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A B S T R A C T   

The uniqueness and stability of the adolescent and adult functional connectome has been demonstrated to be 
high (80–95 % identification) using connectome-based identification (ID) or “fingerprinting”. However, it is 
unclear to what extent individuals exhibit similar distinctiveness and stability in infancy, a developmental period 
of rapid and unparalleled brain development. In this study, we examined connectome-based ID rates within and 
across the first year of life using a longitudinal infant dataset at 1.5 month and 9 months of age. We also 
calculated the test–retest reliability of individual connections across the first year of life using the intraclass 
correlation coefficient (ICC). Overall, we found substantially lower infant ID rates than have been reported in 
adult and adolescent populations. Within-session ID rates were moderate and significant (ID = 48.94–70.83 %). 
Between-session ID rates were very low and not significant, with task-to-task connectomes resulting in the 
highest between-session ID rate (ID = 26.6 %). Similarly, average edge-level test-retest reliability was higher 
within-session than between-session (mean within-session ICC = 0.17, mean between-session ICC = 0.10). These 
findings suggest a lack of uniqueness and stability in functional connectomes across the first year of life 
consistent with the unparalleled changes in brain functional organization during this critical period.   

1. Introduction 

The first year of life is marked by rapid and unparalleled rates of 
brain development (Gao et al., 2017; Holland et al., 2014). Across the 
first year of life, functional networks mature towards ‘adult-like’ con
nectivity patterns from primary and secondary visual networks, to 
higher order networks such as the dorsal attention network and default 
mode network (Gao et al., 2015a, b). While functional connectivity is 
rapidly developing in infancy, it has been found to be both unique and 
stable in adults (Finn et al., 2015; Horien et al., 2018) and adolescents 
(Horien et al., 2019; Jalbrzikowski et al., 2019; Kaufmann et al., 2017). 
This uniqueness and stability in adulthood has been demonstrated using 
connectome-based identification (ID) or “fingerprinting”, a procedure 
which uses functional connectomes to identify an individual from a pool 
of other individuals based upon the similarity of connectomes from 
separate sessions. Examining the uniqueness and stability of the infant 
functional connectome has the potential to provide insight into how the 
functional connectome develops its individual variability (Finn et al., 
2015). Given the rapid and dynamic changes to the brain’s functional 

architecture during this period (Gao et al., 2015b, 2017; Zhang et al., 
2019), there is a potential benefit to understanding the development of 
its individual variability. Studies using this connectome-based ID pro
cedure have found ID rates between 80–95 % in adults using both 
resting-state and task-based connectomes (Finn et al., 2015) and in ad
olescents using resting-state scans (Horien et al., 2019; Jalbrzikowski 
et al., 2019). However, it is unclear if high ID rates are achievable in 
infancy when functional connectivity is undergoing extensive 
development. 

A complementary approach is to examine the stability of individual 
connections, or edges. In adults, edge-level test-retest reliability via the 
intraclass correlation coefficient (ICC) is typically low despite high ID 
rates using the full connectome (Noble et al., 2017). A recent study of 
test–retest reliability in infants provides evidence that edge intraclass 
correlation for infants is low (Wang et al., 2020). However, this study 
only included resting-state data, tested within-session test–retest reli
ability and did not compare edge-level results with connectome-based 
ID, which measures similarity using the full pattern of the con
nectome. In this study, we expand upon these findings and examine 
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test–retest reliability for both resting-state and task-based data as well as 
between-session test–retest reliability. 

We examined these questions using data from infants that have both 
resting-state and task data (native language task) at 1.5 months and at 9 
months. We hypothesized between-session connectome-based ID with 
functional connectomes calculated from resting-state data would be 
poor (i.e., ID rates below 50 %). Based upon a previous study suggesting 
inclusion of a task-based connectome improves connectome-based ID 
(Finn et al., 2017), we hypothesized between-session ID based upon task 
data would be fair (60–80 %) but not as high as in adult studies (90 %). 
Regarding the test–retest reliability of the functional connectivity data, 
we hypothesized that edge intraclass correlation coefficients would be 
poor for both between-session resting-state and task-based data. We 
predicted edge intraclass correlation coefficients would be higher for 
both within-session resting-state and task-based data, with task-based 
data being higher as intraclass correlation coefficients for edges have 
been shown in a meta-analysis to be more reliable than at rest (Noble 
et al., 2019). Lastly, studies in adults and adolescence have found 
frontoparietal connections contribute most to successful ID. While these 
connections are immature in infancy, we expected that the immature 
connectivity of frontoparietal connectivity will still contribute most to 
successful ID with more mature patterns of connectivity being associated 
with higher success of ID. 

2. Methods and materials 

2.1. Infant dataset (NDAR) and participants 

Infant data for this study were acquired from the National Database 
for Autism Research (NDAR). The dataset identifier is NDAR
COL0002026 (Susan Bookheimer). This study used longitudinal neuro
imaging in infancy to examine early markers of Autism Spectrum 
Disorder (ASD). Infants were recruited in two categories: Low Risk (LR) 
and High Risk (HR). HR was defined as the infant having at least one 
older sibling with a confirmed diagnosis of ASD. Infants were catego
rized as HR if they had no family history of ASD defined as no first- or 
second-degree relatives with ASD or another neurodevelopmental dis
order. Participant exclusionary criteria included: genetic or neurological 
condition, perinatal condition impacting development, visual, hearing, 
or motor impairment, and MRI contraindication. Infants were full-term 
and had births without complications and normal birth weight (>3000 
g). At Session 1 (1.5 months), 74 infants were scanned (41 HR, 33 LR); 
however, 4 HR and 1 LR did not complete the scan. At Session 2 (9 
months) 78 infants were scanned (48 HR, 30 LR); however, 7 HR and 5 
LR infants did not complete the scan. Infants at Session 1 and 2 were 
scanned during rest (naturally sleep with no task) and task (native 
language task); however, the infants that completed these sessions 
successfully and had usable data varied between scan type (rest or task) 
and session. Two infants (HR) were removed from the analysis as testing 
with the ADOS indicated moderate to severe concern for ASD. Thus, data 
from n = 55 infants were used for subsequent analyses (n = 22 or 40 % 
female, n = 28 or 50.91 % high risk).” 

