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Altered metabolism of glucose, lipid and glutamine is a prominent hallmark of cancer

cells. Currently, cell heterogeneity is believed to be the main cause of poor prognosis

of glioblastoma (GBM) and is closely related to relapse caused by therapy resistance.

However, the comprehensive model of genes related to glucose-, lipid- and

glutamine-metabolism associated with the prognosis of GBM remains unclear, and

the metabolic heterogeneity of GBM still needs to be further explored. Based on

the expression profiles of 1,395 metabolism-related genes in three datasets of

TCGA/CGGA/GSE, consistent cluster analysis revealed that GBM had three different

metabolic status and prognostic clusters. Combining univariate Cox regression analysis

and LASSO-penalized Cox regression machine learning methods, we identified

a 17-metabolism-related genes risk signature associated with GBM prognosis.

Kaplan-Meier analysis found that obtained signature could differentiate the prognosis of

high- and low-risk patients in three datasets. Moreover, the multivariate Cox regression

analysis and receiver operating characteristic curves indicated that the signature was an

independent prognostic factor for GBM and had a strong predictive power. The above

results were further validated in the CGGA and GSE13041 datasets, and consistent

results were obtained. Gene set enrichment analysis (GSEA) suggested glycolysis

gluconeogenesis and oxidative phosphorylation were significantly enriched in high- and

low-risk GBM. Lastly Connectivity Map screened 54 potential compounds specific to

different subgroups of GBM patients. Our study identified a novel metabolism-related

gene signature, in addition the existence of three different metabolic status and two

opposite biological processes in GBM were recognized, which revealed the metabolic

heterogeneity of GBM. Robust metabolic subtypes and powerful risk prognostic models

contributed a new perspective to the metabolic exploration of GBM.
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INTRODUCTION

Glioblastoma (GBM) is the most common, most aggressive and
worst prognosis glioma in adults (1), accounting for about 55%

of gliomas, with median survival of only 14–16 months (1, 2).
The diffusivity and invasiveness of GBM itself and the inter-
/intra-tumor heterogeneity lead to GBM therapy resistance and
high recurrence (3–6). Therefore, despite the standard treatment
protocol for GBM such as surgical resection, radiotherapy and

chemotherapy, the prognosis of GBM still remains dismal, and
the 5-year survival rate is only about 5% (2, 7, 8). Novel molecular

markers or therapeutic targets are urgently needed to improve the
prognosis of GBM.

Metabolic reprogramming is one of the hallmarks of cancer
cells, and there is growing evidence that metabolic dysregulation
plays an important role in the growth, proliferation, angiogenesis,
and invasion of cancer cells (9–11). Civita et al. (12)
revealed the landscape of GBM heterogeneity using laser
capture microdissection and RNA-seq analysis, which showed
dysregulation of metabolic pathways, providing direct evidence
for metabolic alterations in GBM. The metabolism of glucose,
lipid, and glutamine in cancer cells is altered (13). According
to Warburg’s basic research, cancer cells obtain energy mainly
through the glycolytic pathway rather than the oxidative
phosphorylation (OxPhos) pathway, so abnormal glycolytic
metabolism is one of the basic characteristics of malignant
cells (14). Recent studies have found that lipid metabolism
reprogramming plays a crucial role in membrane synthesis,
energetic production and signal transduction in the progression
of cancer cells (15). Nuclear magnetic resonance (NMR)
spectroscopy revealed that unsaturated fatty acids, cholesterol
esters and phosphatidylcholine are only present in the GBM
(16, 17). At present, the biological phenotype and molecular
mechanism of lipid composition change leading to glioma need
further study. In addition, studies on cancer cell metabolism have
provided evidence that tumor-specific activation of signaling
pathways, such as the upregulation of the oncogene Myc,
can regulate glutamine uptake and its metabolism through
glutaminolysis to provide the cancer cell with a replacement of
energy source (18). Therefore, the in-depth exploration of three
major metabolites of GBMmay provide an important theoretical
basis for the development of new treatment (10, 19). However,
there has been no comprehensive analysis of the three-major
metabolism-related genes and their prognostic value in GBM.

In the present study, we comprehensively analyzed GBM
mRNA sequencing data from three public datasets, the Cancer
Genome Atlas (TCGA), The Chinese Glioma Genome Atlas
(CGGA), and GSE13041, to explore the metabolic status of
GBM patients. Through cluster analysis, the patients can be
divided into 3 stable clusters according to the gene expression
profile, and the prognosis and molecular characteristics of the
3 clusters are significantly different. In addition, we further
screened potential specific therapeutic compounds for each
cluster. More importantly, we identified a metabolism-related
risk signature to assess the prognosis of patients with GBM
in the TCGA datasets which can be served as an independent
predictor closely related to the prognosis of GBM patients. And
the high- and low-risk groups had distinctly different biological

processes. The above results were further validated in CGGA
and GSE13041 datasets. In summary, robust prognostic risk
models and subtypes contribute to a better understanding of the
molecular pathogenesis of GBM.

