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INTRODUCTION

Most existing brain-computer interfaces (BCIs) detect specific mental activity in a so-called synchronous paradigm. Unlike syn-
chronous systems which are operational at specific system-defined periods, self-paced (asynchronous) interfaces have the advan-
tage of being operational at all times. The low-frequency asynchronous switch design (LF-ASD) is a 2-state self-paced BCI that
detects the presence of a specific finger movement in the ongoing EEG. Recent evaluations of the 2-state LF-ASD show an average
true positive rate of 41% at the fixed false positive rate of 1%. This paper proposes two designs for a 3-state self-paced BCI that is
capable of handling idle brain state. The two proposed designs aim at detecting right- and left-hand extensions from the ongoing
EEG. They are formed of two consecutive detectors. The first detects the presence of a right- or a left-hand movement and the
second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-
bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant
performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regard-
less of the type of movement). It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1%) in detecting
right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false
positive rate of 1%) in the context of a 2-state self-paced BCI.

Copyright © 2007 Ali Bashashati et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain-computer interface (BCI) systems form a possible al-
ternative communication and control solutions for individ-
uals with severe disabilities. For a review of the field, see
[1-3]. In BCI systems, the user’s cortical activity associated
with an intentional control of a device (such as attempted
finger movements) is directly mapped to an application-
specific control signal. This allows the user to control var-
ious devices such as a neural prosthetic by cognitive pro-
cesses only, that is, by bypassing traditional interface path-
ways (which cannot be used by individuals with severe dis-
abilities).

In developing noninvasive BCI systems, the majority of
research has concentrated on developing synchronous sys-
tems. These systems are only operational at specific periods.
Asynchronous (self-paced) systems, on the other hand, have

the advantage of being operational at all times. The 2-state
low frequency-asynchronous switch design (LF-ASD) was
the first BCI introduced for self-paced or asynchronous con-
trol applications [4]. LF-ASD seeks to recognize the move-
ment related potentials (MRPs) of a finger-flexion movement
in the EEG signal. In a self-paced brain-computer interface
the users affect the BCI transducer output whenever they
want by intentionally changing their brain states. Between
periods of intentional control (IC), users are said to be in a
no-control (NC) state; they may be idle, daydreaming, think-
ing about a problem or lunch, or performing any other action
other than trying to control the BCI transducer. These BCI
transducers are thus designed to respond only when there is
an intentional user control. The appropriate BCI response
to no-control (NC) would be a neutral or inactive output.
We refer to this ability as NC support. NC support is neces-
sary for most types of machine or device interactions where
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frequent intentional controls (IC) are spaced by periods of
inaction.

Like LF-ASD, the 2-state BCI systems tested in [5-7] at-
tempt to detect an intentional control state from the ongoing
brain signal in a self-paced manner. The 3-state self-paced
BCI implemented in [8] attempts to differentiate between
right-hand, left-hand, and foot movements to operate a vir-
tual keyboard. However, this BCI requires the subject to con-
stantly engage in control without the option of going to the
no control (NC) state. In a recent work, Scherer et al. [9]
has proposed a 4-state self-paced BCI that has mean true
positive and false positive rates of 28.4% and 16.9%. In the
study of [10] the subjects were asked to perform one of the
following three actions: (1) imagine right-hand movement,
(2) imagine left-hand movement, and (3) relax. A 3-state
self-paced BCI was designed to navigate a mobile robot in
an 80 cm>*60 cm house-like environment by differentiating
amongst these three states. The system generates “unknown
state output” when there is not enough confidence in choos-
ing one of the three above-mentioned mental tasks. The clas-
sifier of this system was not explicitly trained to recognize
idle (NC) state [10]. According to the authors, it could pro-
cess them adequately by responding “unknown”. It was also
reported that the task of steering the robot between rooms
was so engaging that the two tested subjects preferred to emit
continuously mental commands rather than to go through
idle state. Therefore, the response of this system on NC (idle)
state was evaluated on a dataset with limited amount of idle-
state. Moreover, having the choice of “unknown state out-
put” may represent some neutral output but it is not clear
whether the unknown state output was caused by the actual
idle (NC) state or by lack of confidence in detecting one of
the three commands. Additionally, there is no evidence that
the NC state will fall into the unknown state in these designs.