For the between-session analyses (connectome-based ID and 
test–retest reliability) there were n = 27 for Rest1–Rest2 (had usable 
data at rest session 1 and rest session 2) and n = 15 for Task1–Task2. For 
Rest1–Task2 there were n = 24 with usable data, and n = 17 for 
Task1–Rest2. For the within-session analyses, there were n = 24 for 
Rest1–Task1 and n = 47 for Rest2–Task2. The distributions of ASD risk 
status and sex did not significant differ across scan types (ps > 0.05). 
This study was approved by the Institutional Review Board of the Yale 
School of Medicine. The data used for the study is available at 
https://nda.nih.gov/. In post-analysis, we examined if successful ID 
varied by ASD risk status (low risk versus high risk) or infant sex (male 
versus female) using two Pearson’s chi-square test with Yate’s correction 
for continuity. The Yate’s correction is suggested when analyzing a 2 × 2 
contingency table if one of cell frequencies is below 10 (Camilli and 

Hopkins, 1978). In addition to ASD risk status and infant sex, we also 
tested if successful ID varied by scanner, birth order, and family socio
economic status measured as parental education (see Supplementary 
Information). 

2.2. Infant MRI acquisition 

Infant MRI data were acquired using a 3 T Siemens Tim Trio and 3 T 
Siemens Prisma; data were acquired using a 12-channel head coil for the 
Tim Trio scanner, and a 32-channel head coil for the Prisma scanner. 
High resolution T2-weighted echo planar structural images were ac
quired (TR = 5000 ms, TE = 28 ms, FOV = 192, 34 slices, 128 × 128 
matrix, 1.5 mm in-plane resolution, 4mm-thick axial slices for the Tim 
Trio, all identical parameters for the Prisma except for 33 slices were 
acquired and TE = 45 ms). Resting-state acquisitions were 8 min in 
duration using a T2*-weighted echo planar imaging sequence (TR =
2000 ms, TE = 28 ms, 64 × 64 matrix, FOV = 192 mm, 34 slices, 3 mm 
in-plane resolution, 4 mm-thick axial slices). Native language task data 
were acquired with a T2*-weighted echo planar imaging sequence (TR =
3000 ms, TE = 28 ms, 56 × 56 matrix, FOV = 192 mm, 34 slices, 4 mm 
thick for the Tim Trio, and all parameters were identical for the Prisma 
except for 33 slices were acquired) 7.2 min in duration (144 volumes). 

Resting-state and native language task data were collected from in
fants during their natural sleep. Participants put their infant to sleep 
during their regular bedtime. Once asleep, the swaddled infants were 
transferred into the scanner. Infants were fit with earplugs and Mini
Muffs (Natus Medical Inc., San Carlos, California) for hearing protection 
as well as headphones to convey the auditory stimuli during the native 
language task. Infants were laid in a custom-made bed which could fit 
inside the head coil and was secured to the scanner bed with Velcro. A 
weighted blanked and foam pads were used to minimize infant head 
motion. A staff member of the study remained inside the scanner room to 
monitor large infant motion, waking, or signal of distress i.e., crying. For 
the native language task, infants heard speech stimuli from different 
female native speakers of English and Japanese. Infants heard 7 seg
ments in each language that were matched on duration, intensity, peak 
amplitude, pitch, and pitch range. The native language task used a 
traditional block design with alternating streams of English and Japa
nese speech (18 s in duration) interleaved with blocks of silence (12 s in 
duration). Infants heard the speech through the MRI-compatible 
headphones. 

2.3. Infant functional connectivity processing 

We calculated functional connectivity during both the resting-state 
and task scan sessions. As functional connectivity calculated from a 
task has been shown to potentially improve connectome-based ID rates 
(Finn et al., 2017), we followed this procedure and calculated connec
tivity with the same pipeline as resting-state data. As the task-related 
activity has been shown to improve ID rate, we did not regress this ac
tivity from the data (to make a “pseudo” resting-state) rather were 
interested if this connectivity would improve ID rates in infants. 
Resting-state and native language task data underwent motion correc
tion using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Images were 
iteratively smoothed using AFNI’s (http://afni.nimh.nih.gov/afni/) 
3dBlurToFWHM to reach a smoothness of approximately 8 mm 
full-width half maximum (FWHM). Linear and quadratic drifts, mean 
cerebrospinal fluid signal, mean white matter signal, mean gray matter 
signal, and global signal were regressed from the data. Additionally, a 
24-parameter motion model was regressed from the data. The 24-param
eter motion model includes six rigid-body motion parameters, six tem
poral derivatives, and these terms squared. The functional data was 
temporally smoothed with a Gaussian filter with an approximate cutoff 
frequency = 0.12 Hz. Gray matter, white matter, and cerebrospinal fluid 
masks were defined on the reference brain and a dilate gray matter mask 
was applied to include on voxels within gray matter for further 
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calculations. As motion has been shown to be an important confound in 
functional connectivity studies, the frame-to-frame displacement aver
aged across the functional volumes was calculated for each session of 
resting-state and the native language task. Infants were excluded from 
the analysis if their average frame-to-frame motion was greater than 
0.15 mm for one of the scan types for that ID calculation. For Rest1
–Task1, 15 infants were excluded due to motion, 4 for Rest2–Task2, 1 for 
Rest1–Rest2, 3 for Rest1–Task2, and 8 for Task1–Rest2. We did not find 
any significant differences between motion for the scan types based 
upon ASD risk status (ps > 0.05). 

2.4. Infant connectivity matrices 

Connectivity matrices were calculated using an infant-specific par
cellation which consisted of 95 nodes providing whole brain coverage 
(Scheinost et al., 2016). First, the parcellation was defined in the tem
plate space and then transformed back into each participant’s individual 
space using a non-linear registration (Joshi et al., 2011). The atlas was 
reduced to 83 nodes after excluding nodes that had missing data. The 
mean time-course for each of the nodes was calculated and the corre
lation between each pair of nodes was estimated using a Pearson cor
relation, resulting in an 83 by 83 connectivity matrix for each infant. 
Correlations were normalized to Z scores using a Fisher transformation. 