MATERIALS AND METHODS

Data Collection
Whole genome mRNA expression sequencing data and
corresponding clinical information [histology, subtype,
gender, age, isocitrate dehydrogenase1 (IDH1) mutational
status, methylguanine methyltransferase (MGMT) promoter
status, glioma cytosine-phosphate-guanine island methylator
phenotype (G-CIMP) status and survival information] of 165
GBM patients were downloaded from TCGA (PanCancer Atlas)
(20) datasets as training set. Similarly, GSE13041 (21) and CGGA
RNA expression data and clinical information were obtained as
validation sets. Of which, mRNA sequencing data from CGGA
contains two datasets, mRNAseq_693 and mRNAseq_325,
whose platforms are Illumina HiSeq and Illumina HiSeq 2000
or 2500, respectively. Therefore, we removed the batch effect
from these two datasets and normalized them to obtain an
integrated data of 216 GBM patients. The characteristics of
GBM patients from these three datasets were summarized
in Supplementary Table 1. Five hundred and thirty two
Glucose-, 1034 lipid-, and 13 glutamine-metabolism related
genes were downloaded from Molecular Signature Database
v7.0 (MSigDB) (http://www.broad.mit.edu/gsea/msigdb/) (22).
The detailed metabolism-related genes were listed in the
Supplementary Table 2.

Consensus Clustering
We took the expression profile of metabolism-related genes
for consistent clustering by using “Cancersubtype” R package
(http://cran.r-project.org). The euclidean distance was applied to
calculate the similarity distance between samples, and K-means
methods was utilized for clustering. By performing resampling
analysis, 80% of the samples were sampled for 100 times. The
optimal number of clusters was determined by the cumulative
distribution function (CDF) and was validated in the CGGA and
GSE13041 datasets. And principal component analysis (PCA)
was carried out using the R package “princomp” to validate the
molecular subtype.

Gene Signature Identification
Univariate Cox regression were performed on the 169 GBM
patients in TCGA datasets to select the optimal prognostic gene
set with R package “glmnet.” After getting the corresponding
hazard ratio (HR) and p-value of each gene, the genes with p <

0.05 were selected as seed genes for Cox LASSO regression with
10-fold cross-validation (CV). Risk score for each patient of the
TCGA training set was calculated with the linear combinational
of the signature gene expression (expr) weighted by their
regression coefficients (23).

Risk score = exprgene1×βgene1 + exprgene2×βgene2

+ . . . + exprgeneN× βgeneN.
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In the above equation, “N” was the total number of key
genes, “expr” represented the expression value of geneN, and β

represented the selected gene coefficient from LASSO analysis.
Patients in the training datasets was then categorized into high
and low risk score groups according to the median risk score.
The risk score for each patient in the validation datasets were
also calculated based on the same risk formula. The multivariate
Cox regression analysis was conducted to determine whether
the risk score was an independent predictor for GMB patients
with R package “survival.” The differences in overall survival
(OS) between high-risk and low-risk score in the training and
validation datasets were estimated using the Kaplan-Meier (KM)
method. Receiver operating characteristic (ROC) analysis was
performed to evaluate the accuracy of the risk model with R
package “pROC.”

Gene Set Enrichment Analysis (GSEA)
GSEA was performed using Gene Set Enrichment Analysis v3
software downloaded from the Broad Institute (http://www.
broadinstitute.org/gsea/index.jsp) (24). The mRNA expression
profile of GBM samples from the TCGA/CGGA/GSE13041
datasets were analyzed by GSEA. For GSEA, risk score
was selected as a binary variable divided into high- and
low-risk by a criterion of whether the score was greater
than the median value. The collection of annotated gene
sets of c2.cp.kegg.v7.0.symbols.gmt in MSigDB was chosen
as the reference gene sets in GSEA software, the NOM p
< 0.05 and false discovery rate (FDR) < 0.25 was set as
the cutoff.

Connectivity Map (CMap) Analysis
CMap is a systematic, data-driven program for detecting
correlations among genes, compounds, and biological
conditions. We queried the recently updated CMap to
screen potential compounds that might target metabolism-
related pathways. A list of differential expression genes
(DEGs) among the 3 clusters in TCGA was obtained using
the “lmFit” function of the R package “limma” with default
parameters (25), and the top 373 genes (148 upregulated and
225 downregulated) were selected to uploaded into the CMap
database. Compounds with an absolute value of enrichment ≥
0.7 and p < 0.05 were selected as potential therapeutic drugs
for GBM.

Statistical Analysis
One-way ANOVA was performed to compare the differences
of risk score between/among subtypes/clusters. The one-way
ANOVA method and Tukey’s test was applied to identify the
DEGs between the high- and low-risk groups (q < 0.05, |log2FC|
> 2). KM curve with log-rank test was used to assess the
OS differences among/between different groups. Univariate and
multivariate Cox regression analyses were conducted to assess
the independent prognostic factors. The statistical analyses were
conducted using R software version 3.5.1 (R Core Team, R
Foundation for Statistical Computing, Vienna, Austria), p < 0.05
was regarded as statistically significant.