In this paper, a noninvasive 3-state self-paced BCI sys-
tem is proposed. This system is a 3-state self-paced BCI that
is (a) designed specifically to support the NC state EEG sig-
nal, and (b) has a higher true positive rate at a considerably
lower false positive rate (FP=1%) compared to existing 3-
state and 4-state self-paced BCIs that support the NC state
[9]. It should, however, be mentioned that it is difficult to di-
rectly compare the results of our study with other BCI studies
because (a) the recording equipment, recording and classifi-
cation protocols, and mental tasks considered are different,
(b) the amount of data involved and the degree of training
the subjects received before and during participation in the
BCI experiments varies for different studies, and (c) there is
not a unified framework of reporting performance of BCI
systems, that is, the performance metrics are different across
different studies.

Unlike the 2-state self-paced system which detects the
presence of a single movement from the ongoing EEG sig-
nal, the 3-state self-paced BCI design aims at detecting two
different movements. Figure 1 shows examples of outputs of
the 2-state and 3-state self-paced BCls. Overall, a 2-state self-
paced BCI is in an inactive state (NC state) for most of the
time and is in an IC state when a specific brain state (e.g.,
finger-flexion movement) is detected in the brain signal. Un-
like a 2-state self-paced BCI which has only one active (IC)

IC IC
NC NC

(a) 2-state self-paced BCI

ICl

NC NC

(b) 3-state self-paced BCI

FiGURE 1: Samples of outputs of 2-state and 3-state self-paced BCls,
where NC = no-control state, IC = intended control state.

state, a 3-state self-paced BCI has two active state outputs,
ICI and IC2, which are activated by two different brain states
(e.g., right- and left-hand extensions). While a 2-state self-
paced BCI can provide the user with the option of executing
only one command (e.g., turn right), a 3-state system gives
the user two command options (e.g., turn right or turn left).
This has the advantage of giving the user more control op-
tions.

The 2-state self-paced BCI (LF-ASD) in [4] aimed at de-
tecting attempted right finger flexions. Recent studies with
the 2-state LF-ASD have demonstrated that this system cor-
rectly detects the presence of a movement (true positive (TP)
rate) in 41% and 42% of the cases for able-bodied and spinal-
cord-injured subjects, respectively [11]. This is when the pa-
rameters were set so that the false positive rate is fixed at 1%.
The TP rate of the system improves at higher FP rates, for
example, at an FP rate of 5%, the TP rate is almost 100%.
Despite these encouraging results, our experience indicates
that even a 1% false positive rate is too high for most practi-
cal self-paced control applications.

This paper reports on the preliminary results of a pilot
study that investigates the feasibility of a 3-state “self-paced”
brain-computer interface system whose aim is the detection
of right- and left-hand extension movements in a self-paced
manner. This system has the ability to handle the no-control
(NC) state as well as two additional control options for the
user.

Two consecutive detectors were designed to detect the
presence of the left- or the right-hand extensions from the
ongoing EEG. The first detector, DET1, determines whether
or not a movement is present. If such a movement is detected
then the second detector, DET2, classifies the movement as a
right- or a left-hand extension.

Two designs of a 3-state self-paced BCI are proposed
and implemented. Power spectral density and a specific tem-
plate matching method [4] are used in the feature extraction
stages, and the k-nearest neighbour and linear discriminant
analysis (LDA) classifiers are used in the classification stages.

The performances of the designs are evaluated using EEG
recordings of right- and left-hand extension movements of
four able-bodied individuals. The goals of this paper are
twofold.
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(1) To perform an initial investigation of the performance Right hand extension
of the system as a 2-state self-paced BCI, that is, de- Target box
tecting whether a left- or a right-hand movement (re-
gardless of the type of movement) has occurred. If (@ B\l ] B B
the performance of the system in detecting any such
movement is better than detecting the previously used <0 t=0 >0
movement (i.e., the right-finger flexion), then such \ Left hand extension
these movements can be used in other 2-state self-
paced brain-computer interface designs.

(2) To introduce and carry out an initial evaluation of two () B[] [ M=
possible designs of a 3-state self-paced BCI and to in- f<0 f20 fs0

vestigate whether a 3-state self-paced brain-computer
interface that supports the no-control (NC) state has
promise.

In Sections 2—4 of this paper, details of experiments, the
structure of the proposed designs and the evaluation method
are explained. The results, discussions, and conclusions are
presented in Sections 5-7, respectively.