2.5. Adult dataset (HCP 900) 

For comparison with the infant data, we used adult data from the 
Human Connectome Project (HCP) 900 subjects release (Van Essen 
et al., 2013). The adult MRI (HCP 900) data acquisition details have 
been reported previously (Ugurbil et al., 2013). For the adult 
resting-state data (HCP), the resting-state fMRI protocol has been pre
viously described in detail (Glasser et al., 2013; Van Essen et al., 2013; 
Smith et al., 2013). Resting-state data was acquired on two subsequent 
days; for the current study Day 1 (left-to-right phase encoding) 
resting-state data was considered Session 1 and Day 2 resting-state data 
(left-to-right phase encoding) was considered Session 2 as described in 
Horien et al. (2018). 

We obtained the minimally processed HCP data (Glasser et al., 
2013). Data were then further preprocessed and connectivity matrices 
were calculated using a previously described analysis pipeline (Finn 
et al., 2015, 2017; Shen et al., 2017), except a different atlas was used. 
The preprocessing pipelines for the infant data and the adult data were 
identical except for the atlas used for registration (infant atlas versus 
adult atlas). To match the infant data, global signal regression was 
performed. Further, to match the infant connectivity matrices, connec
tivity matrices in the adult were calculated using the 95-node infant 
atlas (Scheinost-95) registered into adult MNI space rather than the 
Shen-268 atlas. Of the full HCP 900 sample, 835 individuals had com
plete resting-state scan data for ‘LR’ phase encoding on both days 
(Session 1 and Session 2). To be able to directly compare the connec
tivity matrices between the infants and adults, the infant-specific par
cellation was registered into adult MNI space and connectivity matrices 
were calculated based upon this parcellation. This resulted in 83 by 83 
connectivity matrices for the adult data. Participants were excluded 
from the analysis if their average frame-to-frame motion was greater 
than 0.15 mm. Thus 81 participants were excluded from the adult 
sample, resulting in 754 participants for the HCP 900 analyses. 

2.6. Connectome-based ID via Pearson correlation 

The connectome-based ID procedure followed previous studies using 
this method (Finn et al., 2015; Horien et al., 2019) using scripts obtained 
from NITRC (https://www.nitrc.org/projects/bioimagesuite). This 
procedure consisted of creating a database of all connectivity matrices 
for the dataset. Through an iterative process, each participant from a 
different session (Session 1 or Session 2) is denoted as the ‘target’. The 

Pearson correlation between the target and all other matrices in the 
database is computed. A correct ID occurred when the highest Pearson 
correlation coefficient is between the target in one session and the same 
in the second session. This process is repeated until each participant 
served as the target once and is repeated for all participants, sessions, 
and database-target combinations. The connectome-based ID procedure 
resulted in two ID rates (ID rates), reflecting the two possible configu
rations obtained by exchanging the roles of target and database session. 
ID rate is computed as the percentage of participants whose identity was 
correctly predicted out of the total number of participants. We examined 
if ID rates were above chance-level, permutation testing was used to 
generate a null distribution such that participant identities were shuffled 
at random and the ID rate was calculated with the random labels. The ID 
rates from using the correct labels were compared to the null distribu
tion to test for significance. The ID procedure was conducted between all 
sessions and all scan types (resting-state and native language task). For 
between-session ID rates, Session 1 was data collected at the first time 
point (1.5 months old, resting-state or native language task) and Session 
2 was data collected from the second time point (9 months old, 
resting-state or native language task). For within-session ID rates, either 
resting state data was selected as Session 1 and the native language task 
was selected as Session 2 or vice versa. 

2.7. Connectome-based ID via geodesic distance 

Using geodesic distance, rather than Pearson correlation, as the 
distance metric in the ID procedure in adults has been shown to achieve 
over 95 % accuracy with resting-state data (Venkatesh et al., 2020). 
Geodesic distance is a distance metric that is non-Euclidean and con
siders the manifold on which the data lies. The Geodesic Distance ID 
procedure follows the same basic structure as the Pearson 
correlation-based ID procedure using the 1-Nearest Neighbor except that 
geodesic distance is computed as the distance measure rather than 
Pearson correlation. As with the Pearson-based ID procedure, the 
geodesic distance ID procedure was conducted between all sessions and 
all scan types (resting-state versus native language task). The geodesic 
distance ID procedure was implemented using code (https://github. 
com/makto-toruk/FC_geodesic) from the original geodesic distance ID 
study (Venkatesh et al., 2020). 

2.8. Differential power analysis 

For each of the ID rates that reached statistical significance via 
permutation testing we computed the differential power (DP) as 
described elsewhere (Finn et al., 2015). DP is an estimate for each edge 
of the likelihood that within-participant similarity is higher than 
between-subject similarity. DP is calculated as the product of the 
z-scored edge values from Session 1 and Session 2 from the same 
participant. This value is compared to the product of the same edge 
value from Session 1 and Session 2 from unmatched participants (Finn 
et al., 2015). If the within-participant product is higher than 
between-participant product across all the participants in the sample, 
this edge contributes highly to ID (indicated by a high DP value). DP was 
calculated for the infant data in which ID rates were significant and 
calculated for the adult (HCP 900) data. 

