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Infections induced by bacteria at present are a severe threat to public health. Compared
with extracellular bacteria, intracellular bacteria are harder to get rid of and readily induce
chronic inflammation as well as autoimmune disorders. As the development of new
antibiotics becomes more and more difficult, the construction of new antibiotic dosage
forms is one of the optimal choices for the elimination of intracellular bacteria, and, to date,
various nanomedicines have been exploited. However, current nanomedicines have
limited treatment efficiency for intracellular bacteria due to the multiple biological
barriers. Here in this short review, we focus on systemically administered
nanomedicines and divide the treatment of intracellular bacteria with nanomedicines
into three steps: 1) Accumulation at the infection site; 2) Recognition of infected cells;
3) Targeting of intracellular bacteria. Furthermore, we summarize how nanomedicines are
elaborately designed to achieve the "ART" principle and discuss the problems of
experimental models construction. Through this review, we want to remind that the
golden approach for the building of cell and animal experimental models should be
established, and nanomedicines should be also endowed with the versatility to follow
the “ART” principle, efficiently improving the treatment efficiency of nanomedicines for
intracellular bacteria.
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INTRODUCTION

Infections induced by intracellular bacteria pose a formidable challenge to clinical therapy
(Kamaruzzaman et al., 2017). These intracellular bacteria can invade into cells and survive in
active or static states over extended periods. Under the appropriate conditions, they can quickly
replicate inside cells resulting in the relapse of infections. Besides, intracellular bacteria can cause
chronic inflammation as well as autoimmune disorders (Kaufmann, 2011). Numerous antibiotics, to
date, have been clinically used to treat intracellular bacteria-induced infections, but it is hard to
completely eradicate intracellular bacteria (Imbuluzqueta et al., 2011). On the one hand, parts of
antibiotics such as penicillin and streptomycin possess high hydrophilicity and have restricted
cellular penetration. On the other hand, although some antibiotics can readily diffuse into cells, they
show low intracellular retention efficiency (Abed and Couvreur, 2014). Although the application of
excessive doses of antibiotics can potentially enhance its intracellular concentration, various side
effects and toxicities are often encountered (Qiu et al., 2017). In addition, the activity of antibiotics
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may also be influenced by intracellular factors such as pH, redox
status, and enzymes (Wright, 2005). Taken together, the effective
intracellular concentration of antibiotics is often subtherapeutic,
resulting in low efficiency against intracellular bacteria and the
development of antibiotic resistance.

To enhance the therapy efficiency of antibiotics for
intracellular bacteria as well as avoid potential side effects and
toxicities, different nanomedicines that can maintain the activity
of drugs have been exploited (Qi et al., 2020a). A variety of drug
delivery vehicles, such as polymeric nanoparticles (Anversa
Dimer et al., 2020) and gold nanoparticles (Chowdhury et al.,
2017), have been used to load and deliver antibiotics to kill
intracellular bacteria, while the treatment efficiency of current
nanomedicines is rather low. In previous researches, we have
developed a series of nanomedicines for the treatment of various
diseases (Qi et al., 2016; Qi et al., 2018; Han et al., 2019; Qi et al.,
2019; Qi et al., 2020b). Therefore, based on our experience, the
optimal nanomedicine should undertake the following three steps
for the efficient treatment of intracellular bacteria: 1)
Accumulation at the infection site; 2) Recognition of infected
cells; 3) Targeting of intracellular bacteria. Nanomedicines that
follow this “ART” principle can work like guided missiles to
precisely eradicate intracellular bacteria. In this mini-review, we
will summarize how nanomedicines are elaborately designed to
achieve the “ART” principle, facilitating the exploitation of novel
nanomedicines for the efficient treatment of intracellular bacteria.
It should be noted that we just discuss nanomedicines which are
systemically administered in this mini-review because different
administration ways may need nanomedicines with different
properties.

