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Abstract. A large amount of research has proven that monocyte 
chemotactic protein‑1 (MCP‑1) is associated with different types 
of disease, including autoimmune, metabolic and cardiovascular 
diseases. In addition, several studies have found that MCP‑1 is 
associated with tumor development. MCP‑1 expression level in 
the tumor microenvironment is associated with tumor develop‑
ment, including in tumor invasion and metastasis, angiogenesis, 
and immune cell infiltration. However, the precise mechanism 
involved is currently being investigated. MCP‑1 exerts its effects 
mainly via the MCP‑1/C‑C motif chemokine receptor 2 axis and 
leads to the activation of classical signaling pathways, such as 
PI3K/Akt/mTOR, ERK/GSK‑3β/Snail, c‑Raf/MEK/ERK and 
MAPK in different cells. The specific mechanism is still under 
debate; however, target therapy utilizing MCP‑1 as a neutralizing 
antibody has been found to have a detrimental effect on tumor 
development. The aim of the present review was to examine the 
effect of MCP‑1 on tumor development from several aspects, 
including its structure, its involvement in signaling pathways, 
the participating cells, and the therapeutic agents targeting 
MCP‑1. The improved understanding into the structure of 
MCP‑1 and the mechanism of action may facilitate new and 
practical therapeutic agents to achieve maximum performance 
in the treatment of patients with cancer.
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1. Introduction

Approximately 10 million patients succumb to various types of 
cancer annually, despite a wide variety of available cancer ther‑
apies. Malignant cancers demonstrate a poor prognosis, which 
is evidenced by a reduced expected lifespan and a greater diffi‑
culty in treatment. The advent of target therapies that suppress 
tumor growth, invasion and metastasis, has revolutionized 
cancer treatment and given optimism to numerous patients 
with cancer. In this regard, target therapy elicits both a specific 
and precise action on cancer cells, thereby reducing unpleasant 
side effects by contrast to traditional cancer treatment. Target 
therapy directed against lung cancer with the EGFR muta‑
tion has already demonstrated encouraging results (1,2). 
Consequently, the enthusiasm for target therapy remains high 
since almost all types of cancer possess a key cellular factor 
that promotes its pathological biochemical metabolism.

The chemokine, monocyte chemoattractant protein‑1 
(MCP‑1), also known as C‑C motif chemokine ligand 2 
(CCL2), belongs to the C‑C chemokine superfamily, which 
is comprised of at least 4 members (MCP‑1, ‑2, ‑3 and ‑4). 
MCP‑1 binds to a G‑protein coupled receptor and plays a 
major role in the promotion of inflammation by modulating 
monocyte and basophil activity, but not neutrophil or eosino‑
phil activity (3). Regardless of the affinities, MCP‑1 has an 
ability to interact with a number of receptors [e.g., ACKR1, 
C‑C motif chemokine receptor (CCR)‑2, CCR5, CCR10 and 
CCR11] (4‑8); however, previous findings suggested that CCR2 
is the primary MCP‑1 receptor. MCP‑1 was initially identi‑
fied in 1989 and termed glioma‑derived chemotactic factor‑2 
(GDCF‑2) (9). Later, GDCF‑2 was found in the tissue culture 
media of phytohemagglutinin‑stimulated human mononuclear 
leukocytes. With amino acid sequencing and cloning, GDCF‑2 
was finally renamed MCP‑1 (10,11). MCP‑1 is also known as 
tumor‑derived chemotactic factor, as a wide variety of tumor 
cells can produce it (12). In addition, MCP‑1 is secreted by 
a range of cell types in the tumor microenvironment (TME), 
such as fibroblasts, tumor‑infiltrating monocytes, endothelial 
cells and tumor‑associated adipocytes (13,14).

The MCP‑1 gene (SCYA2) is located on human chromosome 
17q11.2‑q21.1 (15). The precursor MCP‑1 comprises 99 amino 
acids, with 23 amino acids at the N‑terminal, as the hydrophobic 
signal peptide, whereas the mature protein is comprised of 
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76 amino acids, after cleavage of the signal peptide (Fig. 1A). 
There are two forms of the MCP‑1 structure, known as I and 
P (Fig. 1B and C) (16). For all the MCPs, the N‑terminal resi‑
dues, 1‑6, are essential for chemoattractant activity, and the 
first amino acid is necessary for direct receptor binding (17). 
Handel and Domaille (18) reported that the secondary structure 
of MCP‑1 consists of one α‑helix and four β‑sheets (the grey 
label), including residues 9‑11 (β0), 27‑31 (β1), 40‑45 (β2) and 
51‑54 (β3), which are different from the data in the Protein Data 
Bank (18). The latter shows that MCP‑1 has three α‑helices. 
Residue 14 can be glycosylated, which can slightly decrease the 
potency of its chemotactic activity (19).