2.9. Test–retest reliability analysis 

To examine the role of edge-level test–retest reliability in 
connectome-based ID in the first year of life, we estimated ICC in Matlab 
using the Multifactor ICC toolbox (https://github.com/SNeuro 
ble/Multifactor_ICC; (Noble et al., 2017)). The Generalizability Theory 
(G Theory) framework adopted by this tool has been used to estimate 
test–retest reliability of functional connectivity in a number of studies 
(Forsyth et al., 2014; Gee et al., 2015; Noble et al., 2017). We calculated 
the “absolute reliability” form of the ICC (called the ICC in G Theory), 
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which reflects the amount of variance due to the object of measurement 
(here, participants) relative to error sources (here, session, interactions 
between participant and session, and residual error; cf. (Shrout and 
Fleiss, 1979). Specifically, the toolbox estimated variance due to each 
factor (participant and session) in a 2-way ANOVA with interactions 
using the MATLAB function ‘anovan’. Negative variance components 
were small in their magnitude and set to 0 (Shavelson et al., 1993). 
Test-retest reliability was summarized across the brain by calculating 
the mean and standard deviation of ICC across all edges. ICC can be 
interpreted as <0.4 = poor; 0.4–0.59 = fair; 0.60–0.74 = good; and 
>0.74 = excellent (Cicchetti and Sparrow, 1981). Means, standard de
viations, and ranges for ICC were calculated for all between all scan 
types (resting-state and native language task) and sessions (Session 1 
and Session 2). To compare infant test–retest reliability to adult test-test 
reliability, we calculated the edge-level ICCs for the HCP data. We also 
examined the correlation between ICC and DP and used a one-tailed 
Mantel test with 1000 iterations to estimate significance of this associ
ation since we hypothesized a positive correlation between ICC and DP. 
Lastly, we calculated a measure of multivariate test–retest reliability, 
I2C2 (Shou et al., 2013), which resulted in a single test–retest reliability 
coefficient by summing variance components over all edges. 

3. Results 

3.1. Connectome-based ID 

Using the Pearson-based connectome ID procedure, we found sup
port for our hypothesis that within-session ID rates would be highest 
(between 48.94 % and 70.83 %). However, ID rates for Session 2 were 
not substantially higher than Session 1 as hypothesized. Between-session 
ID rates were very low and mostly nonsignificant with the highest rate 
being for Task1–Task2 (26.67 %). Table 1 shows each ID rate for each 
task–rest pair for the Pearson-based ID procedure with the raw con
nectivity matrices. ID rates based on geodesic distance were not sub
stantially higher than the ID rates based on Pearson correlation (see 
Table 2). However, the geodesic distance-based ID rates follow a 
consistent pattern as the Pearson-based ID rates in that the highest ID 
rates are for the within-session IDs. Between-session ID rates remained 
very low and mostly nonsignificant. ID rates for the adult data was 71.6 
% and 71.4 %, consistent with previous studies examining ID rate in the 
HCP sample using the resting-state data (Horien et al., 2018). See the 
Supplementary Information, for an examination of connectome-based 
ID rates for the adult data using data trimmed in length to match the 
infant data (8 min of data). In adult connectome-based ID studies, ID rate 
improvements have been shown using geodesic distance as the distance 
measure rather than Pearson correlation (Abbas et al., 2021). While we 
observed some improvements of the similar magnitude for the 
within-session ID rates, overall, geodesic distance did not improve 
between-session ID rates. 

3.2. Differential power analysis 

DP was calculated for each of the connectome-based ID rates (p <
0.05) (see Fig. 1). The DP analysis focused on the DP for the two within- 
session ID rates (Rest1–Task1 and Rest2–Task2) for their relatively high 
ID accuracy. We included a DP analysis of Rest1–Rest2 to examine DP 
‘developmentally’ as there was approximately 8 months between the two 
scans. For comparison, we also calculated DP for the adult data. Similar to 
previous studies (Finn et al., 2015; Horien et al., 2018, 2019), DP across 
infant and adult scans all included a widely distributed network of edges 
including the prefrontal, temporal, and parietal cortices. First, we 
examined if the DP edges were significantly different between adults and 
infants in terms of the number of significant prefrontal-to-prefrontal 
connections (PFC–PFC), prefrontal-to-non-prefrontal (PFC–nonPFC), 
and non-prefrontal-to-non-prefrontal connections (nonPFC–nonPFC) 
(see Table 3 for count totals). Kolmogorov-Smirnov (K-S) tests indicated 
that DP edge distributions for PFC–PFC connections in Rest1–Task1, 
Rest1–Rest2, Rest2–Task2 and adult data did not follow a normal dis
tribution (ps < 0.001). K-S tests did not reveal any significant differences 
between adults and infants with respect to the number of DP edges found 
to be significant (PFC–PFC D = 0.01, p > 0.05; PFC–nonPFC D = 0.02, 
p > 0.05; and nonPFC–nonPFC D = 0.05, p > 0.05).” The same patterns 
were observed using two a sample K-S test for comparing the adult data 
with the infant Rest1–Rest2 data (all ps > 0.05), and the infant 
Rest2–Task2 data (all ps > 0.05) in terms of number of significant 
PFC–PFC, PFC–nonPFC, and nonPFC–nonPFC DP edges. These findings 
suggest that the distributions of DP edges may not meaningfully differ 
between adults and infants (Fig. 2). 

Second, we examined if there was a developmental shift of the degree 
distribution towards higher degree nodes in the prefrontal cortex with 
the highest being the adult DP data. We calculated the degree for each of 
the DP matrices and examined if degree distributions were significantly 
different between adults and infants. A two sample K-S test indicated 
that there was no significant difference between the degree distribu
tions, across the brain, for the adult data and Rest1–Task1 (D = 0.03, p <
0.99), adult data and Rest1–Rest2 (D = 0.04, p < 0.99), and adult data 
and Rest2–Task2 (D = 0.02, p < 0.99). Thus, these findings suggest that 
the degree distributions of DP edges may also not meaningfully differ 
between adults and infants. 

Finally, we examined if the low ID rates in infants may be due to 
differences in the underlying functional connectivity across the fronto
parietal network (as this network has a protracted developmental tra
jectory (Fair et al., 2007; Gao et al., 2015b; Peters et al., 2016) and 
contributes highly to adult ID rates (Finn et al., 2015; Jalbrzikowski 
et al., 2019)). For the infant (Rest1–Task1, Rest1–Rest2, and Rest2
–Task2) and adult data, we calculated the average functional connec
tivity across the frontoparietal network (8 nodes) and examined 
differences between adults’ and infants’ functional connectivity. Using a 
permutation with 1000 iterations, adult frontoparietal functional con
nectivity (averaged across Rest1 and Rest) was significantly different 
than infant frontoparietal functional connectivity (averaged across ses
sions) for Rest1–Task1 (t = -0.028, p < 0.001), Rest1–Rest2 (t = -0.022, p 
< 0.001), and Rest2–Task2 (t = -0.017, p < 0.001). There were no sig
nificant differences in frontoparietal functional connectivity among the 
infant data (ps > 0.05). The mean frontoparietal functional connectivity 

Table 1 
The demographics of the infant sample.  