ACCUMULATION AT THE SITE OF
INFECTION

Intracellular bacteria can induce local infections such as skin
infections and lung infections (Shima et al., 2016). For the
treatment of these infections, nanomedicines have to be
accumulated at the site of these infections firstly. The targeting
mechanisms of nanomedicines include passive targeting and
active targeting. Passive targeting depends on the
physicochemical properties of nanomedicines, while active
targeting mainly relies on the modification of targeting
moieties. Below we will discuss these two aspects in great detail.

Passive Targeting of Nanomedicines
It has been reported that capillaries in infection sites are often
damaged, and the capillary permeability is positively correlated
with the severity of infection (Schiffelers et al., 2001). This
physiological characteristic plays a crucial role in
nanomedicines localization at the infection sites. Owing to the
microvascular permeability, nanomedicines can passively
extravasate from blood vessels to the infection sites. In the
passive targeting process, besides the physiological
characteristics of infection sites, physicochemical properties of
nanomedicines such as sizes and zeta potentials also affect the
targeting efficiency. For example, Fenaroli et al. have reported

that PEGylated liposomes (190 nm) accumulate at infection sites
more than PEGylated ones (101 nm), while PEGylated liposomes
(703 nm) have a lower accumulation efficiency (Fenaroli et al.,
2018). They also prove that PEGylated liposomes (101 nm) have a
much longer blood circulation time than non-PEGylated
liposomes (101 nm), and their accumulation efficiency at
infection sites is significantly higher. Furthermore, to enhance
the accumulation efficiency, nanomedicines are often prepared
with neutral or negative surface charge, potentially reducing the
opsonization and avoiding the quick clearance by the immune
system (Xiao et al., 2011). In conclusion, nanomedicines can be
endowed with long circulation characteristics by controlling their
size and surface properties, and these nanomedicines have higher
passive targeting efficiency to infection sites.

It should be noted that, however, nanomedicines that are
readily captured by the immune system can potentially show
excellent targeting efficiency to infection sites. As an example,
rifampicin-loaded PLGA nanoparticles can be taken up by
macrophages, and these macrophages would carry
nanoparticles to the infection sites because of their chemotaxis
(Fenaroli et al., 2014). Even so, this indirectly passive targeting of
nanomedicines is potentially inefficient because macrophages
may result in the degradation and inactivation of
nanomedicines. The application potentials of indirectly passive
targeting need further verification.

Passive targeting of nanomedicines to infection sites is based
on the enhanced permeability and retention (EPR) effect similar
to that of nanomedicines to tumors (Yang et al., 2019). The
vasculatures at the tumor sites and the infection sites are similar,
and they are often leaky and have high permeability. But the
formation mechanism of the EPR effect may be different because
the microenvironment of tumor and infection is different.
Despite this, the heterogeneity of the EPR effect both at the
tumor sites and infection sites has been widely discussed, and it
can reduce the passive targeting efficiency (Fang et al., 2020). To
reduce the influence of vascular heterogeneity, nanomedicines
with active targeting ability have been exploited.

Active Targeting of Nanomedicines
Nanomedicines with active targeting ability are more efficient
because they can rely on not only the EPR effect but the targeting
moieties that can bind with specific receptors in the infection
sites. Nanomedicines for targeting tumor microenvironments
have been widely designed, and they have got favorable
outcomes in tumor treatments (Kim et al., 2021). Different
from tumor microenvironments, infectious microenvironments
include both host cells and bacteria, and their formation is acute
and temporary (Dong et al., 2019; Zhu et al., 2021). A lot of
nanomedicines with active targeting ability to infectious
microenvironments, to date, have been exploited to efficiently
deliver antibiotics to infectious diseases.

Macrophages in infectious microenvironments are often
targeted. Nanomedicines conjugating mannose enable active
targeting to macrophages which express mannose receptors on
the surface. Cai et al. have proved that photoacoustic agents can
be modified with mannose to efficiently accumulate at infection
sites (Cai et al., 2018a; Cai et al., 2018b). Besides, some
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FIGURE 1 | Schematic illustration on the design, synthesis, and potential mechanism of macrophage-monocyte membrane-encapsulated, antimicrobial-
conjugated nanoparticles to kill intracellular bacteria (Li et al., 2020).