MCP‑1 has been associated with several diseases, such as 
HIV‑1 pathogenesis, cardiovascular disease and cancer. In the 
present review, the role and mechanism of MCP‑1 in cancer 
are to be discussed.

2. MCP‑1 is a key protein in tumor development

Cancer cell heterogeneity within a tumor is well‑established 
due to the acquired mutations, as a result of the selective 
pressure caused by cell proliferation. Some of these acquired 
mutations result in the synthesis of cytokines that either acti‑
vate or deactivate signaling pathways, allowing the cancer cell 
to escape leukocyte attack or to proliferate faster, leading to 
a higher survival probability for cancer cells. Consequently, 
MCP‑1, secreted by the cancer cells, results in an advantage 
for the tumor but a disadvantage for the host, despite the 
specific signaling pathway involved. For example, MCP‑1 
expression is induced by IL‑1β and regulated by NF‑κB and 
activator protein‑1 (AP‑1) in renal cell carcinoma and glioblas‑
toma (20,21). MCP‑1 is also a downstream molecule of IL‑33, 
which increases tumor metastasis and invasion in esophageal 
carcinoma cells (22). MCP‑1 can also be mediated by the mTOR 
complex 1 signaling pathway or sushi domain containing 
2 in tumor cells (23). A long non‑coding RNA LINC01296, 
termed lymph node metastasis associated transcript 1, acti‑
vates MCP‑1 expression by interacting with hnRNPL and 
mediating H3K4 trimethylation (24). MCP‑1 expression is also 
mediated by PA28γ, which promotes tumor migration, inva‑
sion and angiogenesis (25). In addition, MCP‑1 expression is 
mediated by angiotensin II binding to the angiotensin type 2 
receptor and IL‑4 in endothelial cells (26,27). Furthermore, 
TGF‑β signaling has been associated with MCP‑1 expression 
in fibroblast cells (28). The aforementioned findings indicate 
that MCP‑1 could be activated by different signaling pathways 
and contribute to tumor progression (Fig. 2).

MCP‑1 and CCR2 are expressed in numerous types of 
cancer cells (29,30). However, MCP‑1 expression may vary 
in different cancer cell lines that originate from the same 
organ. For example, MCP‑1 has a higher expression level in 
invasive breast cancer cell lines (e.g., BT594, Hs578T and 
MDA‑MB‑231) compared to non‑invasive breast cancer cell 
lines (e.g., MCF7 and T47D) (31).

MCP‑1 secretion by cancer cells portends to a poor clinical 
outcome, due to the induction of both tumor‑associated 
macrophage infiltration and tumor metastasis in several solid 
tumors [e.g., non‑small cell lung cancer (NSCLC), prostate 
cancer, breast cancer, ovarian cancer, and hepatocellular 
carcinoma] (32‑36). MCP‑1 secretion by Schwann cells also 

portends to a poor clinical outcome, due to the induction of 
perineural invasion (i.e., the local extension of cancer along 
nerves) (37). The abnormal stimulation of MCP‑1 can be 
treated with drugs (e.g., minocycline, telmisartan and zole‑
dronic acid), which have been reported to affect glioblastoma 
stromal cells (38).

Previous findings have demonstrated that the TME has 
been associated with tumorigenesis due to direct or indirect 
interaction between surrounding cells (i.e., stromal cells, 
fibroblasts, endothelial cells, and innate and adaptive immune 
cells) and tumor cells. The indirect interaction could build a 
two‑way bridge via various cytokines, chemokines, and other 
factors, including MCP‑1 (13,14).

