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Abstract

Background: The desktop vat polymerization process or stereolithography printing is an ideal approach to develop
multifunctional nanocomposites wherein a conventional solid dosage form is used as a reservoir for compliant
administration of drug-loaded nanocarriers.

Methods: In this study, a nanocomposite drug delivery system, that is, hydrogel nanoparticles of an approved
nutraceutical, berberine entrapped within vat photopolymerized monoliths, was developed for drug delivery
applications. For the fabrication of the nanocomposite drug delivery systems/pills, a biocompatible vat
photopolymerized resin was selected as an optimum matrix capable of efficiently delivering berberine from
stereolithography mediated 3D printed nanocomposite pill.

Results: The obtained data reflected the efficient formation of berberine-loaded hydrogel nanoparticles with a
mean particle diameter of 95.05 ± 4.50 nm but low loading. Stereolithography-assisted fabrication of monoliths was
achieved with high fidelity (in agreement with computer-aided design), and photo-crosslinking was ascertained
through Fourier-transform infrared spectroscopy. The hydrogel nanoparticles were entrapped within the pills during
the stereolithography process, as evidenced by electron microscopy. The nanocomposite pills showed a higher
swelling in an acidic environment and consequently faster berberine release of 50.39 ± 3.44% after 4 h. The overall
results suggested maximal release within the gastrointestinal transit duration and excretion of the exhausted pills.

Conclusions: We intended to demonstrate the feasibility of making 3D printed nanocomposite pills achieved
through the desktop vat polymerization process for drug delivery applications.
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Background
Additive manufacturing or three-dimensional printing
(3DP) is one of the most advanced manufacturing tech-
nique for producing customized products [1, 2].

Recently, 3DP technology has emerged as an extremely
promising approach for achieving 3D printed objects
with excellent resolution and customizability [1]. The
primary step of 3DP is designing a computer-aided de-
sign (CAD) model of the required object with a defined
size and shape. The CAD model was transferred to a 3D
printer software, where the model image was algorith-
mically sliced into individual layers, and the 3D model
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was formed by additive consolidation of the individual
layers [2].
3DP has been successfully translated into a multitude

of applications across the industrial spectrum, including
drug formulation technology [3–5]. 3DP has gained sig-
nificant traction in formulation technology for prototyp-
ing drug dosage forms with complex geometries and
compositions [6, 7]. Pioneering work from Basit and
Lamprou provided it a central stage in drug delivery and
pharmaceutics. This technology has been explored in
controlled oral delivery systems [8–11], transdermal and
topical delivery [12], implant materials and medical de-
vices [13], and multidrug and multifunctional drug deliv-
ery devices [4, 14–16].
Across the various categories of 3DP technology, such

as fused deposition modelling (FDM) [17], selective laser
sintering [18], and stereolithography (SLA), the latter
stands out as a vat polymerization technique wherein a
photo-crosslinkable resin liquid is converted into a solid
upon light irradiation [19]. Precise spatial control over
irradiation provides excellent resolution and accuracy [7,
19]. A wide array of drug delivery systems ranging from
microneedles [20, 21] to polypills [22] and personalized
devices has been reported in recent literature [4, 21, 23–
25].
By virtue of this liquid-to-solid transformation, SLA

can be an excellent prospect for the manufacture of
nanocomposite systems [26, 27]. A variety of examples
are available in the literature wherein SLA 3D printed
nanocomposites were prepared to improve the material
properties of the 3D printed constructs [28–30]. The
ability of this conjugation opens avenues for controlled
drug delivery applications of such constructs. In the
current study, we used SLA to produce a drug containing
nanocomposite pills through vat photopolymerization-
mediated desktop 3D printing. To the best of our know-
ledge, a nanocomposite pill constructed using the vat
photopolymerization (SLA) technique has not yet been
reported for drug delivery.
Berberine (BBR) is a natural alkaloid found in several

