common with the nematode, tunicate and vertebrate
receptors, are encoded by individual exons. The
DmeCG13758 gene has the most divergent gene structure
amongst protostomes and is composed of 3 exons. In
mosquito, the gene structure of
AgENSANGP00000014164 (AgaP14164) is similar to
DmeCG8422 with which it share greatest sequence simi-
larity.
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Figure 3

Comparison of the N-terminal end of metazoa family 2 GPCRs. Multiple sequence alignment of the N-terminal
domain of the family 2 GPCR receptor genes identified and characterised in protostomes and deuterostomes. Conserved
cysteine residues are indicated by "*" and the conserved amino acid motifs are boxed. The TMI| domain is annotated. Acces-
sion numbers of the human family 2 GPCRs: HsaGLPIR (P43220), HsaCRFIR (P34998) and HsaCALR (P30988). Accession
numbers of the protostome family 2 receptor genes: House cricket (Acheta domesticus) Diuretic hormone receptor (AdoDHR,
Q16983), Drosophila melanogaster (DmeCG 13758, NP_570007; DmeCG8422, NP_610960; DmeCG32843, XP_396046),
Anopheles gambiae (AgaP14164, EAAI11768), Caenorhabditis. elegans (CelC18B12.2, NP_510496; CelC13B9.4, NP_498465) and
Caenorhabditis briggsae (CbrCAE70126, CAE70126; CbrCAE63268, CAE63268). EST data was used to obtain the N-terminal
region of the incomplete receptor sequences (Additional file I). The N-terminal region of Ciona CinS752 was predicted by NIX
and that of CinS5A by sequence comparison with CinS5B. Only the clones for which a putative N-terminal domain was identi-
fied were included in the analysis. For figure simplicity, an arrow indicates the region of the receptor CbrCAE70126 that was
eliminated since it did not align with any other sequences present.
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Figure 4

Gene environment comparison between C. elegans and Drosophila family 2 GPCRs genomic regions. Short-range
linkage analysis of the region surrounding family 2 GPCRs on the C. elegans chromosome Ill and X with the Drosophila chromo-
some regions containing family 2 GPCR receptor genes. Genes are represented by horizontal bars and gene identification and
chromosome position is given at the side. Family 2 GPCRs members are highlighted in bold. The lines represent the corre-
spondence between the genes in each species. The dashed lines represent the common genes that were identified in both pro-
tostome and deuterostome genomes. For simplicity, only genes that are in common are represented.

In contrast with protostomes, two main gene structures
were characterised in deuterostomes with TM4, TM5 and
TM7 domains shared between two exons. In human and
Takifugu, the CAL and CGRP receptors genes form a sepa-
rate group with a different gene organisation from the
other receptor genes. These receptors seem to have lost an
intron between the exons that contain part of TM5 and
TM6 and part of TM7 respectively and are composed of 7
exons with identical intron phases. The Ciona CinS5A,
CinS5B, CinS50 and CinS273 receptor genes are also
shorter and composed by 6 exons. With the exception of
the CAL and CGRP receptors all human and Takifugu fam-
ily 2 genes and Ciona CinS70, CinS93, CinS372 and
CinS752 receptors are composed of 8 exons and share
identical intron phases.

Expression analysis
RT-PCR with specific primers for each receptor gene was
carried out using total RNA extracted from whole adult C.