2. EXPERIMENTS
2.1. Selection of movement tasks

A 3-state self-paced BCI has two active state outputs, IC1
and IC2, which should be activated by two different move-
ments (as neurophysiologic sources of control). However,
selection of these movements is not a trivial task and one
needs to find the movements that generate more differ-
entiable patterns in the EEG. More differentiable patterns
would make it easier for a BCI system to detect IC states
and may yield improvements in the performance of the sys-
tem.

Many studies by the neurophysiologic research commu-
nity have explored the effects of different movements on the
EEG signal. These studies show that movements that involve
more parts of the body (e.g., hand movement) or move-
ments that need more effort (e.g., finger extension) gen-
erate more differentiable patterns in the ongoing EEG sig-
nal than for example natural finger flexions [12—14]. It has
also been reported that right and left movements (regard-
less of the type of movement) generate patterns in differ-
ent locations of the brain [15]. As our aim is to use move-
ments that generate more differentiable patterns, based on
the evidence in [12-15], we choose the right-hand and the
left-hand extensions in this study since (a) hand move-
ments involve more parts of the body than, for example,
finger movements, (b) extension movements need more ef-
fort to execute compared to flexion movements, and (c)
right and left movements generate movement-specific pat-
terns in different locations of the brain. We speculate that
these two movements generate more discriminative pat-
terns than a finger flexion does. If that is the case, then
using these movements would improve our BCI’s perfor-
mance in detecting the presence of a movement. To our best
knowledge, the right- and the left-hand extension move-
ments have not yet been studied in the context of BCI sys-
tems.

FIGURE 2: Screen contents for each of the right-hand (a) and left-
hand (b) extension movement trials, ¢t = 0 is the time of movement
execution.

2.2. Experimental paradigm

The EEG data used in this study were recorded from 15
monopolar electrodes positioned over the supplementary
motor area and the primary motor cortex (defined with ref-
erence to the International 10-20 System at F1, F2, F3, F4, Fz,
FC1, FC2, FC3, FC4, FCz, C1, C2, C3, C4, and Cz). Electro-
oculographic (EOG) activity was measured as the poten-
tial difference between two electrodes, placed at the corner
and below the right eye. The ocular artifact was considered
present when the difference between the EOG electrodes ex-
ceeded +/—-25 uv, a threshold level similar to the one used in
previous studies [3, 15]. All signals were sampled at 128 Hz.
This study has been approved by the Behavioural Research
Ethics Board (BREB) of the University of British Columbia.

Four able-bodied subjects participated in this study. All
subjects were male (except subject 4), right-handed (except
subject 4), 25-30 years old, and only subject 2 had prior BCI
experience. Subjects were seated 150 cm in front of a com-
puter monitor. The data were collected while the subjects
were performing a cue-based (synchronized) task. At ran-
dom intervals of 5.6—7 seconds (mean of 6.7 seconds), a tar-
get window was displayed on the subject’s monitor. As shown
in Figure 2, a box moved from the left side to the right side of
the screen. When the box reached the target window, the sub-
ject attempted to activate the custom-made switch by extend-
ing his/her right- or left-hand. An arrow in the moving box,
pointing to the left or the right showed the subject whether to
move the right- or the left-hand. For each subject, an average
of 150 trials for each movement was collected in two sessions
carried in the same day.

3. PROPOSED 3-STATE SELF-PACED BRAIN
COMPUTER INTERFACE

Figure 3 shows the overall structure of the proposed designs.
These designs include two major blocks:

(a) “Detector 1” which determines whether or not a move-
ment is performed, and

(b) “Detector 2” which determines whether the detected
movement is a right-hand or a left-hand extension.
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FIGURE 3: Structure of the 3-state self-paced brain-computer inter-
face design.

In this study, two different designs for Detector 1 and one
design for Detector 2 have been proposed and evaluated. The
details of both detectors are explained below. Detectors 1 and
2 are referred to as DET1 and DET2.

3.1. Detector 1

Two different designs for DET1 are proposed and compared.
These are referred to as DET1-LF-INN and DET1-PSD-
LDA.

DET1-LE-NN uses one of the latest designs of the LF-
ASD [14] as shown in Figure 4(a). It employs features ex-
tracted from the 0—4 Hz band in six bipolar EEG channels
(defined with reference to the International 10-20 System
at F1-FCl1, Fz-FCz, F2-FC2, FC1-C1, FCz-Cz, and FC2-C2).
After amplification, a lowpass FIR filter (0-4Hz) is used
to decrease the interference with the features in the high-
frequency band.