plants [31]. BBR has a wide range of pharmacological ac-
tivities, including antimicrobial, antiprotozoal, antidia-
betic, and anticancer activities [32]. Due to its
antiprotozoal activity, it has been proven to be effica-
cious against leishmaniasis. Different in vitro studies
have revealed the potential of BBR in treating leishman-
iasis by inhibiting multiplication, respiration, and anab-
olism of defined amastigote phases [33]. BBR regulates
lipid and glucose metabolism, oxidative stress, and in-
flammatory responses, making it a promising therapeutic
drug for treating metabolic disorders, such as non-
alcoholic fatty liver disease and diabetes [31]. BBR was
selected in the present study as pharmacokinetic studies
in rodents and humans have reported low gut absorption

and rapid metabolism of BBR due to its self-aggregation
under physiological conditions, thus requiring high
doses of BBR to achieve optimal therapeutic efficacy.
Therefore, efforts are being made to increase its gut ab-
sorption by enhancing its permeation or using P glyco-
protein inhibitors (to inhibit the efflux of BBR) and by
using lipid nanoparticle delivery systems [34]. Keeping
in mind the delivery challenges, we envisaged a nanocar-
rier platform capable of facilitating the aqueous solubil-
ity and subsequent absorption of BBR. A nanocarrier
with a charge-neutral polyethylene glycol (PEG) corona
has been shown to improve the intestinal absorption of
BBR owing to its mucopenetrating properties [35, 36].
The incorporation of PEG improves the solubility of
BBR in aqueous environments, leading to better absorp-
tion and permeation [37]. However, the near-neutral
surface charge of PEG can accelerate the settling down
of the hydrogel nanoparticles, thus hampering the ab-
sorption process; therefore, we hypothesised that the im-
mobilisation of BBR into the 3D printed pill system
could provide a sustained release of hydrogel nanoparti-
cles and better absorption over time. The nanocompos-
ite approach can provide better patient adherence due to
the oral unit dosage form and potentially improve the
absorption and degradation challenges associated with
BBR.
As the photo-crosslinking process in SLA is based on

the free radical chain reaction, acrylate or methacrylate-
based chemicals can be used [38, 39]. Hence, PEGDA
was selected and it is widely used for making 3D proto-
types in SLA based printer intended for drug delivery. In
vitro study showed the biocompatible property of
PEGDA to human cells [40]. PEO was used in resin to
maintain the required viscosity of the resin and also as a
swelling aid for the printed prototypes.
In the present work, an attempt was made to utilize

vat polymerization (SLA) to develop BBR-loaded hydro-
gel nanoparticles (BBR-NPs) immobilized within a unit
dose of nanocomposite monoliths. In this regard, a BBR-
NP-loaded biodegradable resin composed of poly (ethyl-
ene glycol) diacrylate (PEGDA) as a photo-cross-linkable
monomer and poly (ethylene oxide) (PEO) as a swelling
aid, and SLA was utilized to obtain a nanocomposite
drug delivery system. The pharmaceutical performances
of the prepared units were evaluated.

Methods
Materials
Berberine chloride (BBR), poly (ethylene glycol) diacry-
late (PEGDA; mol wt. 700 Da), poly (ethylene oxide)
(PEO; mol wt. 100,000 Da), diphenyl (2,4,6-trimethylben-
zoyl) phosphine oxide (TPO), and sodium persulfate
(SPS) were purchased from Sigma-Aldrich Chemical Co.
St. Louis, MO, USA. All other reagents used were of
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analytical grade and obtained from HiMedia Laborator-
ies Pvt. Ltd. Solvents used in HPLC were of chromatog-
raphy grade and obtained from Merck Life Sciences Pvt.
Ltd. Double-distilled water (DDW) was used throughout
the study.