elegans, Drosophila, mosquito and Ciona (results not
shown). The nematode receptor genes CelC18B12.2 and
CelC13B9.4, the Drosophila DmeCG13758,
DmeCG32843 and DmeCG8422 were successfully ampli-
fied. The tissue distribution was refined in Ciona with
expression analyses carried out in the intestine, pharyn-
geal basket, gonads, endostyle and cerebral ganglion. The
putative family 2 GPCR encoded by CinS70, was
expressed in all tissues analysed, but was mainly present
in the intestine, gonads and cerebral ganglion. The
CinS5A gene expression had a similar tissue distribution
to CinS70. However its duplicate, CinS5B had a more lim-
ited distribution and was only expressed in the intestine.
The receptors CinS273 and CinS752 were only expressed
in gonad and cerebral ganglion tissue, whilst CinS93 was
expressed in the endostyle. CinS50 was restricted to the
ovary where it was weakly expressed. It was not possible
to amplify AgENSANGP00000014164 and CinS372
receptors.
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Gene environment comparison between C. elegans and Takifugu and Human family 2 GPCRs genomic regions.
Short-range linkage analysis of the region surrounding family 2 GPCRs on the C. elegans chromosome Il and Takifugu and
human chromosome regions containing family 2 GPCR receptor genes. Genes are represented by horizontal bars and gene
identification and chromosome position is given at the side. Family 2 GPCRs members are highlighted in bold. The lines repre-
sent the correspondence between the genes in each species. The dashed lines represent the common genes that were identi-

fied in both protostome and deuterostome genomes. For simplicity, only genes that are in common are represented.

Discussion

In total 16 putative family 2 GPCR members were identi-
fied and characterised in the protostome and in the tuni-
cate genome using the human and Takifugyu TM domain
sequences. In the human genome a total of 50 family 2
GPCR receptors have been described [6,11,12]) although
ligands have only been assigned for 15 family 2 GPCR
members [16,26]. The evolution of this latter receptor
group is the major subject of this study.

To avoid the inclusion of potential intronic regions which
could bias analysis, the invertebrate genes were manually
edited using expression data available and sequence simi-

larity for the homologue genes and the in silico analysis
performed was restricted for receptor conserved motifs at
N-terminal and TM domains. The putative invertebrate
receptors identified share the general characteristics of
family 2 GPCR members with the presence of conserved
cysteine residues [27,28] and several highly conserved
amino acids and protein motifs at the N-terminal domain
which is involved in ligand binding [22]. Analysis of uni-
cellular organism genomes such as the prokaryote E. coli
and the eukaryote S. cerevisae failed to reveal any putative
family 2 receptor genes suggesting that these receptor
genes are characteristic of metazoan genomes.
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Figure 6

Evolution of family 2 GPCRs in the metazoa. Diagram illustrating the increase in gene number and gene structure com-
plexity of the TM domains regions of family 2 GPCR receptor genes in protostomes (nematodes and arthropods) and deuter-
ostomes (tunicate and vertebrate). The proposed species-specific gene duplications are indicated in the figure. Putative gene or
genome duplication events of ancestral family 2 GPCRs during metazoan evolution are indicated by arrows (dashed arrow —

represent several duplication events within the chordate lineage). The number of receptors identified in each species is within
brackets. Exons are represented by blocks and introns by lines and the molecular evolutionary time for each species is indi-

cated in MYA (million years ago) and was obtained from Hedges and Kumar, 2003 [82] and (*) from Dehal et al. 2002 [42]. The
TM domain regions are represented by shaded regions and numbered. Intron/exon boundary phases are indicated below each
exon. The tunicate and vertebrates family 2 GPCR members have been grouped according to their common gene organisation.

The figure is not drawn to scale.

The protostome genes identified are more like the verte-
brate CAL/CGRP and CRF receptors subfamilies suggest-
ing that ancestral family 2 GPCR members were most like
these genes. In vertebrates these receptors are associated
with calcium homeostasis and the stress axis respectively,
and appropriate functioning is essential for survival [29-
32]. No studies are available describing the role of these
receptors in protostomes and their classification was
based upon their sequence similarity, so they may not be
functional orthologues. Recently, expression studies car-
ried out wusing the Drosophila DmeCG8244 and
DmeCG32843 (equivalent to CG17415) receptor genes,

which are very similar in sequence to the vertebrate CRF
and CAL/CGRP receptors, respectively, were indeed found
to be functional orthologues. These studies revealed that
DmeCG8244 and DmCG32843 in the presence of insect
diuretic hormones (DH) were functional and activate a
similar intracellular signalling pathway to the vertebrate
receptor genes [33,34].