RESULTS

Molecular Cluster Identification and
Validation
The intersection of the three datasets and metabolism genes
was extracted, and the overlapping genes were removed. The
gene expression profiles of 1,395 metabolism-related genes
(Supplementary Table 2) were exploited to identify the GBM
clusters in TCGA cohort. All GBM samples were grouped
into k (k = 2, 3, 4, 5, 6, 7, 8, 9) different subtypes using
“Cancersubtype” R package. According to the CDF curves of
the consensus score, we selected the k = 3 as the optimal
division (Figures 1A–C and Supplementary Figure 1). KM
analysis showed that the OS of the 3 clusters were significantly
different (Figure 1D, p < 0.05), and PCA revealed that the
3 clusters could be separated from each other (Figure 1E).
Figure 1F showed the heatmap of these 3 clusters defined
by the top 100 variable expression genes. The above results
indicated that there were significant metabolic phenotypes
among the 3 clusters. In order to validate the stability of
molecular subtypes, we further selected CGGA and GSE13041
datasets for clustering. The clustering results of molecular
subtypes in CGGA and GSE13041 datasets were consistent
with those in TCGA, and the relevant results were shown
in Supplementary Figures 2–5, respectively. Therefore, we
identified three stable clusters of GBM based on the expression
of metabolism-related genes.

Identification of Metabolism-Related
Genes Signature for Prognostic Prediction
The 1,395 putative metabolism-related genes were exploited
to conducting univariate cox regression analysis. Firstly,
we identified 29 significantly metabolism-related genes
associated with the survival of GBM with p < 0.05
(Supplementary Table 2). We further performed LASSO Cox
regression algorithm with cross-validation (Figures 2A,B), after
1,000-time iterations, a 17-gene risk signature was constructed
(Table 1) and the risk score for each patient was calculated
with their expression level and regression coefficient. To
comprehensively investigate the relationship between risk score
and patients’ survival, we further stratified patients into high-
and low-risk groups based on the median risk score (Figure 2C).
And as shown in Figure 2C, patients of GBM in TCGA cohort
with high risk score have more death cases when compare to low
risk score. KM curves analysis result revealed that patients in
high risk group had a shorter survival time than in the low risk
group (Figure 2D). To validate this gene set, we also calculated
patients’ risk scores of CGGA and GSE13041 cohorts with same
regression coefficient. And as expected, consensus result was also
obtained in the validation datasets (Supplementary Figure 6).

The 17-Gene Risk Signature Shows Strong
Prognostic Power
Univariate and multivariate Cox regression analyses were
performed to determine prognostic factors for survival in
TCGA/CGGA/GSE13041 patients with GBM. As shown in
Table 2, the 17-gene risk signature was independently correlated
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FIGURE 1 | Metabolism-related genes could distinguish GBM patients in TCGA with different clinical and molecular features. (A) Consensus clustering CDF for k = 2

to k = 9. (B) Relative change in area under CDF curve for k = 2 to k = 9. (C) Consensus clustering matrix heatmap plots of 165 samples from TCGA datasets for k =

3. (D) Kaplan-Meier analysis of patients among 3 clusters. (E) PCA analysis of the metabolism-related genes expression when k = 3. (F) Heatmap of three clusters

defined by the top 100 variable expression genes. CDF, cumulative distribution function; PCA, principal components analysis.

with OS (p < 0.05), and the genes signature could also be served
as an independent prognostic factor in the CGGA and GSE13041
cohorts (p < 0.05).

In order to further clarify the significance of risk signature
in GBM, we detected the correlation between risk score and
major clinical features. The risk score distribution of patients
with different IDH1 status, MGMT promotor methylation status
and G-CIMP status was significantly different in TCGA cohort.
The risk scores were lower in GBM patients with IDH1-mutant
type, MGMT promoter methylated and G-CIMP subgroups than
the IDH1-wild type (wt), MGMT promoter unmethylated and
nonG-CIMP ones of TCGA cohort, respectively (Figures 3A–C).
Consistent results could also be observed in the CGGA
cohort, the risk scores of IDH1-mutant type and MGMT
promoter methylated subgroups were lower than the IDH1-
wt and MGMT promoter unmethylated ones, respectively
(Figures 3D,E). However, there was no significant difference
in risk score between the 1p/19q codel and the non-codel
groups, which may be due to the small sample size of the
1p/19q codel group (Figure 3F). In addition, no statistically
significant differences were observed between risk scores for
different age stratifications and for different molecular subtypes
(Supplementary Figure 7). We further compared the differences
in risk scores among three different clusters we identified

above in TCGA/CGGA/GSE13041. Interestingly, as shown in
the Figures 3G–I, the cluster with the worst prognosis had the
highest risk score (cluster2 in TCGA and GSE13041, and cluster1
in CGGA), while the cluster with the best prognosis had the
lowest risk score (cluster1 in TCGA and GSE13041, cluster3
in CGGA).