Preparation and characterizations of BBR-NPs
BBR-NPs were prepared using a combination of PEGDA,
PEO, and the photoinitiator (TPO) with the process of
photopolymerization [41] and characterised further for
particle size and surface charge. The mean particle size,
zeta potential, and polydispersity index of the BBR-NPs
were evaluated using dynamic light scattering (Zeta Sizer
Nano ZS, Malvern Instruments Ltd., UK) after diluting
the samples with DDW (100x dilution). To determine
the BBR content and entrapment efficiency, BBR-NPs
were subjected to ultrafiltration through a 3 kDa ultrafil-
tration system, and the filtrate was dissolved in an or-
ganic mixture of methanol: acetonitrile (1:1) (10 mL) and
stirred overnight to allow complete extraction of BBR
from the NPs. An aliquot from the sample was filtered
through a 0.22 μm syringe filter, diluted with ultrapure
water, and analyzed using RP-HPLC as per a previously
described method with slight modifications [42]. The
chromatographic system consisted of auto-sampler me-
diated (WPS 3000 TSL ANALYTICAL) reverse-phase
high-performance liquid chromatography (RP-HPLC,
Ultimate 3000, Thermo Fisher Scientific, US) equipped
with a quaternary pump (LPG-3400 RS, Smart flow™)
and PDA detection system (DAD 3000) was used. This
system was operated using Chromeleon® software (ver-
sion 7.2.8) to control the instrument parameters. The
column temperature was controlled in an oven (TCC
3000 SD) to accommodate the columns inside the cham-
ber. A C-18 column (HYPERSIL GOLD™, 5 μm particle
size ODS, 150 mm × 4.6 mm) was used throughout the
elution process. The mobile phase was composed of an
isocratic system of Acetonitrile/ 10 mM ammonium
acetate containing 0.2% TEA at pH 5.0, adjusted using
acetic acid at a ratio of 35:65. The flow rate was fixed at
1.00 mL/min with an injection volume of 5 μL. Drug
content was calculated as the total drug per ml of the
NP suspension. The encapsulation efficiency was calcu-
lated based on the difference in drug content between
the separated NPs and the ultrafiltration supernatant.

Fabrication of 3D printed nanocomposite pills
The prepared BBR-NPs (after filtration using 0.45 μm fil-
ter) were suspended in the above-mentioned resin solu-
tion, maintaining the final composition of polymers and
TPO as a photo initiator (PI) in the resin solution (25%
PEGDA, 3% PEO 100 k, 0.03% TPO, 0.12% SPS). Here,
PEO also acts as a viscosity enhancer and a suspending
agent to ensure homogenous dispersion of BBR-NPs

across the resin solution. The fortified resin solution was
poured onto the resin tank of the Form 2 SLA
printer (Formlabs, UK), and the templates used to print
the nanocomposite units were designed using Solid-
Works 2019 (Dassault Systems) and exported as a .stl
file into the 3D printer software (Preform Software v.
1.9.1, Formlabs, UK). The printer was operated in open
mode with a clear resin selected using Preform software.
A 3D printed pill with 7.50 mm diameter and 5.00 mm
thickness with a layer height of 50 μm was uploaded into
the 3D printer (Fig. 1). Seven nanocomposite units were
printed to achieve batch uniformity. The obtained nano-
composite units were rinsed in DI water to remove the
unreacted resin from the surface.

Physical characterization
Physical dimensions and the mean weight of the pre-
pared nanocomposite units (n = 7) were assessed using a
digital vernier caliper (CD-6″ ASX, Mitutoyo Corpor-
ation, Japan) and digital balance, respectively. Air-dried
3D printed nanocomposite drug delivery systems were
also subjected to conventional friability and hardness
testing to ascertain the mechanical resilience and com-
mercial applicability of the nanocomposite drug delivery
system. Seven air-dried nanocomposite drug delivery
systems were selected for each test and introduced to
the respective friability testing apparatus and hardness
testing machine. The % weight loss was reported in fri-
ability studies, while transverse hardness was reported in
hardness testing.

Fourier transform infrared (FTIR) spectroscopy
The FTIR spectra of air-dried samples of the nanocom-
posite drug delivery system and BBR-NPs were obtained
using an ATR spectrometer (ALPHA II, Bruker,
Germany) along with the spectra of pristine resin

Fig. 1 CAD designed 3D model of a nanocomposite drug delivery
system with dimensions
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components and BBR. Spectral changes upon
polymerization and possible interactions are observed.

Swelling studies
For gravimetric swelling studies, three nanocomposite
units (air-dried to constant weight) were individually
weighed, immersed in buffers of pH 1.2, and pH 6.8, and
kept in a laboratory shaker at 37 °C. Each pill was re-
moved from the buffer solutions at specific time points
and weighed after removing the excess surface liquid.
The process was repeated for up to seven days, and the
gravimetric swelling of the nanocomposite units was re-
ported. The amount of media absorbed by the hydrogels
was measured gravimetrically and expressed in terms of
swelling percentage using the equation given below [43]:

Swelling ratio %ð Þ ¼ Ws−W 0

W 0
� 100 ð1Þ

Ws is the weight of the swollen hydrogel at time t, and
W0 is the initial weight.