MCP‑1 has been associated with tumor development in 
various manners. For example, i) MCP‑1 recognizes and 
binds directly to CCR2‑expressing cancer cells, which 
encourages tumor growth and invasiveness; ii) MCP‑1 
recruits monocytes into the tumor, which then differentiate 
into tumor‑associated macrophages (TAMs) encouraging 
tumor development and angiogenesis; iii) MCP‑1 acts 
directly on endothelial cells to produce endothelial growth 
factors, which encourages angiogenesis (39); and iv) MCP‑1 
recruits fibrocytes into the TME and enhances the formation 
of stroma (40) (Fig. 3). In summary, MCP‑1 stimulates acti‑
vation of various signaling pathways, which promotes tumor 
growth on the one hand. On the other hand, MCP‑1 causes 
immune‑suppression, which encourages tumor growth indi‑
rectly. Furthermore, MCP‑1 enhances resistance to tumor 
drugs. MCP‑1 expression increases resistance to an antian‑
giogenic agent, while the MCP‑1 inhibitor (mNOX‑E36), a 
L‑RAN oligonucleotide chain, restores the sensitivity to the 
antiangiogenic agent (41).

MCP‑1 has been studied mainly in cancer with a high 
incidence rate (e.g., breast, prostate and lung cancers). In this 
regard, 24.5% of all new cancer cases in women are due to 
breast cancer, while 14.1% of all new cancer cases in men are 
due to prostate cancer, and 11.4% of all new cancer cases in 
both men and women are due to lung cancer according to the 
International Agency for Research on Cancer (42). MCP‑1 is 
associated with tumor development in a multi‑faceted process 
and we hypothesized that this multi‑faceted process may be 
analogous in various types of cancer with a high incidence 
rate. The multi‑faceted process of MCP‑1 association with 
tumor development will be subsequently discussed.

MCP‑1 acts on cancer cells directly. The MCP‑1/CCR2 
signaling pathway may operate in an autocrine manner to 
promote tumor development, as some cancer cells secrete 
MCP‑1 and express CCR2 simultaneously. Previous 
studies (39‑41) have addressed specific mechanisms by which 
MCP‑1 has been associated with tumor development.

MCP‑1 elevates IL‑6 and TNF‑α, whose downstream 
oncogenic signaling pathways involve STAT3 and NF‑κB 
in a hepatocellular carcinoma mouse model. Furthermore, 
treatment with an MCP‑1 specific antibody (Ab) blocks 
the oncogene, c‑MYC, which is downstream of STAT3 and 
thereby reduces tumor proliferation in a hepatocellular carci‑
noma mouse model (36). The aforementioned findings suggest 
that MCP‑1 plays a key role in the activation of oncogenes and 
promotion of tumorigenesis.
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In addition, adipocyte secretion of MCP‑1, in the 
TME, binds to CCR2 on cancer cells and activates the 
PI3K/Akt/mTOR signaling pathway. The activation of the 
PI3K/Akt/mTOR signaling pathway induces hypoxia induc‑
ible factor‑1α, which mediates vascular endothelial growth 
factor (VEGF)‑A expression and thereby stimulates tumor 
angiogenesis (35,43). The activation of the PI3K/Akt/mTOR 
signaling pathway by MCP‑1 also inhibits autophagy and 
stimulates tumor proliferation in prostate cancer cells and 
osteosarcoma cells (30,44,45). MCP‑1 also induces Akt 
activation in a dose‑dependent manner (46). In addition to 
the activation of the PI3K/Akt/mTOR signaling pathway, 
the c‑Raf/MEK/ERK and MAPK signaling pathways play a 
role in MCP‑1‑induced tumor migration (47). Furthermore, 
the IP3‑dependent Akt/PKB signaling pathway is asso‑
ciated with MCP‑1‑induced tumor proliferation and 
migration (48).

MCP‑1 can also induce MMP production in cancer 
cells and thereby promotes tumor progression (49). MCP‑1 
enhances the aggressiveness of NSCLC cells by increasing the 
level of MMP‑9 expression in vitro (50). MCP‑1 induces MMP 
production by activating the ERK1/2 and p38 MAPK signaling 
pathways, and upregulates MMP by activating c‑Raf/Raf‑1, 
MEK, ERK, MAPK, c‑Jun, NF‑κB and AP‑1 (47,51,52). 
MMP cleaves cell‑to‑cell and cell‑extracellular matrix adhe‑
sion components, which promotes cell detachment and leads 
to epithelial‑mesenchymal transition (EMT) and enhances 
metastasis (53). In addition, MCP‑1 can directly induce EMT 
by activating the ERK/GSK‑3β/Snail signaling pathway (54). 
Overall, MCP‑1 stimulates tumor proliferation and metastasis 

by activating the MAPK/ERK and ERK1/2‑MMP2/9 signaling 
pathways, respectively (48,55).

