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Abstract: The emergence of innovative neurotechnologies in global brain projects has accelerated
research and clinical applications of BCIs beyond sensory and motor functions. Both invasive
and noninvasive sensors are developed to interface with cognitive functions engaged in thinking,
communication, or remembering. The detection of eye movements by a camera offers a particularly
attractive external sensor for computer interfaces to monitor, assess, and control these higher brain
functions without acquiring signals from the brain. Features of gaze position and pupil dilation
can be effectively used to track our attention in healthy mental processes, to enable interaction in
disorders of consciousness, or to even predict memory performance in various brain diseases. In this
perspective article, we propose the term ‘CyberEye’ to encompass emerging cognitive applications
of eye-tracking interfaces for neuroscience research, clinical practice, and the biomedical industry.
As CyberEye technologies continue to develop, we expect BCIs to become less dependent on brain
activities, to be less invasive, and to thus be more applicable.
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1. Introduction to Eye-Tracking Interfaces

When we think about brain–computer interfaces (BCIs), it is hard to imagine them
without processing the activity of the brain. Since the very beginning of their history, BCIs
have employed various technologies to acquire, transmit, and feedback these activities
invasively from inside the brain or noninvasively from its surface [1]. The information
contained in these recordings has been used to sense intentions of movements, messages
for communication, or even more abstract states of emotion or consciousness. One can
argue that the more direct and accurate the brain recordings, the more information and
the greater the possibilities for various BCI applications. Electrodes implanted directly on
the brain’s cortical surface sample information-rich electrocorticogram signals or, more
generally, intracranial EEG (iEEG) generated by the underlying neural networks that were
utilized in a wide range of clinical applications [2–9]. BCIs based on iEEG have been applied
to restore cognitive functions, including speech and communication [10–14]. Decoding
intentions to communicate a specific character, word, or sentence is even more dependent
on direct multi-channel recordings from the brain. For example, multi-channel arrays of
densely packed micro-electrodes can provide accurate information to decode intentions of
writing-specific characters from the alphabet and thus efficiently communicate individual
words and entire sentences, including punctuation [15]. Others speculate or even report
that such dense recordings of neural activities will soon be capable of reading the contents
of abstract thoughts or the objects of our mental activities [10,16]. It is hard to imagine that
similar tasks could be achieved with noninvasive interfaces that do not acquire activities
directly from the brain.
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Noninvasive interfaces based on eye movements have typically been categorized into
a group of so-called human–computer interfaces (HCI). The difference is that, in contrast to
BCIs, signals employed by the HCIs are not sampled directly from the brain. Tracking eye
movements in the position and size of the pupil, however, contains not only information
about the focus of gaze and the amount of light but also, more interestingly, about momen-
tary cognitive states and the underlying processes in the brain. Animal studies showed
that pupillometric signals could predict states of optimal cognitive performance and were
correlated with momentary changes in slow and fast brain activities, and the brain’s neuro-
modulatory systems [17–19]. Hence, eye-tracking signals can indirectly sample or reflect
activities in the brain, putting them at the junction between HCIs and BCIs. Human studies
showed that pupillometry could track mental effort [20], memory load [21], conscious
perception [22] (also possible with auditory signals [23]), or memory processing [24]. In the
study by Kucewicz et al., a simple recording of pupil dilation robustly tracked encoding
and recall memory items with significant differences in the remembered and forgotten trials.
Given that even these raw measures of pupil size contain information about processes as
complex as forming and retrieving memories of abstract concepts in our mind, eye-tracking
is expected to provide an alternative or a complementary signal to current BCI applications.

2. Eye-Tracking BCIs for Probing Memory and Cognitive Functions

In this perspective, we showcase three example applications of eye-tracking: (1) in
predicting memory performance in healthy subjects, (2) in an assessment of reading com-
prehension in post-comatose patients, and (3) in the level of consciousness in patients with
acquired brain injuries. These applications provide case studies for using the noninvasive
signals from pupil size or position on a computer screen to measure cognitive processes
in the brain. Hence, they fulfill the criteria for an indirect BCI mediated through the eye.
It is qualitatively different from a clinical examination of the pupil or gaze responses by
delivering objective measures of cognitive processing that can be used as feedback for
a computer-generated response in the form of a diagnostic assessment or a therapeutic
intervention such as brain stimulation. Figure 1 summarizes the general circuit design for
such eye-tracking BCIs, which is common in each of the examples described below. In
general, gaze tracking and pupillometric signals are sensed independently or complement
electrophysiological data for computer analysis of output responses feeding back to the
user or directly to the brain. An analysis of the signals and any simulations can be effi-
ciently performed in open-access (e.g., Python) or commercially available (e.g., Matlab and
MathWords Inc.) programming environments.
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in Figure 1, revealed that the pupils were dilated very stereotypically and consistently 
with the changing cognitive demands as more words were presented on the screen. Then, 
memory traces for the words were held in working memory during a short distractor task. 
Finally, the remembered words were freely recalled out loud. The gaze positions and pu-
pil sizes, and the intracranial, electrophysiological signals were recorded simultaneously. 
Figure 2 shows these signals together during recall of three words in an example recording 
from a patient implanted with intracranial electrodes in the brain. Each signal reveals dif-
ferent signatures of the cognitive processes involved in memory recall (Figure 2). The gaze 
position leaves the screen as the patient concentrates on and attempts to recall the first 
word. The pupil first constricts and then dilates as the subsequent two words are recalled, 
reflecting increasing mental effort used to retrieve the following two words [20,21,24]. The 
brain signal responses to recall of each word show a more complex pattern of oscillatory 
responses that requires further analysis (e.g., spectral decomposition). All in all, each sig-
nal offers a different and complementary input for a potential brain–computer interface. 