We further validated the prognostic predictive power of
the risk signature we identified in different clinical feature
stratified groups, such as IDH1-wt/-mutant, MGMT promoter
methylated/unmethylated, G-CIMP/non G-CIMP, and 1p/19q
codel/non-codel cohorts. In the TCGA and CGGA cohorts, KM
analysis showed that cases with high-risk score had shorter OS
than the low-risk ones in most stratified patients (Figure 4).
However, this result was not observed in the TCGA_IDH1-
mutant group, TCGA_G-CIMP group and CGGA_ 1p/19q-codel
group due to the small sample size of cases.

By performing the ROC analysis in the training datasets
and validation datasets, we next evaluate the accuracy of
the risk signature. The result showed that the AUC value of
1-, 2-, and 3-year for the TCGA datasets were 0.710, 0.783,
and 0.873, respectively (Figure 5A). And in the CGGA/GSE
validation sets, a similar strong prognostic power was obtained
(Figures 5B,C). In addition, we also compared the accuracy of
the clinical features and risk score for the survival prediction
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FIGURE 2 | Identification of metabolism-related signature by Cox proportional hazards model in TCGA cohort. (A) LASSO coefficient profiles of the 29

survival-associated metabolism-related genes. (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) Risk plot for the GBM

patients in TCGA datasets. Each panel consists of three rows: top row showed the risk score distribution for the high- and low-risk score group; middle row

represents the GBM patients’ distribution and survival status; the bottom row shows that the heatmap of 17 prognostic metabolism-related genes expression.

(D) Kaplan-Meier curves analysis for the risk model in the TCGA datasets.

TABLE 1 | The 17 metabolism-related genes associated significantly with overall survival.

Gene HR β 95% CI p-value

ACADS 0.928366196 −0.00187276 0.865417157 0.995894046 0.038003855

ADRA2A 1.100113247 0.032095812 1.011907879 1.196007246 0.025249061

ALAS1 1.034826363 0.009264945 1.001166195 1.069618218 0.042453742

APOD 1.00111532 0.000186308 1.000420559 1.001810564 0.001649279

ARSF 1.055792449 0.030178285 1.010180463 1.103463922 0.015974629

ESRRB 0.253480421 −0.63080124 0.077106689 0.833291178 0.023801909

FOXO3 1.064472809 0.010691812 1.011461129 1.120262883 0.016520896

HSPH1 1.079350185 0.04288531 1.031190144 1.12975946 0.001042611

KLF15 1.02290405 0.008133916 1.000441435 1.04587101 0.045616945

NR1H4 6.601400413 0.377475499 1.293604889 33.68763353 0.023235624

PCSK1 1.028360599 0.002841669 1.00003015 1.057493639 0.049753259

PIK3R1 1.023174755 0.004369675 1.007451449 1.039143454 0.00373733

RNASEL 1.408182823 0.031593095 1.063799087 1.864053925 0.016748547

RUFY1 1.087608124 0.013758578 1.008466415 1.172960661 0.029355455

SFN 1.123512904 0.060829177 1.046360087 1.206354543 0.001334521

SH3GLB1 1.034549018 0.004449659 1.007253765 1.062583936 0.012782793

SPTSSA 0.97849372 −0.00592499 0.958852265 0.998537518 0.035603438

CI, confidence interval; HR, hazard ratio.

β represented the selected gene coefficient from LASSO analysis.

P < 0.05 was considered significant statistically.
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TABLE 2 | Univariate and multivariate Cox regression analysis of clinical pathologic features for survival of GBM in three datasets (TCGA/CGGA/GEO).

Variables Univariate cox model Mutivariate cox model

HR 95% CI P-value Coef HR 95% CI P-value

TCGA

Age 2.129 1.110–4.082 2.290E−02 −1.112E−02 9.889E−01 0.386–2.534 9.815E−01

Gender 0.970 0.669–1.407 8.740E−01

Subtype 1.231 0.740–2.050 4.510E−01

IDH1 status 0.253 0.093–0.689 7.190E−03 1.422E+01 1.498E+06 0.000–Inf 9.962E−01

MGMT promoter 0.565 0.367–0.872 9.870E−03 −3.990E−01 6.710E−01 0.419–1.076 9.741E−02

G-CIMP status 0.168 0.053–0.531 2.400E−03 −1.539E+01 2.072E−07 0.000–Inf 9.958E−01

Radiotherapy 0.109 0.026–0.458 2.520E−03 −2.324E+00 9.789E−02 0.021–0.441 2.480E−03

Chemotherapy 0.453 0.307–0.669 7.040E−05 −6.465E−01 5.239E−01 0.314–0.873 1.305E−02