In addition, previous studies (30,35,44‑46) have found that 
MCP‑1 specifically recognizes the CCR2 receptor and induces 
a series of signaling pathways that alter cancer cell metabo‑
lism. The mechanism involved shows consistency among 
various tumor types in which MCP1 activates classic signaling 
pathways, even though the exact mechanism involved remains 
unclear. Thus, the aforementioned findings suggest that MCP‑1 
may be a novel target for cancer therapy.

MCP‑1 facilitates endothelial cell angiogenesis. Excessive 
angiogenesis is a salient feature of various tumors, which 
produces a highly unorganized and permeable tumor 
vasculature compared with that in normal cells. The leaky 
neo‑capillaries within the tumor, not only provide less 
oxygen/nutrients to the tumor, but also form an abnormal TME 
promoting tumor development. The endothelial cells are the 
protagonist during the multi‑step process of angiogenesis, and 
previous studies indicate that MCP‑1 interacts with endothelial 
cells and may therefore be associated with angiogenesis in 
tumor development (56,57).

MCP‑1 downregulates the expression level of TNF 
superfamily‑15 (TNFSF15), which is an inhibitor of neovas‑
cularization (58). In addition, elevated MCP‑1 expression 
levels were positively correlated with VEGF expression levels, 
a potent angiogenic factor (39). MCP‑1 also regulates the 
interaction between cancer cells and endothelial cells in vitro, 
and promotes endothelial cell migration, thereby promoting 
angiogenesis (57). The binding of MCP‑1 to CCR2 activates 

Figure 1. Schematic structural illustration of MCP1. (A) The schematic structural illustration. For all MCPs, N‑terminal residues 1‑6 are essential for chemoat‑
tractant activity, and the first amino acid is necessary for direct receptor binding. MCP‑1 is composed of 76 amino acids, and the secondary structure of MCP‑1 
consisted of one α‑helix and four regions of β‑sheet (the grey label), including residues 9‑11 (β0), residues 27‑31 (β1), residues 40‑45 (β2), residues 51‑54 (β3), 
which is little different from the data in PDB protein bank. The last one shows that MCP‑1 has three α‑helix (the grey sections). Residue 14 can be glycosylated 
(the green section), which can slightly decrease the potency of the chemotactic activity of MCP‑1. (B and C) The two forms of secondary structures of MCP‑1: 
(B) is form I and (C) is form P. The former is the single MCP‑1 molecule, while the latter is the dimer.
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the PI3K/Akt signaling pathway and induces phosphorylation 
of p38, ERK1/2, Src in endothelial cells in vitro (59).

MCP‑1 promotes monocyte/macrophage recruitment in the 
TME. In addition to endothelial cells, MCP‑1 is also associ‑
ated with regulating the immune microenvironment in the 
tumor. Myeloid‑derived suppressor cells (MDSCs), as a 
major regulator of immune responses in cancer, bearing the 
markers CD11b (CR3A or integrin αM) and Gr‑1 [anti‑Gr‑1 
monoclonal (m)Abs recognize epitopes common to Ly6C 
and Ly6G] (60), infiltrate the tumor tissue under hypoxia, 
oxidative agents, pro‑inflammatory cytokines or nutrient 
scarcity (39,61). Monocytic MDSCs are derived from circu‑
lating Ly6Chi monocytes, originate from either a myeloid or 

splenic reservoir in a CCR2‑dependent manner, and acquire a 
pro‑inflammatory signature that affects lymphocyte activity, 
proliferation and survival (62,63). In addition, fibroblast acti‑
vation protein‑induced cancer‑associated fibroblasts promote 
the recruitment of MDSCs via the production of MCP‑1 (64). 
Furthermore, MDSC differentiation into TAMs represents 
one of the major immune cells in the TME in most types of 
cancer. Blocking the MCP‑1/CCR2 axis leads to a notable 
decrease in TAM abundance (65). TAMs remodel the TME, 
which promotes EMT and angiogenesis (65), and are divided 
into two categories, the antitumor M1‑like and pro‑tumor 
M2‑like TAMs. MCP‑1 increases the number of M2 TAMs 
but decreases the number of M1 TAMs. This also promotes 
TAM‑dependent lymphangiogenesis in bladder cancer (24), 