It is generally accepted that complexity of vertebrates and
the origin and development of physiological systems is a
consequence of the acquisition of new genes by gene or
exon duplications that occurred during chordate evolu-
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tion ([10,35-38]. The absence of sequence homologues of
the other members of family 2 in protostomes may be a
consequence of the relatively low complexity of nema-
todes and arthropods when compared with vertebrates.
For example, it is known that VIP, PACAP, SCT, GCG,
GLPs and GIP peptides and their receptors are mainly
associated with the nervous and gastrointestinal systems.
In protostomes these biological structures are of very low
complexity [39] and an organised gastroenteropancreatic
system has only been identified after the divergence of
tunicates. In general, a similar evolutionary profile occurs
during the development of metazoan nervous systems
(with the exception of cephalopod molluscs, which also
have a highly developed nervous system). The occurrence
of an organised brain and complex central nervous struc-
ture is only present in vertebrates. In the majority of pro-
tostomes and early deuterostomes the nervous system is
mainly characterised by the presence of simple structures
such as cerebral and head ganglions to which several
nerve networks are connected and like the gastroentero-
pancreatic system it has been evolving by varying degrees
of complexity throughout metazoan evolution [39].

The existence of an increasing gene number of family 2
GPCR members in the metazoan lineage clearly suggests
that evolution of this gene family results from a series of
duplications. Several gene duplication events have been
proposed to have occurred in chordate genomes. However
if they are a consequence of two total genome duplication
events (2R theory, [10,40-42]) or a result of independent
single gene duplications ([43,44]) is still under debate.
The 2R theory has been generally accepted to justify the
presence of gene family members and novel genes in
higher vertebrate genomes when compared with early
chordate and invertebrate species. Family 2 GPCR mem-
bers have been identified in the majority of vertebrate
genomes [17,20] and searches carried out on the amphib-
ian and chicken genomes identified an equivalent
number of gene family members (data not shown) to that
found in the human genome. In particular putative SCT
receptor genes, lacking in teleost genomes, were identified
as previously described by Langerstrom et al [46]. The
absence of an equivalent SCT receptor sequence in teleosts
but its identification in amphibian and avian genomes
may indicate that this receptor either, i) arose after the
divergence of the fishes or, ii) was lost in the fish lineage
and studies on ancient fishes (eg. Agnatha) should help to
clarify this issue.

The protostome receptors contain the most divergent gene
structures when compared with those of deuterostomes
(intron number, TM domain distribution and intron
phases). This is probably a consequence of the higher rate
of chromosomal and gene rearrangements when com-
pared to early chordates and vertebrates [47-50]. The rea-
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son behind differences in intron numbers between
protostomes and deuterostomes remains to be estab-
lished. The precursor gene in Urbilateria (last common
ancestors of protostomes and deuterostomes) remains to
be identified and therefore the difference in intron num-
bers can be explained either by intron gain during meta-
zoan evolution after the divergence of the protostome and
deuterostome [51-53] or by intron loss in the protostome
lineage [54,55]. Interestingly, the vertebrate CAL and
CGRP receptor gene organisation is more like the tunicate
receptors than other vertebrate family 2 members and the
way in which these receptors function is also different.
Accessory single transmembrane proteins (Receptor activ-
ity modifying proteins, RAMPs [56,57]) interact with both
CAL and CGRP receptors and alter their affinity profile for
the ligands (CAL, CGRP, adrenomodullin and amylin)
[58,59]. In fact CAL receptor-RAMP heterodimerazation is
essential for receptor function but not for the other family
2 members [58]. It remains to be established if such func-
tional constraints can influence gene evolution and in
particular CAL/CGRP receptors gene evolution.