Risk Score 2.701 1.843–3.957 3.430E−07 7.133E−01 2.041E+00 1.258–3.312 3.880E−03

CGGA

Age 1.560 1.113–2.185 9.780E−03 0.238 1.269 0.893–1.804 1.841E−01

Gender 0.986 0.722–1.345 9.272E−01

IDH1 status 0.528 0.339–0.821 4.610E−03 −0.733 0.480 0.303–0.760 1.750E−03

MGMT promoter 0.899 0.660–1.224 4.990E−01

1p/19q status 0.729 0.232–2.287 5.880E−01

Radiotherapy 0.931 0.600–1.445 7.500E−01

Chemotherapy 0.445 0.309–0.642 1.460E−05 −0.962 0.382 0.260–0.561 9.050E−07

Risk Score 1.868 1.099–3.175 2.100E−02 0.628 1.874 1.058–3.318 3.125E−02

GSE13041

Age 1.645 1.152–2.350 6.200E−03 0.332 1.394 0.963–2.019 7.862E−02

Gender 0.961 0.708–1.303 7.960E−01

Subtype 1.850 1.185–2.903 6.323E−02

Risk Score 1.460 1.078–1.976 1.440E−02 0.398 1.488 1.090–2.032 1.229E−02

Coef, coefficient; CI, confidence interval; HR, hazard ratio; IDH1, isocitrate dehydrogenase; Inf, Infinite; MGMT, methylguanine methyltransferase.

P-value (<0.05) marked in bold was considered significant statistically.

of GBM and discovered that our risk signature is the optimal
(Figures 5D–F). These results all confirmed that the metabolism
risk signature we constructed had a strong prognostic
prediction power.

The High- and Low-Risk Groups Present
Different Biologic Processes
In order to explore the difference in biological process
between the high- and the low-risk group in the TCGA
cohort, GSEA was performed to compare the gene expression
of patients in the two groups. PCA showed that in the
three public cohorts of TCGA/CGGA/GSE13041 cases in the
high-risk and low-risk groups were significantly distributed
in two regions (Supplementary Figure 8). As shown in the
Figure 6, GSEA indicated that glycolysis gluconeogenesis, WNT
signaling pathway, pathways in cancer,MAPK signaling pathway,
ERBB signaling pathway, adherens junction, focal adhesion,
ECM receptor interaction and tight junction were significantly
enriched in high-risk patients, while low-risk cases showed
enrichment of OxPhos. The significantly pathways were selected
based on the screening criteria of nominal p < 0.05 and false
discovery rate (FDR) < 0.25. The results indicated that there

were significant differences in biological processes between the
two groups of GBM with different metabolic risk levels.

CMap Analysis Identifies Novel Candidate
Compounds Targeting the GBM Clusters
To identify potential compounds capable of targeting the
pathways associated with metabolism-related genes, we queried
the CMap database using the mRNA expression signatures by
applying differential expression analysis to GBM subgroups
samples. The 54 compounds that were able to repress the above
gene expression profile of GBM are shown in Figure 7. CMap
mode of action (MoA) analysis of the 54 compounds revealed
44 mechanisms of action shared by the above compounds.
Three compounds (fludroxycortide, fluorometholone,
and hydrocortisone) shared the MoA of glucocorticoid
receptor agonist, and two compounds (physostigmine and
skimmianine) shared the MoA of acetylcholinesterase inhibitor.
Moreover, a total of 14 compounds shared the following
7 mechanisms: adrenergic receptor agonists, inhibitors of
bacterial cell wall synthesis, carbonic anhydrase inhibitors,
DNA synthesis inhibitor, dopamine receptor antagonist, and
phosphodiesterase inhibitors.
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FIGURE 3 | Association between the metabolism-related gene panel and pathologic features. (A–C) Distribution of the risk score in stratified patients by IDH1_status,

MGMT promoter methylated status and G-CIMP status in TCGA cohort. (D–F) Distribution of the risk score in stratified patients by IDH1_status, MGMT promoter

methylated status and 1p/19q codeletion status in CGGA cohort. (G–I), Distribution of the risk score among 3 clusters identified of the present study in TCGA, CGGA

and GSE13041 cohort, respectively. IDH1, isocitrate dehydrogenase1; MGMT, methylguanine methyltransferase; G-CIMP, glioma cytosine-phosphate-guanine island

methylator phenotype.

DISCUSSION

In the present study, through the comprehensive analysis of

genes involved in glucose, lipid, and glutamine metabolism
of GBM patients in three datasets, the risk signature closely
related to the prognosis of GBM was constructed, and the
heterogeneity of GBM metabolism was further revealed. Firstly,

leveraging a large cohort of GBM profile, 3 clusters of GBM
with different clinical features were successfully obtained through
the cluster analysis. Subsequent analysis revealed that the 3

clusters had significantly different risk scores. In addition, we
identified a 17 metabolism-related gene risk signature as a
significant independent predictor for the prognosis of GBM

by univariate cox regression analysis and LASSO analysis.