Figure 2. The potential mechanisms that regulate MCP‑1 expression. MCP‑1 expression is induced by IL‑1β in specific tumor cells. MCP‑1 is downstream of 
IL‑33, thus IL‑33 which binds to its receptor (ST2) may impact on MCP‑1 secretion. MCP‑1 is also mediated by mTORC1, which is stimulated by amino acids. 
IN addition, MCP‑1 expression is also promoted by SUSD2 in tumor cells. Concerning endothelial cells, angiotensin II and IL‑4 can mediate the expression 
of MCP‑1. Fibroblast activation protein can promote MCP‑1 expression in cancer‑associated fibroblasts. FAP, fibroblast activation protein; IL, interleukin; 
SUSD2, sushi domain containing 2; AngII, angiotensin II; AT2, angiotensin type 2 receptor; FAP, fibroblast activation protein.
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which results in the immune escape of tumor cells, initiation 
of blood vessel growth, and finally the metastasis of tumor 
cells. A CCR2 antagonist reduces the number of M2 TAMs 
and production of cytokines (i.e., IL‑6, CCL2, KC, G‑CSF, 
MIP‑1 and MIP‑2), which enhances the efficacy of tumor 
therapies (66).

Notably, MCP‑1 assists in the recruitment of monocytes 
and their differentiation into macrophages, which suggests 
that MCP‑1 is a key target molecule in tumor development. 
Furthermore, MCP‑1 modulates the progression of mammary 
tumorigenesis, primarily due to its ability to recruit macro‑
phages to the TME. The loss of MCP‑1 expression results in 
a decline of macrophage markers, and reduces primary tumor 
volume and delays tumor progression in a triple negative breast 
cancer model (67).

MCP‑1 expression and TAM recruitment demonstrate 
a positive correlation, while inhibition of MCP‑1 activity 
reduces monocyte infiltration, TAM accumulation and tumor 
incidence (61). Activation of the MCP‑1/CCR2 axis promotes 
the recruitment of monocytes and TAMs into the TME in 
several tumor types, including sarcoma and breast cancer (68). 
Monocyte recruitment into the tumor metastatic site occurs 
in an MCP‑1‑dependent manner, and their transformation into 
macrophages promotes tumor proliferation, metastatic tumor 
survival/growth, and a poor prognosis in various types of cancer 

[e.g., breast, prostate, bladder, kidney and NSCLC) (34,41,69). 
Knockdown of 5'‑nucleotidase domain containing 2 notably 
reduces TAM recruitment via suppression of the MCP‑1/CCR2 
signaling pathway in colorectal carcinoma (70). Furthermore, 
as aforementioned, Tgfbr2FspKO improves the level of MCP‑1 
secretion and enhances tumor progression associated with 
TAM recruitment, which indicates the MCP‑1‑dependent 
attraction of macrophages into the TME depends upon the 
effects of the surrounding cytokines. By contrast, recent find‑
ings showed that MCP‑1 recruits and activates macrophages 
to kill cancer cells in various types of cancer (e.g., gastric and 
colorectal cancer, and melanoma), and MCP‑1 expression was 
decreased in small cell lung cancer (69).

MCP‑1 regulates monocyte attraction and infiltration by 
the induction of adhesive molecules and cytokines, along with 
binding to the CCR2 receptor on monocytes. The signaling 
pathway of MCP‑1‑induced monocyte/TAM recruitment is not 
clear, but it has been reported that the JAK/STAT and p42/44 
MAPK/c‑Jun pathways may be involved in the activation of 
macrophages (71,72). Furthermore, macrophage infiltration 
promotes angiogenesis with MCP‑1 expression. Elevated 
MCP‑1 expression levels promote both macrophage infiltra‑
tion and angiogenesis (73). The number of newly formed 
vascular tubes significantly increases when MCP‑1‑expressing 
cancer cells interact with macrophages compared with 