BBR content and loading
The drug content of the 3D printed nanocomposite pill
was determined using an extraction method. The pill
was crushed and placed in a flask filled with acetonitrile

(10 mL) and allowed to stir for 24 h to ensure complete
extraction of the drug from the pill. The aliquot was
taken, diluted with ultrapure water, filtered through a
0.22 µm syringe filter, and estimated using the above
mentioned HPLC method.

Scanning electron microscopy (SEM)
Air-dried samples to constant weight (samples were
allowed to air dry for 48 h) were used for SEM analysis
(FESEM, JEOL JSM-7610F, UK), and the surface and
cross-sectional morphologies of the samples were pre-
pared. The experimental samples were cut into small
pieces and deposited onto a tape (NEM Tape, Nisshin
Em. Co. Ltd. Tokyo, Japan), and a single-coated plat-
inum coating was used. The experimental samples were
then kept on a stub, and scanning was performed. The
SEM images were captured at the required magnification
at room temperature.

In vitro BBR release
In vitro BBR release from the nanocomposite pills were
conducted in gastric and intestinal pH conditions. (n =
3). The dialysis bag method was used for the drug re-
lease. The nanocomposite units were first introduced
into HCL buffer (pH 1.2) for the first 4 h of the release
experiment, after which the pill was transferred to a re-
lease medium mimicking intestinal conditions (phos-
phate buffer pH 6.8) and incubated for 48 h in a
laboratory shaker at 37 °C and 100 rpm. Aliquots (1 mL)
were removed from the release media at specific time
points and replenished with fresh media [44]. The per-
centage of drug release was estimated using RP-HPLC.
The percentage release data were then fitted to a variety
of release kinetics to predict a plausible release kinetics
model.

Results
The nanoparticle suspension was subjected to ultrafiltra-
tion through a 0.45µm filter under centrifugation at
3900 rpm to separate sub-0.45µm particles. The

Fig. 2 The particle size distribution of the prepared BBR-NPs by
Dynamic light scattering (n = 3)

Fig. 3 FTIR spectra of resin components and BBR (A) and 3D printed prototypes (B)
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separated BBR-NPs were then subjected to particle size
and zeta potential measurements. The BBR-NPs showed
a mean particle diameter of 95.05 ± 4.50 nm with a poly-
dispersity index of 0.312 ± 0.090 (Fig. 2.) and a mean
zeta potential value of 0.378 ± 0.012 mV.
The BBR-NPs were subjected to ultrafiltration to sep-

arate the unloaded drug. For drug quantification studies;
initially, the resin was prepared at a drug concentration
of 1.5 mg/mL, and ultimately after the ultrafiltration [45]
step for removing the free drug, the drug content was
found to be 0.105 ± 0.09 mg/ml of BBR-NPs with an en-
capsulation efficiency of the desired population being
7.04 ± 0.34%. The BBR-NPs were air-dried and charac-
terised for photocuring using FT-IR spectroscopy, with
the disappearance of acrylate-specific peaks at 1402
cm− 1 and 1190 cm− 1 in the BBR-NPs, but can be seen
in the FTIR spectra of pristine PEGDA. The

disappearance of the acrylate peak occurred due to the
crosslinking of PEGDA upon photopolymerization and
simultaneous crosslinking. The strong peak at 1096
cm− 1 also confirms the presence of PEO in the BBR-
NPs (Fig. 3).
After mixing the BBR-NPs suspension, the theoretical

concentration of BBR in the resin mixture was 21.12 μg/
ml. The resin solution was poured into the 3D printer,
and nanocomposite units of the dimensions (diameter =
7.68 ± 0.15 mm and thickness = 5.01 ± 0.09) were printed
with excellent printability and reproducibility (Table 1).
The designed and printed dimensions of the nanocom-
posite drug delivery system, along with the mean dimen-
sions and mean weights before and after air drying, are
listed in Table 1. The printed nanocomposite drug deliv-
ery system exhibited substantial mass loss and volume
loss (Table 1 and Fig. 4). The nanocomposite drug