Expression analyses indicates that with the exception of
the single mosquito receptor and CinS372, all protostome
and tunicate genes are expressed. In general, the tissue dis-
tribution of the Ciona receptors mirrors the expression of
the vertebrate family 2 GPCRs sequence homologues. For
example, the duplicate CinS5A and CinS5B receptors and
CinS70 which share sequence similarity for the vertebrate
brain-gut peptide GCG, GLP, GIP receptors were found to
be expressed in Ciona intestine, gonads and neural gan-
glion suggesting that like the vertebrate homologues they
may also have a role in the gastrointestinal, reproductive
and nervous systems [60,61]. The function of the verte-
brate receptors in the reproductive system is not clear, but
in the nervous and gastrointestinal systems they are
involved in carbohydrate, amino acid and lipid metabo-
lism [60,62]. It remains to be established if the tunicate
receptors localised in these tissue have a similar func-
tional role.

The Ciona CAL/CGRP (CinS93) homologue was only
expressed in the endostyle whilst the tunicate PTR-like
receptor homologue (CinS752) was present in the neural
ganglion and the gonads. In vertebrates these receptors are
found to have an important role in the endocrine regula-
tion of calcium mediated by CAL and PTH hormones
[63]. The presence in Ciona of the vertebrate homologue
receptors may suggest that elements of calcium homeosta-
sis are conserved between tunicates and vertebrates. More-
over, the expression of CinS93 in Ciona endostyle, the
homologue of the vertebrate thyroid gland, the site of CAL
production [64], further supports this hypothesis. The
CinS50 and CinS273 are the sequence homologues of the
vertebrate CRF receptors, which are mainly associated
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with stress response [65]. In vertebrates both receptors are
found to be expressed in nervous tissue and CRF1 receptor
was also found in the gonads and CRF2 receptor in the
gastrointestinal tract [66,67]. The pattern of expression of
the tunicate CinS50 and CinS273 was similar and both
receptors were expressed in the gonads whilst CinS273
was further detected in the neural ganglion suggesting
they may also play a functional role in the nervous and
reproductive systems in tunicates. Functional and ligand-
binding studies are required to characterise the physiolog-
ical role of the tunicate receptors. Moreover, the isolation
and characterisation of their putative ligand peptides
which have yet to be comprehensively described will be
essential to understanding of their function.

The evolution of family 2 GPCR receptor genes in proto-
stomes and deuterostomes is probably the result of a com-
bination of species-specific gene duplications and gene or
genome duplication events in ancestral gene precursors
(Figure 6). For example, the Drosophila DmeCG8422 and
DmeCG32843 map to chromosome 2R and share a simi-
lar gene organisation. This suggests that they arose by a
specific gene duplication event. Based on their sequence
similarity, gene organisation and intron phases, the Dro-
sophila DmeCG8422 and DmeCG32843 receptor genes
appear to be the orthologues of the nematode
CelC13B9.4 and Ciona CinS50/CinS273 and CinS93
receptors, respectively. In tunicates, 3 different family 2
GPCR ancestral gene precursors probably existed: the gene
precursor for CinS50/CinS273, the gene precursor for
CinS93 and a common gene precursor for CinS70/
CinS5A/CinS5B/CinS372/CinS752. These are proposed
to be the origin of the vertebrate CRF, CAL/CGRP genes
and remaining deuterostome family 2 GPCRs, respec-
tively.

Conclusion

Putative family 2 receptor genes were isolated and charac-
terised from a number of different invertebrate genomes.
This study provides for the first time a comprehensive
description of the gene sequence, structure and expression
of family 2 GPCRs members in invertebrates providing
important clues about their origin and evolution along
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the metazoan divergence. The CAL/CGRP and CRF recep-
tors are proposed to be the first family 2 members to
evolve in contrast to SCT receptors which seem to have
evolved much later and are only present in tetrapods.
Studies such as this, can via a mixture of in vitro and in sil-
ico approaches, contribute to a better understanding of
gene regulation in vertebrates.