FIGURE 2 | The preparation of nanomedicines by fusing the extracellular vesicles membrane derived from S. aureus (EV ghost) over the surface of a nanoparticle
(NP) and their therapeutic process (Gao et al., 2019).
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antimicrobial peptides can be used as targeting moieties. A recent
study reported by Yang et al. shows that gentamicin-loaded
mesoporous silica nanoparticles can be labeled with a cationic
human antimicrobial peptide fragment ubiquicidin (UBI)29–41 to
target infection sites actively (Yang et al., 2018). However, the lack
of corresponding receptors owing to the heterogeneity of
infectious microenvironments may limit the efficiency of a
single targeting factor.

Biological membranes which contain a variety of ingredients
have been applied to endow nanomedicines with multiple
targeting capabilities to infection sites. As shown in Figure 1,
Li et al. coat antimicrobial nanoparticles with macrophage
membranes and these nanomedicines can be selectively taken
up by infected macrophages/monocytes through the combination
of surface Toll-like receptors and their electronegativity (Li et al.,
2020). Extracellular vesicles have recently been used as drug
delivery carriers to treat different diseases (Qi et al., 2021).
Figure 2 shows that Gao et al. use nanoparticles that are
coated with membranes of extracellular vesicles secreted by
Staphylococcus aureus to deliver antibiotics, and these
nanomedicines show significantly higher accumulations in
kidney, lung, spleen, and heart bearing metastatic
Staphylococcus aureus infections than in healthy counterparts
(Gao et al., 2019). Furthermore, Bose et al. exploit a kind of
apoptotic body-based active-targeting carriers. They use
reconstructed apoptotic bodies derived from cancer cells to
deliver vancomycin, and the resulting nanomedicines can take
advantage of the inherent “eat me” signaling of apoptotic bodies
to target infected organs (Bose et al., 2020). The versatility of
biological membranes can potentially improve the targeting
efficiency of nanomedicines, but the heterogeneity of biological
membranes should be seriously considered. For example,
membranes with different sizes and shapes may construct
nanomedicines with distinct properties. Furthermore, the
application of viruses that can target specific bacteria has been
also used as a potential targeting approach, especially for
pulmonary infections (Subramaniam et al., 2019).

It is worth noted that in vitro guidance can also realize the
infection targeting of nanomedicines (Yu et al., 2020). As an
example, magnetic targeting has been recently introduced to
enhance the accumulation of nanomedicines at infection sites
(Subbiahdoss et al., 2012; Armenia et al., 2018). Ji et al. utilize the
magnetic targeting ability of magnetic nanoparticles to deliver
glucose oxidase, efficiently eradicating bacterial/fungi biofilms (Ji
et al., 2021). However, in vitro guidance is only suitable for
detected infections. The combination of active targeting and
in vitro guidance may further improve the targeting efficiency
of nanomedicines.

RECOGNITION OF INFECTED CELLS

After accumulation at infection sites, nanomedicines should
recognize the infected cells and interact with them, facilitating
the delivery of antibiotics to intracellular bacteria. There are many
types of cells at the site of infection, and recognizing different
types of cells requires different methods.

Phagocytic cells, especially macrophages, are often responsible
to engulf and remove bacteria. However, once the killing
mechanisms of phagocytic cells are subverted, the engulfed
bacteria can remain alive inside these cells (Imbuluzqueta
et al., 2011). The recognition of these infected phagocytic cells
is relatively easy because nanomedicines are readily captured by
these cells similar to bacteria. For example, core-shell
nanostructures encapsulating gentamicin based on commercial
pluronic could be efficiently taken up by the tissue macrophages,
resulting in a significant reduction of viable bacteria in the liver
and spleen (Ranjan et al., 2009). Furthermore, nanomedicines can
also be modified with phagocytic cell-targeting moieties as we
have mentioned above to endow them with active targeting
ability, further improving the uptake efficiency of
phagocytic cells.