Variable Sample (N = 61) 

Infant Sex (male) (1) 38 (62.3 %) 
ASD Risk (high risk) (1) 32 (52.46 %) 
Scanner Session 1 (Prisma) (1) 5 (8.2 %) 
Scanner Session 2 (Prisma (1) 5 (8.2 %) 
Birth weight (lbs) 7.77 (1.04) 
Maternal Education (years) 17.04 (2.14) 
Paternal Education (years) 16.52 (2.58) 
Average Parent Education (years) 16.74 (2.13) 
Greater than high school education (average) (yes) (1) 49 (98 %) 

Note. N = 9 missing Birth weight (lbs). N = 8 missing Maternal Education 
(years). N = 9 missing Paternal Education (years). N = 11 missing Average 
Parent Education (years). N = 11 missing Greater than high school education 
(yes). Table generated using https://dpagliaccio.github.io/scipub/. 

Table 2 
Breakdowns of sex and genetic risk status for autism spectrum disorder for each 
scan type (HR = high risk).  

Scan Type N Sex (M) Risk Status (HR) 

Rest1–Rest2 27 12 16 
Task1–Task2 15 6 7 
Rest1–Task2 24 10 14 
Taskl–Rest2 17 9 14 
Rest1–Task1 24 12 13 
Rest2–Task2 47 24 29  
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for the adults was -0.03 therefore the negative observed differences 
between the adults and infants (mean for Rest1–Task1 = -0.0013, mean 
for Rest1–Rest2 = -0.0080, mean for Rest2Task2 = -0.0128) suggest a 
developmental shift towards more ‘negative’ functional connectivity 
across the frontoparietal network (with Rest2–Task2, when infants are 
oldest, showing the least difference from the adult data). Overall, these 
findings suggest that differences in the underlying functional connec
tivity may be driving successful ID. 

3.3. Analysis of successful IDs 

For the connectome-based ID rates that were significant: Rest1
–Task1, Rest2–Task2, Rest1–Rest2 (Rate 2), Task1–Task2 (Rate 1), we 
conducted a follow-up analysis of whether successful IDs were influ
enced by risk status. For Rest1–Task1, successful ID was not found to 
vary according to infant risk status for ASD (p < 0.10, chi square test) or 
infant sex (p < 0.20, chi square test) for Rate 1. For Rest1–Task1 Rate 2, 
Rest2–Task2 (both rates), Rest1–Rest2 (Rate 2), Task1–Task2 (Rate 1), 

successful ID did not vary according to infant risk status for ASD or in
fant sex (all ps > 0.05). 

3.4. Test–retest reliability 

We also examined edge-level ICCs for combinations of sessions 
(summarized in Table 4, plotted on the brain in Fig. 3, and as matrices 
sorted by lobe in Fig. 4). For the Pearson-based correlation matrices, 
within-session mean edge-level ICCs were consistently higher than 
between-session mean edge-level ICCs. For both types of connectivity 
matrices, between-session mean edge-level ICCs were consistently low 

Fig. 1. (a) Results of the Pearson connectome-based ID procedure. Bar plots show the average ID rates for each scan pair (R1–R2: Rest1–Rest2, T1–T2: Task1–Task2, 
R1–T2: (Rest1–Task2), T1–R2: Task1–Rest2, R1–T1: Rest1–Task1, and R2–T2: Rest2–Task2. (b) Results of the geodesic distance connectome-based ID procedure. 

Table 3 
Demographics of the adult sample (n = 754), age = years old.  

Sex (M) Age (22–25) Age (26–30) Age (31–35) Age (36+) 

333 (44.16 %) 165 (21.88 %) 325 (43.10 %) 260 (34.48 %) 4 (0.53 %)  

Fig. 2. Circle plots showing the significant differential power (DP) edges for each connectome-based ID at p < 0.05. For visualization purposes, a degree threshold of 
7 was applied. Across infants and adults, patterns are widely distributed involving connections spanning the prefrontal, parietal, temporal, and occipital lobes. 

Table 4 
Results of the Pearson connectome-based ID procedure. ID Rate 1 refers to the 
percentage of correct IDs (a participant at Session 1 was most highly correlated 
with themselves at Session 2) when using Session 1 as the target and Session 2 as 
the database, and ID Rate 2 refers to IDs when target and database are reversed.  

Scan Type 
(Pearson) 

N Average 
ID Rate 

ID 
Rate 1 

ID 
Rate 2 

P-value 
(Rate 1) 

P-value 
(Rate 2) 

Rest1–Rest2 27 12.96 11.11 14.81 0.075 0.005* 
Task1–Task2 15 20 26.67 13.33 0.004* 0.25 
Rest1–Task2 24 6.25 8.33 4.17 0.27 0.65 
Taskl–Rest2 17 8.82 5.88 11.76 0.67 0.27 
Rest1–Task1 24 62.5 70.83 54.17 0.001** 0.001** 
Rest2–Task2 47 48.94 48.94 48.94 0.001** 0.001**  
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(mean ~0.08). Within-session mean edge-level ICCs were consistently 
higher for Session 2 when the infants are 9 months old versus Session 1 
when the infants are 1.5 months old. For both types of connectivity 
matrices, between-session mean edge-level ICCs were surprisingly not 
higher during task compared with rest. Overall, across all of the rest-task 
and session comparisons, the mean edge-level ICCs were in the poor 
range. However, for both types of connectivity matrices, maximum 
values reached to ‘good’ or ‘excellent’ range for ICC. For the adult data, 

the ICC had a mean of 0.38 ± 0.12 and a range of 0.04–0.81 (Table 5). 
We examined the correlation between ICC matrices for the infants 

and adults focusing on the two within session ID rates (Rest1–Task1 and 
Rest2–Task2) and the resting-state between-session ID rate (Rest1
–Rest2); the latter was chosen as this session most comparable with the 
adult data as it was resting-state. To examine the correlations between 
the matrices, we used a Mantel test (Mantel, 1967) with 1000 iterations. 
The Mantel test indicated Rest1–Task1 ICC values for the infants were 

Fig. 3. Mean intraclass correlation coefficient (ICC) for each region of the Scheinost-95 parcellation for infants and adults.  