Methods

Sequence database searches

Sequence database searches were carried out on the
genomes of the prokaryote Escherichia coli (E. coli), the
unicellular eukaryote Saccharomyces cerevisae (S. cerevisae),
the nematodes Caenorhabditis elegans (C. elegans) and
Caenorhabditis briggsae (C. briggsae), the insects, Drosophila
melanogaster (D. melanogaster) and mosquito Anopheles
gambiae (A. gambiae) and in the tunicate Ciona intestinalis
(C. intestinalis) (Table 2) using the TM domains of the 15
human [12] and the 21 Takifugu rubripes from Cardoso et
al., 2005[17] family 2 receptor genes. The TM domains of
the vertebrate family 2 GPCRs were concatenated and
used in conjunction with the BLASTP and TBLASTN algo-
rithms [68] to interrogate invertebrate genomes. The
invertebrate in silico predicted sequences were identified
based on their sequence similarity for the vertebrate recep-
tor genes using a cut-off E value higher than 10 and their
sequences were manually edited according to their simi-
larity for the homologue genes in vertebrates and EST data
available (Additional file 1). The identity of the inverte-
brate genes was further confirmed against the GPCR data-
base at CMBI [69] and in order to substantiate previous
searches (identify putative receptors that were not identi-
fied) they were further used to search all the genome data-
bases used in this analysis (Table 2).

Gene organisation of invertebrate family 2 GPCRs

The gene organisation of the invertebrate family 2 mem-
bers was manually characterised. This approach was com-
plemented using the available protostome and Ciona EST
data to identify putative N and C terminal ends of the pro-
tein (Additional file 1). The presence of TM domain
regions was verified using the TMHMM Server v. 2.0 [70]
and their positions were subsequently confirmed by mul-

Table 2: Databases used to identify putative family 2 GPCRs in invertebrate genomes

Organism

Database

Escherichia coli
Saccharomyces cerevisae
Caenorhabditis elegans and
briggsae

Drosophila melanogaster

Anopheles gambiae
Ciona intestinalis

http://www.ncbi.nih.gov
http://www.yeastgenome.org/

http://www.sanger.ac.uk
http://www.wormbase.org/

http://flybase.bio.indiana.edu/
http://www.ensembl.org

http://www.ensembl.org
http://genome.jgi-psf.org
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tiple sequence comparison alignments with the vertebrate
homologues based on PRINTS annotation [71]. The gene
structures of the human receptors were characterised
using the Spidey mRNA-to-genomic alignment pro-
gramme [72] and the Takifugu receptor gene organisation
characterised as described in Cardoso et al, 2005[17].

Linkage analysis

The gene environments of the protostome (C. elegans and
Drosophila) and deuterostome (human and Takifugu)
receptor genes were compared using a sequence similarity
approach. The human, C. elegans and Drosophila gene
environments were accessed using the NCBI Mapview
interfaces [73]. The gene environment of the Takifugu scaf-
folds (release17/05) was accessed using NIX annotation
[74] and the neighbouring genes were used to search for
orthologues in human, C. elegans and Drosophila genomes
using the TBLASTX algorithm [75].

Sequence comparison and phylogenetic analysis
Sequence alignments of the predicted protostome and
deuterostome receptor protein sequences were carried out
using the Clustal X programme [76] (Blosum matrix, Gap
opening penalty 10, Gap extension 0.2) with and percent-
age similarity were calculated using GeneDoc [77]. The
evolutionary analysis between the protostome and deu-
terostome receptor genes was carried out using the TM
domains that were complete and common to all receptor
genes (TM2, TM4, TM5 and TM6) following a similar
strategy has previously described [17]. Manual editing of
the Takifugu family 2 GPCRs did not identify TM1 domain
of TruS012367, the TM5 of TruCRFR2 was found to be
incomplete and TM3 of TruS000381 was frameshifted.