Figure 3. The potential mechanism of MCP‑1‑promoted tumor development. MCP‑1 can not only utilize monocytes, Treg cells, endothelial cells and fibrocytes but 
also act on tumor directly to affect tumor development. The precise mechanism of MDSC transforming into TAM is not clear. TAM advances tumor development 
in many respects, including EMT, angiogenesis and tumor stromal formation. Treg cells and tumor cells can induce the process of EMT through IL‑33/NF‑κB and 
ERK/GSK‑3α/Snail, respectively. MCP‑1 facilitates tumor proliferation, migration and angiogenesis through specific pathways, such as ERK/GSK‑3β/Snail for 
migration, and PI3K/Akt/mTOR for angiogenesis. In addition, MCP‑1 also promotes tumor angiogenesis by acting on endothelial cells via the PI3K/Akt signaling 
pathway and suppressing TNFSF15. MCP‑1 is also a promoter for fibrocytes that synthesize tumor stromal. Notably, MCP‑1 is the engine for tumor development 
and shutting off the engine will inhibit this process. TNFS15, tumor necrosis factor superfamily‑15; TAM, tumor‑associated macrophage; MDSC, myeloid‑derived 
suppressor cell; MCP‑1, monocyte chemotactic protein‑1; EMT, epithelial‑mesenchymal transition; Treg, regulatory T lymphocyte.
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MCP‑1‑expressing cancer cells only (41), indicating that 
MCP‑1 promotes angiogenesis via macrophage attraction.

MCP‑1 recruits regulatory T lymphocytes (Tregs) into the TME. 
In addition to monocytes/macrophages in the TME, MCP‑1 
also affects the activity of Tregs. MCP‑1 recruits Treg lympho‑
cytes into the TME via the IL‑33/NF‑κB signaling pathway, 
which promotes tumor development, whereas, Treg lympho‑
cyte recruitment into the TME fails to occur in the absence 
of MCP‑1 (22,74). MCP‑1 also recruits Treg lymphocytes 
into the TME via the downregulation of TNFSF15, whereby 
TNFSF15 levels are inversely correlated with the degree of 
CD4+CD25+FOXP3+ Treg lymphocyte infiltration (58). In this 
regard, there is a reduction of CD4+ FOXP3+ Treg lymphocytes 
and induction of CD8+ T‑lymphocyte cytotoxicity, which 
restricts tumor growth in a CCR2 knockout mouse lung adeno‑
carcinoma model (75). Similarly, blocking of the MCP‑1/CCR4 
signaling pathway using a CCR4 antagonist inhibits tumor 
growth and prolongs survival time in patients with head and 
neck squamous cell carcinoma (HNSCC) (76). The aforemen‑
tioned findings indicate that MCP‑1 recruits Treg lymphocytes 
into the TME and reduces the antitumor responses of effector T 
lymphocytes by binding to MCP‑1 receptors (Fig. 3).

3. MCP‑1 is a potential target for tumor therapy

MCP‑1 directly or indirectly mediates changes in the tumor, 
which promotes tumor progression and metastasis. This 
suggests that blocking the effects of MCP‑1 may serve as a 
novel anticancer therapeutic strategy. MCP‑1 target therapy 
is divided into two categories, MCP‑1 inhibitor and MCP‑1 
neutralizing Ab. The latter is described, as it has a prospective 
clinical application (Table I).

Previous studies have indicated that MCP‑1 overexpres‑
sion occurs in various cancer cells (34,66). The blocking of 

the MCP‑1/CCR2 signaling pathway inhibits tumor progres‑
sion (29,46) and weakens recruitment of M2 macrophages and 
Tregs, which activates antitumor CD8+ T lymphocytes (32,66). 
MCP‑1 neutralizing Ab (CNTO888) treatment delays tumor 
growth in an in vivo xenograft mouse model of prostate 
cancer (33) and inhibits the dissemination of estrogen‑depen‑
dent breast cancer induced by macrophages in a zebrafish 
model (77). MCP‑1 target therapy inhibits the development 
of hepatocellular carcinoma by blocking the oncogenic IL‑6 
and TNF‑α signaling pathways and activating NK cells in the 
TME (36). Treatment with anti‑MCP‑1 mAb does not change 
the total leukocyte recruitment, but does change neutrophil and 
M2 macrophage recruitment (32). However, MCP‑1 neutralizing 
Ab treatment inhibits cancer cell proliferation in vitro, but not 
in vivo (78). The reason for this difference may be due to the 
fact that the MCP‑1 neutralizing mAbs cannot be delivered to 
the TME in vivo at an effective concentration for drug efficacy.