Fig. 4. (a) Intraclass correlation coefficients (ICCs) organized by lobe for the infant Rest1–Task1 (b) ICCs organized by lobe for the infant Rest1–Rest2 (c) ICCs 
organized by lobe for the infant Rest2–Task2 (d) ICCs organized by lobe for the adult data (Rest1–Rest2 for the HCP 900 data). 
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positively correlated with the adult ICC values (r = 0.19, p < 0.001). A 
positive correlation was also found between the adult ICC values and 
infant Rest2–Task2 ICC values (r = 0.18, p < 0.001). However, there was 
not a significant association between the adult ICC values and the infant 
Rest1–Rest2 ICC values (p < 0.21). 

We examined if there was a significant difference between the ICC 
values for the adults and infants. Using a permutation test with 1000 
iterations, we found that the ICCs for the adult data were significantly 
greater than the infant Rest1–Task1 data (t = 0.17, p < 0.001), infant 
Rest1–Rest2 (t = 0.28, p < 0.001), infant Rest2–Task2 (t = 0.20, p <
0.001). The ICCs for the infant Rest1–Rest2 data were lower than the 
infant Rest2–Task2 (t = 0.07, p < 0.001) and infant Rest1–Task1 data (t 
= -0.10, p < 0.001). However, there were no significant differences 
between the Rest1–Task1 and Rest2–Task2 data (p < 0.99). Together, 
these results suggest that, while the infant connectome exhibits lower 
ICC than the adult connectome, similar edges have higher ICC values in 
infants and adults. For multivariate test–retest reliability, we calculated 
I2C2 (Shou et al., 2013), a measure of test–retest reliability across edges 
of a connectome that results in a single coefficient (Table 6). I2C2 values 
followed a similar pattern as the edge-level test–retest reliability mea
surements, with between-session I2C2 values being low and signifi
cantly improved for within-session (0.15 and 0.18) (Table 7). 

3.5. Associations between test–retest reliability and differential power 

We estimated the association between edge-level test–retest reli
ability (ICC) and DP using the Mantel statistic. This enabled us to 
evaluate the extent to which edges that were the most reliable were the 
same edges that contributed highly to a successful ID. In all cases, the 
correlations between the DP and ICC were small (rs < 0.04).” 

4. Discussion 

In contrast to prior work in adulthood and adolescence, we found 
that the infant functional connectome shows poor identifiability across 
the first year of life. As connectome-based ID rate has been used to 
quantify the uniqueness and stability of the functional connectome, the 
results suggest that infants do not yet possess the uniqueness and sta
bility they will have later in development. Within-session ID rates were 
consistently the highest (48.94–70.83 %), with lower ID rates for the 
between-session analyses (between 14.81–26.67 %). As it may be 

related to ID rate, we also examined edge-level test–retest reliability and 
found consistent results in which mean ICCs for within-session func
tional connectome edges were higher (0.16–0.19) while between- 
session functional connectome edges were consistently lower 
(0.09–0.14). Further, we found that functional connectome edges in 
infancy have lower ICCs than adults, however; similar edges have high 
ICC for infants and adults. These findings have implications for longi
tudinal studies using fMRI in the first year of life and suggest poor 
test–retest reliability. The findings show low stability and uniqueness of 
the functional connectome in infancy and suggest this may be due to the 
rapid and unparalleled brain development occurring this developmental 
period. One may expect that low connectome-based ID rates across in
fancy may be due to poorer test–retest reliability (i.e., less reliable data 
in infants). However, we did not find support for a correlation between 
edge-level ICC and DP for the infants. This finding suggests that high DP 
edges for the infants are not simply edges that have greater test–retest 
reliability. 

Since the first connectome-based ID studies were published (Finn 
et al., 2015; Miranda-Dominguez et al., 2014), there has been increasing 
interest in quantifying the uniqueness and stability of individual vari
ability in the functional connectome developmentally. Two studies have 
shown high ID rates in adolescence (Horien et al., 2019; Jalbrzikowski 
et al., 2019) and one study found connectome-based ID rates increased 
between ages 8–22 with large increase during puberty (14.5 years old) 
(Kaufmann et al., 2017). Of particular relevance, both studies in 
adolescence found that for adolescence, the functional connectome had 
high ID rates across periods of approximately a year (Horien et al., 2019; 
Jalbrzikowski et al., 2019). This finding demonstrates high ID rates 
across a similar range of time as the current study; suggesting that the 
higher ID rates observed were due to functional connectomes being 
more developmentally mature in adolescence. The findings from Kauf
mann et al., show that ‘connectome distinctiveness’ continues to 
develop across adolescence. However, it was unclear if high ID rates 
were achievable from a large age range of 0–8 years old. Studies have 
quantified rates and development of both the structural and functional 
development of the brain and highlighted the first year of life as both 
rapid and unparalleled (Gao et al., 2017; Holland et al., 2014). The re
sults of the current study suggest that for both resting-state and 
task-based data, within-session connectome-based ID rates tend to be 
low (below 65 %). While a previous study found including task-based 
connectomes boosts ID rates (Finn et al., 2017), we did not find this 
pattern for the infant task and rest data. This pattern suggests that within 
a session, an infant’s resting-state functional connectome is more highly 
correlated with its task functional connectome (and vice versa) for about 
half of the sample. This suggests that even within a session, an infant’s 
resting-state (or task) connectome is being misidentified and has a 
higher correlation with another infant’s connectome. For 
between-session ID rates, greater than 70 % of the sample was being 
misidentified (higher correlation with another individual) for both 
resting-state and task data. These findings that for the majority of infants 
in the study, the uniqueness and stability of the functional connectome 
has not been fully established. In post analysis, we examined if two 
factors (sex or risk status) were associated with greater ID rates. 