GSEA suggested glycolysis gluconeogenesis and OxPhos were
significantly enriched in high- and low-risk GBM. Moreover, we
further demonstrated the robustness of molecular subtype and
the predictive power of 17metabolism-related gene risk signature
in two validation datasets, CGGA and GSE13041, and achieved

consistent results. Finally, we used CMap database to screen
compounds that may target metabolism-related genes, and it is
hoped that targeted therapy can be performed on GBM clusters
with different metabolic status.

Considering that univariate Cox model has insufficient
dimensional data on variable selection, we first performed
univariate Cox model to obtain the genes related to overall
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FIGURE 4 | Prediction outcome of the 17-metabolism related gene signature in stratified patients. (A–D) Survival analysis of the signature in patients stratified by

IDH1wild type, MGMT promoter methylated/unmethylated status and non-G-CIMP status in TCGA cohort. (E–I) Survival analysis of the signature in patients stratified

by IDH1 wild/mutant status, MGMT promoter methylated/unmethylated status and 1p/19q codeletion status in CGGA cohort. IDH1, isocitrate dehydrogenase1;

MGMT, methylguanine methyltransferase; G-CIMP, glioma cytosine-phosphate-guanine island methylator phenotype.

survival and applied Cox LASSO regression to improve the
performance index for predicting prognosis (26). None of the
17 genes showed high coefficients in the Cox model, but the
cumulative effect of the 17 genes signature on OS obtained the
optimal survival prediction. Interestingly, in the 17-metabolism
gene risk signature we constructed, it has been reported that
FOXO3 acetylation plays a central role in the regulation of
glycolytic metabolism in glioblastoma, and the survival of GBM
patients with FOXO3 acetylation is shorter (27). In addition,
FOXO3 is related to GBM temozolomide (TMZ) resistance, and
the phosphorylated AKT/FOXO3 axis regulates the expression of

long non-coding RNA related to TMZ resistance GBM cells (28).
Another gene, PIK3R1, is part of the RTK/ RAS/(3)K signaling
pathway, which is mutated in many cancers and plays a key role
in the proliferation, differentiation, and survival of cancer cells.
Nearly 90% of normal GBMs showed different degrees of PIK3R1
changes, leading to abnormal activation of RTK/RAS/PI(3)K
signal cascade (29). PIK3R1 has been found to promote the
transformation of malignant astrocytes into glioma-like state
(30). Stratifin (SFN, 14-3-3 sigma), as an oncogene related to
cell proliferation, facilitates the development and progression
of a variety of cancers (31, 32) including gliomas (33) and
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FIGURE 5 | Prognostic power of the identified 17-gene signature in TCGA/CGGA/GSE13041 cohorts. (A–C), ROC analyses in TCGA, CGGA, and GSE13041

cohorts for 1-, 2-, and 3-year. (D) ROC curve analysis of age, gender, subtype, IDH1_status, MGMT_status, G-CIMP_status, and risk score in TCGA cohort. (E) ROC

curve analysis of age, gender, IDH1_status, MGMT_status, 1p/19q_status, and risk score in CGGA cohort. (F) ROC curve analysis of age, gender and risk score in

GSE13041 cohort. AUC, area under the curve; ROC, receiver operating characteristic; IDH1, isocitrate dehydrogenase1; MGMT, methylguanine methyltransferase;

G-CIMP, glioma cytosine-phosphate-guanine island methylator phenotype.

has the potential to be a new therapeutic target. In addition,
APOD has been identified to be associated with astrocytoma
progression (34). And SH3GLB1, as the autophagy-related gene,
is associated with glioma prognosis. Knockdown of SH3GLB1
inhibits glioma cell proliferation, migration and invasion, and
improves sensitivity to temozolomide (35). In addition, some
of the genes in the 17-metabolism risk signature are involved
in the development of a variety of cancers. NR1H4, also known
as farnesoid X receptor (Fxr), is the gene with the highest
positive coefficient and hazard ratio in the metabolism-related
risk signature. Previous studies have shown that NR1H4 plays an
important role in the development of colon cancer by regulating
the stability of c-Myc (36). KLF15 has been reported to inhibit
cell growth in lung adenocarcinoma (37), gastric cancer (38), and
colorectal cancer (39), and can be used to predict prognosis. High
ADRA2A expression was associated with poor overall survival
for breast (40) and bladder cancer (41). As a genetic marker,
RNASEL has been linked to lethal prostate cancer (42). And
ESRRB (or ERRβ) is a negative regulator of cell cycle and may
be a therapeutic target for breast cancer (43). Inhibition of
HSPH1 downregulates the expression of Bcl-6 and c-Myc and
hampers the growth of human aggressive B cell non-Hodgkin