Previous studies show that when a movement is per-
formed, a bipolar pattern similar to the one shown in
Figure 5 is generated in the ongoing EEG [4]. A specific tem-
plate matching algorithm based on the one employed in [4]
is implemented. This algorithm generates large feature values
when there is such a pattern in the spontaneous EEG. The
delay parameters «; and «;, shown in Figure 5, determine the
locations of the peaks of the pattern that need to be detected.
Thus, these delay parameters need to be properly determined
in order to detect the presence of a specific movement. For
each subject, the ensemble averages of the EEG around the
movements of the training data are generated and then used
to determine the values of «; and «; according to the method
presented in [16]. Table 1 shows the mean values of &; and
«; across all five runs (refer to Section 4) that are estimated
from the ensemble averages of the training data of each run.
This feature extraction procedure is repeated for each of the
six bipolar channels. The resulting feature vector is a six-
dimensional vector, with each dimension reflecting the value
of the feature in each channel. While we used the same «;
and «; parameter values for all the six channels because the
evidence in [16] suggests that they are not significantly dif-
ferent, we have also checked the ensemble averages of all the
six channels to make sure that this assumption is valid in this
study.

The Karhunen-Loéve transform (KLT) component is
used to reduce the 6-dimensional feature vector to a 2-
dimensional feature vector. A 1-NN (1-nearest neighbour)
classifier is used as the feature classifier. Finally, a moving av-
erage (with length of 39 milliseconds) and a debounce block
(with length of 125 milliseconds) are employed to further im-

TasLE 1: Estimated mean values of «; and «; parameters for each
subject. Note all values are in milliseconds.

Subject 1 Subject 2 Subject 3 Subject 4
o 125 195 398 195
o 578 141 297 313

prove the classification accuracy of DET1 by reducing the
number of false activations (for details, see [4, 17]). DET1
classifies the input patterns, at every 1/16th of a second,
to one of the two classes, no-control (NC) or intentional-
control (IC) states.

The second design of DET1 (referred to as DET1-PSD-
LDA) is shown in Figure 4(b). It extracts the power spec-
tral density features of the EEG from a group of bipo-
lar EEG channels and then selects the most informative
channels for classification. Specifically, thirty bipolar com-
binations of EEG channels that may contribute to the de-
tection of movements were generated. These bipolar EEG
channels were Cz-Cl1, Cz-C2, Cz-C3, Cz-C4, C1-C2, Cl1-
C4, C1-C3, C2-C3, C2-C4, C3-C4, FCz-Cz, FC1-C1, FC2-
C2, FC3-C3, FC4-C4, Fz-FCz, F1-FC1, F2-FC2, F3-FC3,
F4-FC4, FCz-FCl1, FCz-FC2, FCz-FC3, FCz-FC4, FC1-FC2,
FC1-FC4, FC1-FC3, FC2-FC3, FC2-FC4, FC3-FC4. These
bipolar channels were chosen to capture possible discrimi-
natory information between left and right and also between
frontal and central areas of the head. In the feature extraction
block, the power spectral density (PSD) components of each
of the 30 bipolar EEG channels are calculated in each fre-
quency bin from 1 Hz to 25 Hz using Welch’s Periodogram
method [18] with window length of one second (equivalent
to 128 samples). This results in 25 frequency components for
each of the 30 bipolar channels and a total of 25%30 features
at each time instant. We then use stepwise linear discriminant
analysis (stepwise LDA) [19] to find the most informative
features that better discriminant between IC and NC classes.
Stepwise LDA is a method that results in a linear combina-
tion of selected features that contribute to the classification
and omits the features that have redundant information for
discrimination. Once the features are extracted and selected,
a linear discriminant classifier (LDA) [19] is used for clas-
sification. Other details about the other components of the
feature translator (moving average and debounce blocks) are
the same as in DET1-LF-1NN above.