Table 5 
Results of the geodesic distance connectome-based ID procedure. ID Rate 1 re
fers to the percentage of correct IDs (a participant at Session 1 was most highly 
correlated with themselves at Session 2) when using Session 1 as the target and 
Session 2 as the database, and ID Rate 2 refers to IDs when target and database 
are reversed.  

Scan Type 
(Geodesic 
Distance) 

N Average 
ID Rate 

ID 
Rate 1 

ID 
Rate 2 

P-value 
(Rate 1) 

P-value 
(Rate 2) 

Rest1–Rest2 27 7.40 3.70 11.11 0.67 0.08 
Task1–Task2 15 16.66 20.0 13.33 0.001** 0.001** 
Rest1–Task2 24 8.33 8.33 8.33 0.27 0.25 
Taskl–Rest2 17 20.58 23.52 17.64 0.001** 0.001** 
Rest1–Task1 24 60.41 66.66 54.16 0.001** 0.005* 
Rest2–Task2 47 55.31 55.31 55.31 0.001** 0.08  

Table 6 
Number of edges with significant differential power (DP; p < 0.05) for each 
connectome-based ID rate.  

Scan PFC–PFC PFC–nonPFC nonPFC–nonPFC 

Infant Rest1–Task1 8 56 81 
Infant Rest1–Rest2 6 52 91 
Infant Rest2–Task2 12 65 84 
Adult Rest1–Rest2 9 62 80  

Table 7 
Means, standard deviations, and ranges of the edge-level ICC (D-coefficient) for 
each rest-task and Session combination (Rest1 = resting-state Session 1, Task1 =
task Session 1, Rest2 = resting-state Session 2, Task2 = task Session 2) for 
Pearson correlation connectivity matrices.  

Scan Type N ICC (Mean ± SD) Range I2C2 

Rest1–Rest2 27 0.09 ± 0.11 0 – 0.64 0.03 
Task1–Task2 15 0.14 ± 0.15 0 – 0.77 0.09 
Rest1–Task2 24 0.08 ± 0.11 0 – 0.55 0.006 
Taskl–Rest2 17 0.09 ± 0.13 0 – 0.68 0.01 
Rest1–Task1 24 0.19 ± 0.16 0 – 0.80 0.18 
Rest2–Task2 47 0.16 ± 0.13 0 – 0.65 0.15  
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However, we did not find evidence to support either impacting ID rate. 
We did not observe improvements in within-session ID rates (actu

ally lower ID rates) when geodesic distance was used as the distance 
measure of functional connectivity instead of Pearson correlation 
(Abbas et al., 2021). The geodesic distance method captures the un
derlying non-Euclidean geometry of connectivity matrices (Abbas et al., 
2021), so perhaps this structure in the connectivity matrix may not be 
developed enough in infancy (or too noisy) to benefit ID rates. Across the 
Pearson and geodesic distance ID rates, between-session ID rates were 
consistently low (below 30 %) with within-session ID rates between 
40–60 %. Future studies will be needed to examine if methods beyond 
the Pearson and geodesic distance-based ID procedures can achieve high 
ID rates across the first year of life. 

We also examined if ID rate varied due to infant sex or ASD risk 
status. We did not have find evidence for sex-specific effects for ID or 
that ID rate differed between high risk and low risk infants. For Rest1
–Task1 significance was at a trend level for successful ID being impacted 
by ASD risk status. Interpretation of the Rest1–Task1 analysis should be 
cautioned with this in mind; however, this significance at trend level for 
ASD risk status was not found for other scan types. Additionally, as 
discussed further below, frontoparietal connectivity was found to shift 
towards more ‘adult-like’ patterns in older infants. This suggests indi
vidual differences in ID success may be due to the maturity of fronto
parietal connections. This hypothesis will need to be tested in future 
studies in which frontoparietal connectivity and ID rates can be exam
ined longitudinally across infancy. 

As connectome-based ID is a measure of multivariate test–retest 
reliability, we calculated the ICC of the edges of functional connectomes 
across scan (resting-state versus task) and age (1.5 month and 9 
months). Whether between-session or within-session, mean edge ICC 
values were in the poor range for the infant data. As a comparison, mean 
edge ICC values were still in the poor range (0.37) but close the 
threshold of being considered fair (0.40) (Cicchetti and Sparrow, 1981) 
and similar to a meta-analysis of 25 resting-state studies that found an 
average edge-level ICC of 0.29 (Noble et al., 2019). A recent study found 
similar results in infants (mean postmenstrual age of 45.14) (Wang et al., 
2020), with within-session edge-level ICCs between 0.14–0.18. How
ever, this study did not calculate between-session ICCs. These findings 
suggest that even within-session, infant edge-level ICCs are extremely 
low and even lower across the first year of life. These findings have 
implications for future studies examining the infant functional con
nectome (especially longitudinally) and should be considered when 
design infant fMRI studies and interpreting results of studies. 

We did not find support of our hypothesis that task-based data would 
have higher edge ICC’s than resting-state data. This may be due to in
fants being asleep during both rest and the task. However, both Rest1
–Task1 and Rest2–Task2 ICCs for the infants were positively correlated 
with the adult ICCs. This suggests that using a task for infants may make 
patterns of reliability more similar to the adults. Further analysis of the 
edge-level ICCs showed a pattern of adult ICCs being higher than all of 
the infant ICCs, infant Rest1–Rest2 ICCs being lower than all of the other 
ICCs (infant and adult), and no significant difference between the infant 
Rest1–Task1 and Rest2–Task2. The Rest1–Rest2 ICCs are consistent with 
the pattern that between-session ICCs have lower test–retest reliability, 
these data show it drop substantially across the first year of life and 
highlight the extensive development occurring during this period. This 
pattern is consistent with findings of a meta-analysis of resting-state 
studies in that individual edges have low ICC and high instability 
(Noble et al., 2019). However, when the pattern of whole-brain con
nectivity is considered (all edges) there is relatively high reliability. Our 
findings suggests that for infant functional connectivity in the first year 
of life, interpretations should be cautious regarding inference based 
upon single edges especially longitudinally, with more confidence in 
findings including the whole functional connectome (I2C2). Both the 
infant functional connectome and its edges are prone to noise, with 
connectomes having limited but greater stability. These factors should 