However, various intracellular bacteria, such as Staphylococcus
aureus and Salmonella, can also locate in nonphagocytic cells
including epithelial cells, fibroblasts, and hepatocytes. For
example, Mycobacterium tuberculosis locates in both
macrophages and hepatocytes (Barrios-Payán et al., 2012), and
Listeria monocytogenes can persist in not only macrophages but
hepatocytes and enterocytes (Barbuddhe and Chakraborty, 2009).
To recognize and target these infected nonphagocytic cells,
possible approaches are to increase the blood circulation time
of nanomedicines by decreasing the uptake of phagocytic cells.
Hyaluronan-based nanoparticles have high biocompatibility, so
they can effectively accumulate in the skin to deliver antibiotics to
dermis and epidermis cells such as keratinocytes and fibroblasts
(Montanari et al., 2020; Zheng et al., 2021). Besides, hyaluronan-
based nanoparticles also have active targeting ability because they
can bind with CD44 isoforms which are highly expressed in
dermis and epidermis cells. Therefore, coupling corresponding
targeting moieties to nanomedicines can further improve its
targeting efficiency to infected nonphagocytic cells. For
example, Mycobacterium infected cells show increased uptake
of arginine by the mediation of cationic transporters, and
arginine-conjugated mesoporous silica nanoparticles can
efficiently target Salmonella infected macrophages and
epithelial cells (Mudakavi et al., 2017).

Recognition of infected cells, in fact, is often difficult. Infected
cells do not show obvious differences from normal cells, and that
is also the reason why bacteria in infected cells can escape from
the immune system. To the best of our knowledge, there are no
nanomedicines that can precisely recognize infected cells without
targeting normal cells by far. Therefore, the recognition of
infected cells needs new mechanisms as well as new methods.

TARGETING OF INTRACELLULAR
BACTERIA

To date, various antibiotics with excellent in vitro activity often
show limited in vivo therapeutic effects. One of the main reasons
is that these antibiotics cannot reach the bacteria-harboring
intracellular compartments leading to the low effective
concentration (Hao et al., 2021). To enhance the therapeutic
effects of antibiotics, therefore, nanomedicines need to target
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intracellular bacteria and release antibiotics to the bacteria-
located intracellular compartments (He et al., 2021).

Bacteria may inhabit different intracellular compartments
(Fenaroli et al., 2020). For example, Listeria monocytogenes
would proliferate in the cytosol of cells, while Listeria
pneumonia colonizes in the endoplasmic reticulum like
vacuoles. Salmonella enterica often locates in the late
endosomal compartments. Besides, the most studied
intracellular bacteria, Mycobacterium tuberculosis, survives in
phagosomes. Therefore, targeting these intracellular bacteria
needs nanomedicines to locate in corresponding compartments.

In some cases, nanomedicines and bacteria would have the
same pathway into cells. For these nanomedicines, they can
inherently locate in the same compartments with intracellular
bacteria, realizing the passive targeting effect. As an example,
nanoparticles of mesoporous iron carboxylate metal-organic
framework (nanoMOFs) can be internalized by macrophages,
and the internalization pathway is principally phagocytosis.
These nanoMOFs can colocalize with intracellular
Staphylococcus aureus which locates in the phagosomes of
macrophages and deliver two antibiotics to fight them (Li
et al., 2019). Shi et al. show that iron oxide nanozymes co-
localize with Salmonella Enteritidis in autophagic vacuoles,
and they can promote the antibacterial effects of autophagic
vacuoles by increasing reactive oxygen species levels (Shi et al.,
2018). Furthermore, many nanomedicines mainly deliver
antibiotics to the endosomes or cytoplasm, while bacteria
could reside in different intracellular compartments such as
vacuoles, nucleus, Golgi apparatus, and endoplasmic
reticulum. These nanomedicines have to target intracellular
bacteria by actively entering compartments in which bacteria
are located, and they are often modified with targeting moieties
(Wang et al., 2021; Yin et al., 2021). Yang et al. immobilize
bacteria-targeting peptides on the surface shell of lipid
nanoparticles to precisely deliver antibiotics, efficiently
eliminating intracellular Staphylococcus aureus (Yang et al.,
2018). Singh et al. conjugate sushi peptides which have a strong
affinity for lipopolysaccharide (LPS) to gold nanoparticles
effectively recognizing intracellular Salmonella typhi (Singh
et al., 2017). Besides peptides, other targeting moieties can also
be used. For example, Fu et al. report that aptamer-modified
quantum dots can recognize intracellular Staphylococcus
aureus (Fu et al., 2020). Furthermore, novel nanomedicines
are exploited recently. Lehar et al. develop a kind of antibody-
antibiotic conjugates to eliminate intracellular Staphylococcus
aureus, and these antibody-antibiotic conjugates are superior
to free antibiotics (Lehar et al., 2015).