The four TM domain sequences common to all metazoan
were concatenated and aligned using the ClustalX pro-
gramme as described. The alignment produced (length
98, with 99 informative sites) was used for phylogenetic
analysis using the neighbour joining, maximum parsi-
mony and minimum evolution methods with 1000 boot-
strap replicates in the MEGA 3.1 phylogenetic programme
[78]. Multiple sequence alignments were also carried
using the manually edited protostome and deuterostome
receptors within each family 2 GPCR group using the
ClustalX programme (according to the parameters previ-
ously described) in order to further identify conserved
protein motifs or amino acid residues at the N-terminal
regions that might be involved in ligand-binding.

Expression analysis

In order to investigate the expression of the putative pro-
tostome and tunicate receptors RT-PCR was carried out
using cDNA produced from whole individual organisms.
Total RNA from adult individuals was extracted from the
nematodes, Drosophila and Ciona with TRI reagent (Sigma-
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Aldrich, Spain) according to the manufactures instruc-
tions. 1-2 pg of total RNA was used for cDNA synthesis
and each reaction was performed as follows, 1xRT-PCR
buffer (Invitrogen), 0.25 mM dNTPs (Amersham-Bio-
sciences, UK), 0.05 pg/ul random hexameric oligonucle-
otides, 1 U MMLV-RT (200 U/ul) (Promega, USA) and 0.2
U RNAguard 36.3 U/ul (Amersham-Biosciences). Specific
primers for each receptor gene were designed spanning
different exons to detect potential genomic contamina-
tion. A control PCR using primers for housekeeping genes
was also preformed in order to control the amount of
cDNA utilised in each reaction. Specific primers for Ciona
18 S ribosomal protein were designed but sea bream 18 S
and B-actin primers were routinely used in the Drosophila
and the nematode. All primers (including housekeeping
control sequences) used are described in Table 3. All the
PCR reactions were performed with 1xPCR buffer (Euro-
clone, Italy), 1.5 mM MgCl, (Euroclone), 0.2 mM dNTPs
(Amersham-Biosciences), 1 mM of each primer (Forward
and Reverse) EuroTaq DNA Polymerase 5 U/pl (Euro-
clone) and DNase Free water (Sigma-Aldrich) for a 25 pl
final reaction volume. Amplification of all the genes was
carried out using a standard cycle with an initial denatur-
ing step of 93°C for 2 minutes, followed by 35 cycles of:
30 sat 93°C, the annealing temperatures of primers for 60
s and 72°C for 30 seconds followed by a final chain exten-
sion step of 72°C for 5 minutes. The reaction products
were cloned into pGEMT-easy vector (Promega) and
sequenced to confirm their identity.

Abbreviations

GPCRs (G-protein coupled receptors); TM (transmem-
brane); CAL (Calcitonin), CGRP (Calcitonin Gene
Related Peptide); CRF (Corticotrophin Releasing Factor);
PTH (Parathyroid Hormone); VIP (Vasoactive Intestinal
Polypeptide); PACAP (Pituitary Adenylate-Cyclase Acti-
vating Polypeptide); SCT (Secretin); GCG (Glucagon);
GLP (Glucagon Like Peptide); GIP (Glucose Insulino-
tropic Peptide); VPAC (Vasoactive Intestinal Polypeptide
receptor); PAC1 (Pituitary Adenylate- Cyclase Activating
Polypeptide receptor); PTR (Parathyroid Hormone recep-
tor)
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Table 3: Primer pairs used to amplify by RT-PCR protostome and tunicate family 2 GPCRs

Primer pairs

Nematode
C. elegans (Cel)

CelCI3B9.4F| 5' -gatacacgaatttggtgtaatgcc-3'/CelCI3B9.4R 1| 5' -gttcgtgtgaggaccattttcac-3'
CelCI8BI2.2F| 5' -ccattcacattttgcactgcaatt-3'/CelCI8B12.2R| 5 -gaaccagagaatagctttgcaaat-3'

Insect DmeCG13758F 5' -gagattatccgtctcatgca-3'/DmeCG13758R 5' -cgegttcaacgtggeegtt-3'