In addition, MCP‑1 target therapy and other antitumor 
therapy can play a synergistic effect. Anti‑MCP‑1 administra‑
tion enhances the effect of cisplatin by suppressing colony 
formation in HNSCC in vitro (79), and MCP‑1 inhibitor 
(mNOX‑E36) therapy enhances bevacizumab inhibition in 
tumor progression (41).

Furthermore, since the N‑terminal but not C‑terminal is 
essential for all MCP signaling and chemotactic activity, this 
domain may be a potential target. As early as 1999, Van Coillie 
identified the N‑terminal truncated MCP‑2 (the 6th amino acid 
serine to 76th amino acid proline) can block the activity of 
intact MCP‑1 (80), as the homology sequences between MCP‑1 
and MCP‑2 is 62% (17,80).

4. Conclusion

MCP‑1 acts as an engine that drives tumor progression and 
therefore may serve as an effective therapeutic target. In this 

Table I. MCP‑1 neutralizing antibodies currently available.

Name Type Company name Time Application (Refs.) Remarks (Refs.)

2H5 Mouse MCP‑1 antibody eBioscience/  1994 Umbilical cord Mesenchymal Cross‑reacted with
  BD Biosciences  stem cells (84) human MCP‑1 (85)
5D3‑F7 Recombinant human BD Biosciences 1994 Human sarcoma (86)
 MCP‑1 antibody
AF‑479‑NA Mouse MCP‑1 antibody R&D systems 2000 Human gastric cancer (87);  Cross‑reacted with
    breast cancer (88) human MCP‑1 (87)
MAB479 Mouse MCP‑1 antibody R&D systems 2003 Mouse lung cancer (89)
MAB679 Human MCP‑1 antibody R&D systems 2004 Human clear cell renal cell
    carcinoma (90)
MAB279 Human MCP‑1   R&D systems 2004 Human glioblastoma
 biotinylated  antibody   multiforme (91); human breast
    cancer cell line MCF10CA1d
    (CA1d) (78)
AF‑279‑NA Human MCP‑1 antibody R&D systems 2004 Human lung cancer (92)
CNTO888/  Human MCP‑1 antibody Centocor Inc. 2007 Human prostate cancer (33)
carlumab
C1142 Mouse MCP‑1 antibody Centocor Inc. 2007 Prostate cancer (93)
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regard, the CCR2 blockade (i.e., the MCP‑1 receptor) shows 
promise due to the antitumor effects it exerts (29,36,66,75). 
However, MCP‑1 is secreted not only by tumor cells, but also 
by stromal cells surrounding the tumor parenchyma (81). 
MCP‑1 neutralizing Ab treatment may be more advantageous 
as a clinical strategy than CCR2 blockade for three main 
reasons as indicated below.

First, MCP‑1 binds to other CC‑chemokine receptors 
(besides CCR2), which promote tumorigenesis. Therefore, 
MCP‑1 neutralizing Ab treatment may block not only the 
tumorigenic effects of CCR2 binding, but also the tumorigenic 
effects of the other CC‑chemokine receptor binding. Second, 
MCP‑1 neutralizing Ab treatment reduces MCP‑1 serum 
levels, which decreases systemic inflammation and contributes 
to a favorable prognosis (82). Third, drug development based 
on MCP‑1 neutralizing Ab treatment appears to have more 
promise in delivering a highly efficient therapeutic treatment.

However, the use of MCP‑1 neutralizing Ab requires further 
research. Traditionally, it has been argued that cessation of 
anti‑MCP‑1 treatment led to a rebound of MCP‑1 and a notable 
increase in metastases (83). It points out the issue of utilizing 
the MCP‑1 neutralizing Ab correctly, which will improve the 
side effects. Antitumor drugs may be selected according to 
tumor types, and observe the principle of concomitant drugs 
and full course of treatment. Certainly, it is on the premise of 
the development of an ideal antibody of MCP‑1.

In conclusion, further research is required to reveal the role of 
MCP‑1 in cancer progression in order to identify the most benefi‑
cial target and design the most effective therapeutic strategy.
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