3.2. Detector2

Existing studies show that the cortical activation, related to
movement preparation and execution, desynchronizes the
alpha (8-12 Hz) rhythm and increases the beta (13-25Hz)
rhythm of the EEG. These phenomena are known as event-
related desynchronization (ERD) and event-related synchro-
nization (ERS), respectively [15, 20]. The ERD of a hand
movement is more prominent over contralateral sensorimo-
tor areas during motor preparation and extends bilaterally
after movement initiation [15, 21]. Some studies, however,
show that the frequency bands of the ERD and ERS patterns
are variable from subject to subject [22].
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FIGURE 4: Structure of the two designs of DET1, where KLT = Karhunen-Loéve transform, and 1-NN = 1-nearest neighbour, PSD = power

spectral density, and LDA: linear discriminant analysis.
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FIGURE 6: Structure of DET2-PSD-LDA, where PSD = power spec-
tral density, and LDA = linear discriminant analysis.

As shown in Figure 6, DET2 which aims at differentiat-
ing between right- and left-hand movements is similar to
the second design of DET1 (DET1-PSD-LDA), except that
it does not have the averaging and debounce blocks of DET1.
This design intends to extract subject specific ERD/ERS fre-
quency bands that lead to more discrimination between the
two classes, that is, the left- and right-hand movements. As
in DET1, the stepwise linear discriminant analysis (LDA)
method is employed to select the subject specific ERD/ERS
frequency bands and bipolar EEG channels. We have evalu-
ated a similar design of DET2 when the inputs were monopo-
lar EEG channels. Preliminary analysis of the data shows that
using bipolar electrodes yields better performances. As such,
we used bipolar electrodes as input to the system and did not
further evaluate the overall performance of the 3-state brain-
computer interface using monopolar electrodes.

Two designs of a 3-state self-paced BCI system are evalu-
ated. The first design uses the combination of DET1-LF-1NN

and DET2-PSD-LDA and the second one uses the combina-
tion of DET1-PSD-LDA followed by DET2-PSD-LDA.

4. EVALUATION

The designed 3-state self-paced BCI first detects whether or
not a movement is performed. If a movement is detected,
then the system classifies it as one of two classes, the right-
hand (IC1) or the left-hand (IC2) extension classes. If the
system does not detect a movement, the output reports an
inactive state.

We use 80% randomly chosen trials (about 120 trials) to
train the 3-state self-paced BCI system and use the remain-
ing data to evaluate the performance of the system. We repeat
this procedure five times and report the mean performance
of the system. The ability of the subjects to control the 3-state
BCI system is evaluated using three performance measures.
At a fixed false positive rate, these measures report the cor-
rect detection rates of the right- and the left-hand extensions
(from the ongoing EEG), respectively. These three measures
are as follows.

(1) The percentage of correct right-hand movement de-
tection during IC states (i.e., the true positive rate for
right-hand movement, TPr) calculated using (1) be-
low:

number of correctly detected right movements

TPr = :
K total number of right movements

(1

(2) The percentage of correct left-hand movement detec-
tion during IC states (true positives of left-hand move-
ments, TPy ) calculated using (2) below:

number of correctly detected left movements

TPy =
L total number of left movements

(2)

(3) The percentage of false switch activations during NC
states (false positives, FPs) calculated using (3) below:

P number of false activations
total number of the system’s decisions during NC state’

(3)
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TABLE 2: Mean percentages of true positives (TPic) at fixed false
positive rate of 1% for the two designs of DET1.

DETI Design ~ Subject 1 Subject 2 Subject 3 Subject 4 Average
DETI-LE-INN  50.1 38.4 56.5 71.0 54.0
DET1-PSD-LDA  38.2 54.7 60.2 60.3 53.4

Note that the system make a decision every 1/16th of a
second.

A TP is identified if the BCI system is activated at least
once in a response window, that is, a time window spanning
0.25 seconds before the time of movement till 0.5 seconds af-
ter it, a method similar to that employed in [4, 5, 7, 23, 24].
FPs are assessed in the periods outside the response window
as explained above. Periods during which ocular artifacts oc-
curred are blocked from analysis.

We also report the overall true positive and false positive
rates of DET1 (regardless of the type of movement). We refer
to these measures as TPic and FPjc. The TPyc is the percent-
age of correct detection of a movement whether it is a right-
hand or a left-hand one. Thus it reflects the performance of
the system if used as a 2-state self-paced BCI. We report this
measure to compare the findings of this study with our latest
2-state self-paced BCI as stated in goal (1) of this study.