Table 1 Dimensions and gravimetric specifications of as printed and air-dried nanocomposite drug delivery system

Fig. 4 Dimensions of as printed and air-dried nanocomposite drug delivery system. Diameter and height of as printed (A-B) and air-dried (C-D)
nanocomposite pill
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delivery system showed a percent friability of 0.063 ±
0.011, while the mean hardness of the nanocomposite
units was found to be 37.90 ± 2.18 N.
The 3D printed nanocomposite drug delivery system

was air-dried to a constant weight before conducting the
swelling and release experiments. The maximum swell-
ing was observed at pH 1.2, which was found to be
321.12 ± 12.22%, while at pH 6.8, the maximum swelling
shown by the nanocomposite was 244.01 ± 9.51% (Fig. 5),
and the digital images of the swollen nanocomposite are
shown in Fig. 6.
Next, the prepared nanocomposite drug delivery

system was subjected to drug content determination
studies using the extraction method, with BBR HCl
being introduced into the resin in the form of BBR-
NPs. The drug content per nanocomposite pill was
3.670 ± 0.013 μg per unit. The drug content was lower
than the theoretical value of 4.109 μg per pill (as cal-
culated from the previously determined drug loading
in hydrogel NPs).
The surface and cross-sectional morphologies of the

prepared nanocomposite drug delivery system were ob-
served using SEM, as shown in Fig. 7. The micrographs
confirmed the presence of BBR-NPs across the surface
and cross-section surface of the nanocomposite drug

delivery system (indicated by yellow arrows in Fig. 7),
with sizes ranging from 100 nm to around a micron.
The prepared nanocomposite drug delivery system was

then subjected to in vitro drug release studies to under-
stand the release behaviour in the gastrointestinal tract,
and the cumulative release data were plotted against
time. The release was initially observed in the stomach
pH environment (pH 1.2) for an initial 4 h, followed by
the intestinal environment (pH 6.8) for up to 48 h. The
release data showed that BBR was released from the
nanocomposite at a higher rate in an acidic environ-
ment, with 50.39 ± 3.44% of BBR released after 4 h
(Fig. 8). The subsequent introduction of nanocomposites
into the intestinal pH media impeded the release process
to an extent, with a maximum of 77.96 ± 5.12% of BBR
released after 48 h. It should be noted that the maximum
release of 73.34 ± 5.54% was achieved after 12 h, and the
release became stagnant thereafter with an increment
from 73.34 ± 5.54% to 77.96 ± 5.12% during the 12 h to
48 h duration.

Discussion
BBR-NPs were successfully prepared and characterized
for hydrodynamic size and surface charge. The obtained
zeta potential value indicates that the surface charge of
the nanoparticles is close to zero, which is consistent
with the earlier literature reports of nanocarriers posses-
sing PEG-based corona [46, 47]. The tendency to settle
down was apparent in the BBR-NPs, possibly because of
the absence of surface charge, with both resin compo-
nents, PEG and PEO, being charge-neutral [35, 48]. The
fabrication of neutral surface nanocarriers is imperative
in the present case to efficiently penetrate the gastric
mucosa and ultimately facilitate gastric absorption of
BBR-NPs from the gastric epithelium [37, 49].
To improve the suspensibility of the BBR-NPs in the

resin mixture, the presence of PEO in the resin proved
to be beneficial, as PEO has been widely reported to im-
prove the stability of dispersion systems [50]. Here, PEO
acts as a multifunctional addition to the resin, which
provides advantages in both the prototypes’ printability
and subsequent controlled BBR delivery.