lymphoma (44). ACADS, as one of the key metabolic genes
related to the metabolic response involved in carcinogenesis, is
regulated by DNA methylation and can be used as a potential
methylation biomarker related to the proliferation andmetastasis
of hepatocellular carcinoma (45). RUFY1, named RUN, and
FYVE domain containing 1, is a member of RUFY family (46).
RUFY1 regulates the transport of integrins and participates in
the migration of NIH-3T3 fibroblasts (47). Evidence shows that
RUFY1, as a tumor promoter gene, plays an important role
in the development of gastric cancer. Targeting PODXL/RUFY1
complex may improve the prognosis of gastric cancer (GC)
and provide new treatment opportunities for GC patients (48).
Studies have shown that PCSK1 is the gene most significantly
associated with poor response to concurrent chemoradiotherapy
(CCRT) in rectal cancer. Therefore, overexpression of PCSK1 is
one of the risks of poor CCRT response and prognosis in rectal
cancer patients (49). And PCSK1 is also over expressed in pure
fibrolamellar hepatocellular carcinoma as one of neuroendocrine
genes (50). As for ALAS gene, in non-small-cell lung cancer, non-
erythrocyte ALAS1 gene transcription levels and ALAS1 protein
levels were significantly elevated in cancer cells, while ALAS2
transcription levels were increased nearly 5-fold in HCC4017
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FIGURE 6 | Functional enrichments between high- and low-risk cases of TCGA. GSEA analysis based on the median value of the risk score in TCGA. FDR, false

discovery rate; NES, normalized enrichment score; Nom, nominal.

cells (51). However, 2 of the 17-metabolism risk genes, including
SPTSSA and ARSF have not been studied in cancers. SPTSSA,
also known as serine palmityl transferase small subunit A
(SPTSSA), encodes A subunit of SPT that is a rate-limiting
enzyme in the sphingolipid biosynthesis pathway (52). As a
component of eukaryotic membranes, SLs has a variety of critical
functions in the growth and development of embryos and the
maintenance of normal physiology (53). In a clear cell renal
cell carcinoma (ccRCC) study, bioinformatics analysis revealed
that 10 genes, including SPTSSA, significantly coregulated ccRCC
with SPTLC1, and the low expression of SPTLC1was significantly
correlated with the disease progression and poor prognosis of
ccRCC (54). In addition, another gene ARSF, which is located
in Xp22.3 with ARSD and ARSE, has significant homology and
highly similar intron/exon structure. Meanwhile, the splicing
sites of ARSF, ARSD, ARSE, and ARSC are all at the same
position. The biological role ofARSFmay therefore be masked by
the other three genes (55). The biological role of 17 metabolism-
related genes in glioblastoma remains to be further explored.

The Warburg effect has been widely described in GBM
and other tumor types. According to the Warburg hypothesis
(14), cancers are partly caused by impaired mitochondrial
function and OxPhos, which is characterized by cancer cells
producing most of their energy through glucose fermentation
(such as aerobic glycolysis), with limited OxPhos capacity (56).
This metabolic reprogramming is thought to be an adaptive

mechanism for the rapid growth of tumor cells to meet
their increasing energy needs. However, the intrinsic cellular
heterogeneity of GBM raises the question of whether the survival
and proliferation of different cell subsets is limited to glucose
fermentation or othermetabolic pathways. Recent studies suggest
that the residual activity of mitochondrial function in GBM cells
can still provide OxPhos for cancer cells (57–59). According
to Deleyrolle LP’s study (6), subgroups of cells with different
metabolic requirements exist in GBM, in which fast-cycling cells
utilize aerobic glycolysis, while slow-cycling cells preferentially
utilize mitochondrial OxPhos to obtain metabolism energy. But
some studies hold the opposite view that GBM tissue are unable
to obtain significant energy fromOxPhos. Because ultrastructural
and biochemical evidence suggests that GBM cells exhibit
defects in the number, structure and function of mitochondria,
thus incompatible with OxPhos energy production (60–63).
In addition, large numbers of mitochondrial DNA (mtDNA)
mutations have been found in 13 cancers including GBM
that compromise OxPhos function (64). Therefore, emerging
evidence indicates that cancer cells including GBM obtain
energy through the glutaminolysis pathway using mitochondrial
substrate-level phosphorylation (mSLP) as an alternative to
OxPhos (61). Moreover, some studies based on the above theory,
ketogenic metabolic therapy, as an alternative standard of care,
has the potential to improve outcomes for GBM patients and
other malignant brain cancers, and has yielded impressive results
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FIGURE 7 | Heatmap showing each compound (perturbagen) from the CMap that shares a MoA (rows), sorted by descending number of compounds with a shared

MoA. The above compounds have an absolute value of enrichment score ≥ 0.5 and might be capable of targeting the metabolism-related signature. CMap,

Connectivity Map; MoA, mode of action.

in clinical practice for GBM treatment (65–69). Here, functional
analysis in our study indicated that GBMs are metabolic
heterogeneity and the biological process differences between the
high- and the low-risk group mainly focused on the metabolic
patterns and signaling pathways. Glycolysis gluconeogenesis and
OxPhos were significantly enriched in high- and low-risk GBMs.
Whether OxPhos is caused by mSLP remains to be confirmed
by future studies. In addition, our functional enrichment
analysis identified metabolic signaling pathways associated with
high-risk GBM, including WNT signaling pathway, MAPK
signaling pathway, ERBB signaling pathway and pathways in
cancer. Of which, abnormal Wnt signaling is recognized to
drive metabolic alterations such as glycolysis, lipogenesis and
glutaminolysis, which are critical to the survival of cancer stem
cells (70). The pathogenesis of GBM involves multiple levels

of WNT signal pathway, including tumorigenesis, stem cell
maintenance, invasion, and drug resistance. Inhibition of WNT
signal transduction is expected to be a new direction of GBM
therapy (70, 71).