D. melanogaste (Dme)
A. gambiae (Aga)

DmeCGB8422F 5' -agctgeccaccattatctac-3'/DmeCG8422R 5' -gttctggttaagetgaatggt-3'
DmeCG32843F 5' -gcatcacgctgeacatgaat-3'/DmeCG32843R 5' -cgccgagatgatttcgtatg-3'

AgaP14164F 5' -agcttcgagccggaaattgag-3'/AgaPl4164R 5' -ttcgtgatcagcacccacatgat-3'

Tunicate
C. intestinalis (Cin)

CinS93F 5'-taccgcttggegatttctg-3'/CinS93R 5' -aacgacatagagtagcaacga-3'
CinS372F 5'-aacgacatagagtagcaacga-3'/CinS372R 5'-cggacgaaaatcaaactatg-3'

CinS752F 5'-attgctcacgtgacggtaga-3'/CinS752R 5'-ctccacaaatatttcttgte-3'
CinS273F 5' -gttttagaaaccggaacatg-3'/CinS273R 5' -agaaaaactgtttcgecggt-3'
Cin50F 5'-gatccataggaagttgaaaag-3'/CinS50R 5' -aatgaaaataatttctccggtt-3'
CinS70F 5'-cagctgtcgactagtaataac-3'/CinS70R 5' -gtatacagagacgatttccttg-3'
CinS5AF 5'-cctggtatttttgatggttat-3'/CinS5AR 5'-attaggtatcatattgtttac-3'
CinS5BF 5' -cctggtttctttgatagacaa-3'/CinS5BR 5' -agttcgtaaagcgttgtagat-3'

Ciona 18S control
18S control

B-actin control

Cin|8SFwd 5'-cggagaagtttcagcaca-3'/Cin|8SRev 5'- agtgtcgcaaacccctgt-3'
Sb18SFwd 5'-tcaagaacgaaagtcggagg-3'/Sb | 8SRev 5'-ggacatctaagggcatcaca-3'

SbDebactF3 5'-ggccgegacctcacagactac-3'/SbDebactR2 5'-accgaggaaggatggctggaa-3'

Additional material

Additional File 1

List of the protostome (nematodes and arthropods) and tunicate
(Ciona) putative family 2 GPCRs identified. The total size of each
receptor protein sequence used in the in silico analysis performed is indi-
cated within brackets and their sequences are available as additional data
(Additional files 3, 4, 5, 6). The EST data available for each receptor and
source of information are also indicated. No ESTs were available for the
C. briggsae and mosquito receptor genes identified. The N-terminal
region of CinS5A was identified by sequence comparison with the para-
logue gene CinS5B and the C-terminal end of CinS93 was predicted using
exon prediction programmes and sequence similarity approaches with the
vertebrate homologue genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-S1.pdf]

Additional File 2

Sequences of the protostome and deuterostome family 2 GPCRs TM
domains used in phylogenetic analysis. Amino acid sequences of the
human (Hsa), Takifugu (Tru), Ciona (Cin), Drosophila (Dme), Mos-
quito (Aga), C. elegans (Cel) and C. briggsae (Cbr) TM2, TM4, TM5
and TMG6 domain regions used in the construction of the phylogenetic tree.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-S2.pdf]

Additional File 3

Multiple sequence comparisons of the metazoan CALR/CGRPR. Mul-
tiple sequence alignment carried out with the protostome and deuteros-
tome putative CALR/CGRPR protein sequences. The protostome, tunicate
and Takifugu receptor sequences were manually edited having in consid-
eration their sequence similarity, identification of splice sites consensus
sequences (AG/GT) and the existence of EST data. Conserved cysteine res-
idues are indicated by (®) and TM domains named. The N-terminal
regions were annotated according to their level of conservation of the pro-
tostome and deuterostome receptors. The amino acid residues annotated
with closed boxes have been previously identified in Figure 3 and the novel
amino acid residues and protein motifs are annotated by open boxes.
Incomplete sequences are due to gaps or low quality sequence data within
receptor gene sequences. The Takifugu S012367 receptor sequence was
not included since TM1 was not identified. The existence of putative
intronic sequences was when possible investigated using the EST data
available (Additional file 1). The start codon was chosen as the methio-
nine in the correct frame of the first exon and the end of each receptor gene
was chosen as the first stop codon in the correct frame of the last exon.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-S3.pdf]
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Additional File 4