5. RESULTS

The mean performance of DET1 (TPjc) in detecting the pres-
ence of hand movements, regardless of the type of move-
ment, from the background EEG is shown in Table 2. This
table shows the TP rates at a fixed FP rate of 1% for the
two designs of DET1. As we are interested in low false pos-
itive rates, we do not report the performance of the system
for higher false positive rates. For higher false positive rates
(e.g., FP > 3%) the true positive rate is almost 100%. As
shown in the last column of Table 2, the mean performance
of DET1-LF-1NN is slightly better than DET1-PSD-LDA.
For subject 2, the mean true positive rate of DET1-PSD-LDA
is more than 15% higher than that of DET1-PSD-1NN with
significance level of P < .03 using “paired t-test”. For sub-
ject 3, however, the differences between the performances of
DET1-PSD-LDA and DET1-PSD-1NN are not significant at
the significance level of 0.05. In the rest of the two subjects,
the mean true positive rates of DET1-LF-1NN outperform
DET1-PSD-LDA by more than 10% with significance levels
of P < .02 through the use of “paired t-test”

Table 3 shows the mean performance of the whole 3-state
self-paced BCI for the two proposed designs (i.e., <DET1-LF-
INN + DET2-PSD-LDA> and <DET1-PSD-LDA + DET2-
PSD-LDA>) at a fixed false positive rate of 1%.

On average, 36% of the right- and left-hand extensions of
the 4 subjects are correctly identified by the 3-state <DET1-
LE-1NN + DET2-PSD-LDA> design (for a false positive rate
of 1%). As shown in Table 3, <DET1-LF-1NN + DET2-PSD-

LDA> outperforms <DET1-PSD-LDA + DET2-PSD-LDA>
in three of the tested subjects.!

Table 4 shows the best performing 3-state self-paced BCI
design for each individual subject. As the last column of
Table 4 shows, the average performance of the 3-state sys-
tem achieves an overall true positive rate of 40.1% (at false
positive rate of 1%). If used as a 2-state BCI its average true
positive is 58.1%.

6. DISCUSSION

The proposed 3-state self-paced BCI was specifically de-
signed to support NC state. This system was tested in a
specific experimental paradigm and on NC state data that
were supposed to be the most difficult one as they were sur-
rounded by IC state data. However, a more thorough study
is needed to investigate the performance of the system un-
der different experimental paradigms and on different sets
of NC state data, for example, when the person perform dif-
ferent mental tasks except for the IC task. This study would
provide a better estimate of the performance of a self-paced
BCI system in a real-world application.

The performance of DET1-LF-INN and DETI1-PSD-
LDA in detecting the presence of a movement (regardless of
its type) yielded average true positive rates of 54% and 53.4%
at false positive (FP) rate of 1%, respectively. In the mean-
time, as shown in the third column of Table 4, the average
TPyc rate for the best performing design across the subjects
was 58.1% at false positive rate of 1%. In other words, if the
current system was used as a 2-state self-paced BCI, the true
positive rate would be 58.1% at false positive of 1%. In com-
parison, the results of the latest 2-state self-paced BCI [11]
for four able-bodied subjects yielded an average true positive
rate of 41% at the same false positive rate of 1%. Thus, when
used as a 2-state system the proposed BCI performs signifi-
cantly better than the 2-state self-paced BCI system in [11]. It
should be noted that while this 2-state self-paced brain com-
puter interface detects finger flexions [11], DET1 of the 3-
state self-paced BCI detects the presence of a left- or a right-
hand extension movement. This improvement should be the
result of using hand extension movements instead of a finger
flexion one. It should be noted however that direct compari-
son of the current system with [11] is not completely accurate
as the data and experimental paradigms used in testing the
two systems were different; a more thorough study is needed
to verify these findings. Verifying these results on a very large
subject pool would eventually provide a better neurophysio-
logical source for controlling current 2-state self-paced BCls.

As shown in Table 2, the overall performance of the 3-
state BCI varies across the subjects and depends on the type
of the design used. Such performance variability across dif-
ferent designs and subjects has also been observed in other

! Note that <DET1-LF-1NN + DET2-PSD-LDA> indicates a design of a 3-
state BCI that uses DET1-LF-1NN design for DET1 and DET2-PSD-LDA
design for DET2. A similar description applies to <DET1-PSD-INN +
DET2-PSD-LDA> design as well.
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TABLE 3: Mean percentages of right and left true positives (TP and TPy) of the two proposed 3-state brain-computer interfaces (when false
positive rate is set at 1%). The TP and TPy value of the best design combination for each subject is highlighted.