be considered for future infant functional connectivity studies as well as 
study’s conceptualizing the infant connectome as a ‘neural marker’ or 
patterns as a ‘biomarker’. It should be noted that in terms of neural or 
biomarkers it is important to consider how well functional connectomes 
can predict a behavior (Finn and Rosenberg, 2021). First, derived 
functional connectome may vary for an individual from scan session to 
scan session, but still have high predictive accuracy and have utility as a 
biomarker. Despite the scan variability from session to session, the 
connectome is still unique to the individual and meaningful in relation 
to an outcome of interest (Finn and Rosenberg, 2021; Taxali et al., 
2021). Second, using functional connectomes in conjunction with pre
dictive modeling, rather than individual imaging features, has been 
shown to increase reliability (Finn and Rosenberg, 2021; Taxali et al., 
2021). 

Connectome-based ID studies in adolescence and adulthood have 
consistently found the highest contributing edges (high DP) to successful 
ID were frontoparietal and medial frontal connections (Finn et al., 2015; 
Horien et al., 2019; Jalbrzikowski et al., 2019). As these connections are 
present but immature in infancy, it is unclear if high DP edges in infants 
would differ from adults. DP connectomes were remarkably similar in 
terms of connections with edges spanning the brain among infants and 
between adults and infants. We did not find significant differences in the 
distribution of edges or the degree distribution of edges between adults 
and infants. These findings suggest that the difference observed between 
adult ID and infant ID rate is not due to connections that are typically 
high DP (frontoparietal and medial frontal) being ‘absent’ in regard to 
not being developed enough in infancy to contribute to fingerprinting. 
As these primarily prefrontal connections were not absent, we also 
tested if the count of DP edges between PFC–PFC, PFC–nonPFC, non
PFC–nonPFC were significantly different between infants and adults. 
The lack of significant difference confirms that the distribution of edges 
was not different between infants and adults., We examined if the dif
ference in ID rate between infants and adults may be attributable to 
higher degree distribution in prefrontal nodes such that adults had more 
developed ‘hubs’ in prefrontal regions and this helped to achieve higher 
ID rates. 

While the results suggest there was not a significant difference DP 
distribution or degree distribution of DP, we found that the underlying 
frontoparietal functional connectivity was significantly different in in
fants compared to adults. The pattern of results comparing adult to in
fant frontoparietal network connectivity showed a developmental shift 
towards more negative functional connectivity. Older infants (Rest2
–Task2) had the lowest difference between infants and adults while the 
youngest infant (Rest1–Task1) had the greatest difference between in
fants and adults. This pattern towards greater negative frontoparietal 
functional connectivity has been shown in previous developmental 
studies; however, these typically focus on cortical–subcortical connec
tivity changes developmentally and less is known about the develop
ment of functional connectivity within the frontoparietal network (Lee 
and Telzer, 2016; Vendetti and Bunge, 2014). In addition to having 
consistently high contributions to successful ID rates (Finn et al., 2015; 
Horien et al., 2019; Jalbrzikowski et al., 2019), the frontoparietal 
network has been shown to develop rapidly across the first year of life 
(Gao et al., 2015a, b) and continue to development into childhood and 
adolescence (Barber et al., 2013; Kipping et al., 2017; Kolskår et al., 
2018). Therefore, the low ID rates in infants compared to adults may be 
attributable to the differences in overall functional connectivity across 
the frontoparietal network. 

We would like to note a few limitations. First, all of the scans were 
conducted during the infant’s natural sleep. It is not currently clear how 
sleep impacts connectome-based ID rate as all studies to data have been 
conducted in awake participants. Infant functional connectivity during 
sleep has been shown to most closely resemble adult functional con
nectivity during sleep (Mitra et al., 2017). Examining ID rates in sleeping 
adults may be a way to address this limitation as measuring sleep state 
for infants during scanning would be a large methodological challenged. 
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Second, it will be critical to examine ID rates across infancy in further 
samples to ensure these findings are not sample specific. The sample was 
collected to be comprised of ~50 % infants with high genetic risk for 
ASD. We attempted to mitigate this limitation by demonstrating that 
there was no significant difference in ID rates between low-risk and 
high-risk infants as well as edge-level differences in connectivity. Third, 
the time period between the infant scans (8 months) was large compared 
to the time between adult scans (1 day); however, this concern is miti
gated by studies showing adult-like levels of ID rate in adolescents are 
achievable with over a year between scans (Horien et al., 2019; Jalbr
zikowski et al., 2019). Further, the goal was not to make the distances in 
time between longitudinal scans comparable, rather examine how ID 
rates across the first year of life compared to the high ID rates in adults. 
Fourth, the imaging sequences used for the data collection have been 
improved since the data collection (non-multiband sequences). Further, 
differences in the conditions between task and rest as well as the im
aging parameters being difference may have impacted the results. 
However, previous work has shown that the spatiotemporal resolution 
of the scan does not impact ID rates (Horien et al., 2018). Still, it is 
unclear how these factors may have impacted test–retest reliability for 
infants. 

5. Conclusions 

To our knowledge, this work is the first to show evidence of the low 
uniqueness and stability of the pattern of functional connectivity (i.e., 
“fingerprint”) across infancy. This suggests that individual variability of 
the functional connectome is high across infancy with even more sub
stantial variability within-session. We found that test–retest reliability 
(for both within- and between- sessions) is poor for infants, with the 
poorest ICCs found for within-session infant scans. Overall, these find
ings suggest that in addition to issues with collecting reliable data in 
infants, individual variability in the functional connectome is high early 
in development and that low ID rates across this period may reflect the 
rapid and expansive brain development occurring during this time. 
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