CONCLUSIONS AND FUTURE
PERSPECTIVE

The development of nanomedicines for bacterial infections has
attracted wide attention, while the research on nanomedicines for
intracellular bacteria is limited by far. Part of this is because
nanomedicines need to overcome multiple physiological barriers
to effectively target intracellular bacteria. They have to follow the

“ART” principle, sequentially realizing the accumulation at the
infection sites, recognization of the infected cells, and targeting
the intracellular bacteria. For this purpose, therefore, they must
be elaborately decorated according to the properties of targeted
bacteria, raising the difficulty of designing nanomedicines.
Endowing nanomedicines with the targeting ability to the
infection sites is a relatively easy step because there would be
obvious abnormalities at the infection sites such as vascular
heterogeneity and abnormally high expression of certain
receptors. By contrast, the precise recognization of the infected
cells is still an arduous challenge. The differences between the
infected cells and normal cells are often negligible, and the
immune system sometimes fails to detect these differences.
The specific cellular markers of the infected cells should be
screened by the latest biological tests including proteome
analysis and sequencing analysis, facilitating the development
of targeting moieties. Furthermore, the targeting of intracellular
bacteria often needs nanomedicines to possess the ability to
respond to the environment. On the one hand, nanomedicines
should escape from their intracellular compartments to bacteria-
located compartments through their responsiveness. On the other
hand, nanomedicines should responsively release antibiotics to
bacteria-located compartments. Therefore, nanomedicines
should have versatility including active targeting ability and
environmental responsiveness for the follow of the “ART”
principle.

The other main reason for limited researches on
nanomedicines using to eliminate intracellular bacteria is that
the construction methods of experimental models are not perfect.
In current researches, cells are often co-cultured with bacteria to
simulate the model of intracellular bacterial infection. During this
process, bacteria may induce the death of cells, while intracellular
bacteria are often symbiotic with cells in reality. Under the
circumstances, nanomedicines would face a situation that is
completely different from reality. Furthermore, the same is
true of the construction of animal models. There is no
definitive way to prove that bacteria directly applied to
animals are certainly located in the intracellular
compartments. We have noted that the construction of the
intracellular bacteria-infected animal models is similar to that
of routine bacteria-infected animal models in current studies,
potentially leading to the false-positive therapy effects of
nanomedicines on intracellular bacteria-induced infections.
Therefore, the researches on nanomedicines for intracellular
bacteria require the golden approach for the building of cell
and animal experimental models. In addition, other kinds of
drugs should also be exploited, such as nucleic acid drugs (Li et al.,
2021; Yang et al., 2021; Zong et al., 2021), for the clearance of
intracellular bacteria.

In conclusion, it has been harder to develop new antibiotics
recently, and nanomedicines have emerged as one of the
optimal choices for infections induced by intracellular
bacteria. To further realize the clinical translation of these
nanomedicines, however, the golden approach for the building
of cell and animal experimental models should be established.
Furthermore, nanomedicines should be also endowed with the
versatility to follow the “ART” principle. For this purpose, they
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should be modified with targeting moieties that could target
infection sites, infected cells, and intracellular bacteria
respectively.
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