Multiple sequence comparisons of the metazoan CRFR. Multiple
sequence alignment carried out with the protostome and deuterostome
putative CRFR protein sequences. The protostome, tunicate and Takifugu
receptor sequences were manually edited having in consideration their
sequence similarity, identification of splice sites consensus sequences (AG/
GT) and the existence of EST data. Conserved cysteine residues are indi-
cated by (®) and TM domains named. The N-terminal regions were anno-
tated according to their level of conservation of the protostome and
deuterostome receptors. The amino acid residues annotated with closed
boxes have been previously identified in Figure 3 and the novel amino acid
residues and protein motifs are annotated by open boxes. Incomplete
sequences are due to gaps or low quality sequence data within receptor
gene sequences. TruCRFR2, CinS273 and AgaP14164 have incomplete
N-terminal ends and TruCRFR2 was also found to contain an incomplete
intracellular loop 3. Despite the availability of EST data for N-terminal of
CinS50 two potencial methionines were identified and for these reason
the putative exon 1 sequence was not included. The existence of putative
intronic sequences was when possible investigated using the EST data
available (Additional file 1). The start codon was chosen as the methio-
nine in the correct frame of the first exon and the end of each receptor gene
was chosen as the first stop codon in the correct frame of the last exon.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-S4.pdf]

Additional File 5

Multiple sequence comparisons of the metazoan PTR. Multiple
sequence alignment carried out with the putative PTR deuterostome pro-
tein sequences. Tunicate and Takifugu receptor sequences were manually
edited having in consideration their sequence similarity, identification of
splice sites consensus sequences (AG/GT) and the existence of EST data.
Conserved cysteine residues are indicated by (®) and TM domains named.
The N-terminal regions were annotated according to their level of conser-
vation. The amino acid residues annotated with closed boxes have been
previously identified in Figure 3 and the novel amino acid residues and
protein motifs are annotated by open boxes. Incomplete sequences are due
to gaps or low quality sequence data within receptor gene sequences. The
existence of putative intronic sequences was when possible investigated
using the EST data available (Additional file 1). The start codon was cho-
sen as the methionine in the correct frame of the first exon and the end of
each receptor gene was chosen as the first stop codon in the correct frame
of the last exon.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-85.pdf]

Additional File 6

Multiple sequence comparisons of the metazoan CGCR/GLPR/GIPR.
Multiple sequence alignment carried out with the deuterostome putative
CGCR/GLPR/GIPR protein sequences. Tunicate and Takifugu sequences
were manually edited having in consideration their sequence similarity,
identification of splice sites consensus sequences (AG/GT) and the exist-
ence of EST data. Conserved cysteine residues are indicated by (®) and
TM domains named. The N-terminal regions were annotated according
to their level of conservation. The amino acid residues annotated with
closed boxes have been previously identified in Figure 3 and the novel
amino acid residues and protein motifs are annotated by open boxes.
Incomplete sequences are due to gaps or low quality sequence data within
receptor gene sequences. Takifugu S006614 and S007267 and CinS70
have incomplete N-terminal regions and the Takifugu receptor S000381
was not included in the alignment since TM3 is frameshifted. The exist-
ence of putative intronic sequences was when possible investigated using
the EST data available (Additional file 1). The start codon was chosen as
the methionine in the correct frame of the first exon and the end of each
receptor gene was chosen as the first stop codon in the correct frame of the
last exon. The Ciona CinS5A, CinS5B and CinS70 were only compared
with the vertebrate GCGR/GLPR/GIPR with which they share higher
sequence similarity

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-6-108-S6.pdf]
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