Fig. 5 Swelling behaviour of the nanocomposite drug delivery
system in gastric (pH 1.2) and intestinal (pH 6.8) environments

Fig. 6 Volumetric swelling of the nanocomposite drug delivery system showing increase in height (A) and diameter (B) of the nanocomposite
drug delivery system
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The nanocomposite pills were printed with excellent
printability and reproducibility. The decrease in the mass
and volume of the printed pills suggests the removal of
water from the nanocomposite drug delivery system dur-
ing storage. The results from the percent friability and
mean hardness suggest the mechanical resilience of the
developed nanocomposite drug delivery system. The
mechanical properties of the nanocomposite drug deliv-
ery system make them suitable for commercial and prac-
tical applications.
The excellent swellability can be attributed to the pres-

ence of passively entrapped PEO within the photocros-
slinked matrix of the nanocomposite, and the excellent
hydrophilicity of PEO manifested in the remarkable re-
hydration or swelling of the composite [51]. The reason
for the higher swelling at pH 1.2, compared to pH 6.8,
can be attributed to the basicity of the PEO because of
the presence of hydroxyl groups which could have

facilitated protonation and thus higher solubility as well
as swelling at acidic pH [52].
The excellent swelling characteristics of the developed

nanocomposites are highly desirable, as higher swelling
would result in efficient access across the matrix and its
manifestation in the temporal removal of BBR-NPs from
the nanocomposite matrix. The nanocomposites exhib-
ited extremely slow degradation with slightly higher
mass loss at pH 1.2 as compared to pH 6.8. The swelling
was also apparent volumetrically and directed towards
the nanocomposite, which is an efficient diffusion-driven
drug delivery system.
The lower drug loading in the nanocomposite pill can

be attributed to the tendency of BBR-NPs to settle down
slowly over the course of the printing process. SEM mi-
crographs further confirmed the entrapment of BBR-
NPs within the matrix of the nanocomposite pill. How-
ever, the variation between the nanoparticles size ob-
tained from SEM micrograph and DLS The variation
between the mean particle size obtained from DLS and
electron microscopy can be attributed to the swelling
and fusion of BBR-NPs during the SLA process [53].
The faster release at acidic pH shows an agreement

with markedly higher swelling under acidic conditions
and indicates a swelling and diffusion-driven controlled
release of BBR from the nanocomposite drug delivery
system [54]. The release data were further fitted with
various release kinetics equations to gain insights into
the mechanism of drug release from the nanocomposite.
Among the different release kinetics models, the release
data showed the highest regression coefficient of 0.926
with the Korsmeyer-Peppas model (Table 2) [55]. The
results further established the mechanism of diffusion as
the driving force for drug release from the nanocompos-
ite, albeit through an intermediate process of diffusion
from BBR-NPs. The diffusion coefficient was 0.328
(Table 2), suggesting a pseudo-Fickian diffusion process
[56]. The results reflect a complex diffusion process with

Fig. 7 SEM images of the cross-sectional area of nanocomposite drug delivery system at two magnifications (A) 3000x and (B) 7000x (yellow
arrows indicate the presence of BBR-NPs in the matrix)

Fig. 8 BBR HCl release profile from the 3D printed nanocomposite
drug delivery system (n = 3). Initial 4 h in gastric media (pH 1.2)
followed by intestinal media (pH 6.8) up to 48 h
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the drug needing to be released from the BBR-NPs,
which in turn should be preceded by their release from
the nanocomposite matrix.
As the drug is released from the nanocomposite based

on swelling and diffusion processes, the release pattern
can be tailored by modulating the swelling behaviour.
Although SLA-based 3D printers are limited by one
major parameter, that is, infill density or infill pattern
which can be used as a controllable parameter for cus-
tomized drug release. Hence, to compensate for this
limitation, the pills can be printed with varying ratios of
the crosslinker (PEGDA to PEG) and by modifying the
design of the pill, such as the introduction of a pore-like
structure which affects the swelling of the pills.

Conclusions
The present study aimed to utilise the excellent capabil-
ities of SLA and vat polymerization for achieving 3D
printed nanocomposites for medicinal applications. The
SLA was utilised for the nanofabrication of BBR-NPs
and to embed the prepared nanocarriers into a 3D
printed oral dosage form composed of biocompatible
and biodegradable components. The loading of BBR
onto the NPs and further immobilization of the same in
a 3D printed pill provided a sustained release behaviour
of BBR. We believe that this approach would be effica-
cious in improving the gastrointestinal absorption of
BBR, reducing its degradation, and improving its bio-
availability in vivo. As a proof of concept, the present re-
port provides a perspective that can potentially lead to
the development of a novel strategy for preparing SLA-
assisted 3DP of composites for a variety of drug delivery
applications, including multimodal drug release systems
and multi-compartment drug delivery systems.
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