3-state BCI Design structure Subject 1 Subject 2 Subject 3 Subject 4 Average
TPr TP, TPr TP, TPr TP, TPr TP,

<DET1-LF-1NN + DET2-PSD-LDA>! 30.6 32.6 16.1 33.4 30.5 36.7 53.3 54.7 36.0

<DET1-PSD-LDA + DET2-PSD-LDA> 19.5 22.2 35.6 47.0 30.1 343 37.4 45.2 33.9

TABLE 4: Best design combination for each subject together with
the performances of the 2-state and 3-state systems (at false positive
of 1%), where A = <DETI1-LF-INN + DET2-PSD-LDA> and B =
<DETI1-PSD-LDA + DET2-PSD-LDA>.

. . 2-state BCI 3-state BCI
Subject Best design
TPic TPr TPy Average TP (TP3_gate)

Subject 1 A 50.1 30.6 32.6 31.6
Subject 2 B 54.7 35.6 47 41.3
Subject 3 A 60.2 30.5 36.7 33.6
Subject 4 A 71.0 53.3 54.7 54
Average — 58.1 37.5 42.8 40.1

BCI systems (e.g., [24, 25]). Given the variable performance
of subjects across the two designs, an approach that can se-
lect a suitable design and adapt to each subject is expected
to achieve better detection rates. Significant gains may also
be achieved from the combination of several single designs
if these designs provide complementary information for the
classification task. Several studies have demonstrated some
evidence of existing independent features related to move-
ment tasks that could be used to achieve better classification
accuracies [26-28].

Subject 4 yielded the best right and left true positive rates
(TPg and TPy) of 53.3% and 54.7% at false positive rate of
1%, respectively. Although DET1’s true positive rate in de-
tecting the presence of a movement (TP;c) for subject 3 was
the second best, overall the system has poor performance in
differentiation between right and left movements. The fol-
lowing reasons might have caused the poor performance re-
lated to this subject.

(a) This subject did not generate significantly differen-
tiable ERD/ERS patterns for the left- and right-hand
movements. Many factors such as task complexity,
effort and attention during the task can also con-
tribute to the quality of the ERD/ERS patterns [15].
Other studies such as [29] have reported some subjects
who poorly performed (classification rates of close to
chance) compared to the rest of the subjects.

(b) In the experimental paradigm used in this study, no
feedback during the performed tasks was provided to
the subjects. While we adopted this paradigm to sim-
ulate a more natural mode of control, this may have
caused a lower performance in some subjects.

(c) No subject prescreening and prior training was per-
formed before the sessions.

Previous findings [17, 30] show that spinal-cord-injured
(SCI) subjects can operate a self-paced BCI with almost the

same results as able-bodied subjects. Thus, able-bodied sub-
jects using a real movement are good predictors of the con-
trollability of our proposed BCI system by SCI subjects using
an attempted movement. It should be noted, however, that
the findings of this study should be confirmed on our target
population (i.e., individuals with motor disabilities) in future
studies.

7. CONCLUSION

This study introduced and evaluated two designs of a 3-state
self-paced brain-computer interface based on movement re-
lated potentials. This 3-state self-paced brain-computer in-
terface is the first of its kind in its capability in (1) support-
ing the NC state, and (2) generating low false positive rates.
While the true positive rate of the latest 2-state self-paced BCI
is41% (at FP = 1%) [11], the best average true positive rate of
the proposed 3-state system is 40.1% (at FP = 1%). These re-
sults show that the 3-state system performs almost the same
as the latest 2-state self-paced BCI [11] with the advantage of
providing more control options than a 2-state system.

This preliminary study was performed to examine the
feasibility of a 3-state “self-paced” brain-computer interface
design. Although the results are promising, more improve-
ments are needed in both of its components, that for de-
tecting a movement and that for differentiating between two
movements. The true positive rate of the system is reported
at a false positive rate of 1%. Even a false positive rate of 1% is
still not suitable for real-world applications as it corresponds
to an average of one false activation every six seconds and
may cause excessive user frustration. Use of more efficient
feature extraction and classification methods, subject train-
ing, providing online feedback during the performed task,
and verifying the results on a large number of subjects are
in the scope of our future directions to improve these re-
sults.
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