CMap is a systematic tool that uses gene-expression signatures
to probe the relationship between small molecules, genes and
disease (72). It screens new treatments for various diseases
by comparing changes in gene expression or signature caused
by disease, genetic perturbation (knockdown or overexpression
of genes) or small molecule therapy with the similarity of
all perturbation signatures in the database. In this study,
we used CMap analysis to accurately identify compounds
that have been shown to have specific effects on GBM or
other tumor types by comparing the different expression
genes of GMB samples from 3 clusters. These compounds
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include the DNA synthesis inhibitor anisomycin (73), glutamate
receptor antagonist amantadine (74), norepinephrine inhibitor
amitriptyline (75, 76), solute carrier family member inhibitor
bumetanide (77), PPAR receptor agonist clofibrate (78), and
fenofibrate (79), selective serotonin reuptake inhibitor (SSRI)
fluoxetine (75, 80), ATPase inhibitor helveticoside (81, 82),
norepinephrine reuptake inhibitor imipramine (75, 76, 83, 84),
opioid receptor agonist loperamide (85), phosphodiesterase
inhibitor papaverine (86, 87) and rolipram (88–92), polar
auxin transport inhibitor quercetin (93, 94), cyclooxygenase
inhibitor rofecoxib (95, 96), calcineurin inhibitor tacrolimus
(97), purinergic receptor antagonist ticlopidine (98, 99), HDAC
inhibitor vorinostat (100), Rho associated kinase inhibitor Y-
27632 (101–103).

Interestingly, our results suggest that some conventional
antipsychotics among drugs mentioned above, including
amitriptyline, fluoxetine, and imipramine, may also play a
surprising role in the treatment of GBM, which is consistent
with previous studies and offers new hope for patients with
GBM (12, 75, 76, 80, 83, 84, 104). In addition, Leite et al.
(105) demonstrated that clomipramine (tricyclic antidepressant
drugs such as imipramine) has an impact on GBM growth
and has no toxicity in normal cells (astrocytes and microglia).
Reaserches have further elucidated the potential mechanism of
conventional antidepressants therapy for GBM. By targeting
the respiratory chain complex III and changing membrane
potential, the tricyclics antidepressants mentioned above induce
mitochondria-mediated apoptosis of malignant glioma cells,
activate the intrinsic pathway of cytochrome-C release and
caspase-3 dependent apoptosis process, and finally results in
glioma cell death (106–112). It is worth mentioning that previous
studies have also indicated that the anticoagulant ticlopidine
synergized with imipramine to induce the death of human glioma
cell lines and primary mouse glioma cells (98, 99). In addition,
some of the other drugs in our findings mentioned above have
been reported as a combination of glioblastoma chemotherapy,
such as rollipram, a promising immunotherapeutic adjuvant that
can potentiate the effect of bevacizumab on GBM (89, 90). The
antiangiogenic effect of rofecoxib makes GBM chemotherapy
more effective (96). Tacrolimus endows the GBM stem-like cells
chemosensitive to the MRP1 drug substrate (97). Of course, it is
still controversial whether some of the drugs identified by our
study are effective against GBM. Such as vorinostat combined
with bevacizumab significantly inhibited angiogenesis of GBM
stem cells in vitro (100), but no significant benefit was observed
in patients with GBM in clinical trials (113). However, our study
provides evidence to explore the underlying mechanism of these
drugs in the treatment of GBM, and it may be a new direction to
investigate whether these drugs have the potential to treat GBM
from a metabolic perspective.

However, some limitations of our present study should be
acknowledged. First, GSE13041, one of the external validation
datasets which was selected in this study lacked some clinical
information, so the prognostic value of signatures needed to be
validated by more external datasets, and multicenter prospective
studies are needed to assess the feasibility of risk gene signatures
in the future. Second, the deepmolecularmechanisms behind our

findings need to be further elucidated in experimental studies to
facilitate our understanding of the functional roles and clinical
applications of metabolism-related genes and potential molecular
compounds. In particular, the issue of whether GBM tumor cells
can utilize Oxphos (or mSLP) to generate the required energy
remains to be further explored due to the lack of support from
relevant datasets.

CONCLUSION

Our study identified a novel metabolism-related gene signature,
in addition the existence of three different metabolic status
and two opposite biological processes in GBM were recognized,
which revealed the metabolic heterogeneity of GBM. Robust
metabolic subtypes and powerful risk prognostic models
contributed a new perspective to the metabolic exploration
of GBM.
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