As individual words were presented for memory encoding, the pupils constricted 
and then dilated more on the trials with subsequently remembered words compared with 
those that were not recalled. This memory-predictive constriction and dilation occurred 
at the scale of tens of milliseconds before and after word presentation, respectively. These 
predictive changes in the pupil input signal even before the presentation of objects to be 
remembered provide ideal feedback triggers for therapeutic interventions such as brain 
stimulation. Another potential output from this signal is an index assessing ongoing cog-
nitive state for tasks requiring focused attention and memory that could be fed back to a 
user’s personal device such as a smartphone or a tablet. Most importantly, this completely 
noninvasive input signal can be used to predict whether a given memory successfully 
forms and is later retrieved, as suggested in the previous body of literature [25]. A user or 
a therapist can then use this information to target and direct specific therapeutic interven-
tions—either immediately as presented or delayed at an extended timescale. Other 
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In the first application, the input signal is provided by momentary fluctuations in
pupil size that were shown to reflect cognitive processes engaged during memory perfor-
mance [24]. A small infra-red camera placed under a computer screen where a memory
task was displayed captured the x and y dimension of the pupil shape (ellipse) as the
subjects remembered and then recalled previously presented word lists. The input signal
was generated from high-resolution camera images sampled at rates of >100 fps and pro-
cessed to detect the pupil. A subsequent computer analysis, the next stage on the diagram
in Figure 1, revealed that the pupils were dilated very stereotypically and consistently
with the changing cognitive demands as more words were presented on the screen. Then,
memory traces for the words were held in working memory during a short distractor
task. Finally, the remembered words were freely recalled out loud. The gaze positions and
pupil sizes, and the intracranial, electrophysiological signals were recorded simultaneously.
Figure 2 shows these signals together during recall of three words in an example recording
from a patient implanted with intracranial electrodes in the brain. Each signal reveals
different signatures of the cognitive processes involved in memory recall (Figure 2). The
gaze position leaves the screen as the patient concentrates on and attempts to recall the first
word. The pupil first constricts and then dilates as the subsequent two words are recalled,
reflecting increasing mental effort used to retrieve the following two words [20,21,24]. The
brain signal responses to recall of each word show a more complex pattern of oscillatory
responses that requires further analysis (e.g., spectral decomposition). All in all, each signal
offers a different and complementary input for a potential brain–computer interface.
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the scale of tens of milliseconds before and after word presentation, respectively. These
predictive changes in the pupil input signal even before the presentation of objects to be
remembered provide ideal feedback triggers for therapeutic interventions such as brain
stimulation. Another potential output from this signal is an index assessing ongoing
cognitive state for tasks requiring focused attention and memory that could be fed back
to a user’s personal device such as a smartphone or a tablet. Most importantly, this
completely noninvasive input signal can be used to predict whether a given memory
successfully forms and is later retrieved, as suggested in the previous body of literature [25].
A user or a therapist can then use this information to target and direct specific therapeutic
interventions—either immediately as presented or delayed at an extended timescale. Other
possible applications of such pupillometric inputs on our daily lives are wide-ranging,
including remembering sequences of recent events [26] or preventing attention lapses with
excessive media engagement [27].

In the following two applications, the input signal was provided by coordinates of
gaze position on a computer screen projected from pupil movements. The pupil is detected
as in the first application, but only its geometrical position is relevant—not the size. This
gaze-tracking signal was used to assess the state of consciousness in patients with acquired
brain injuries [28] and reading comprehension skills in post-comatose, minimally conscious
state (MCS) patients [29]. This particular solution consists of an eye tracker, two monitor
displays, and one set of speakers, all connected to the regular computer with software
controlling user-operated tasks. The tasks are presented to the user on one of the monitors
in parallel with a control panel displayed on the other monitor for the therapist. In every
task, a user selects either a word, a sentence, a digit, or an image using gaze only. While
the application runs, a dot representing their gaze fixation point is projected on the screen.
Thus, immediate visual feedback of motor control is provided to the user and the therapist,
who can assess the saccadic movements and gaze fixations in each task. The name of the
object selected is spoken by a therapist or articulated by a speech synthesizer. The selection
is performed by fixing the user’s gaze on an object for 2 s. When a user indicates the
object (either correctly or not), the application randomly chooses a new object. A therapist
can proceed to the next set within each task using the control panel. Gaze position and
timestamp information, the object name selected, and the name of the object selected by a
user are registered in real-time for further analysis. This enables projecting gaze focus and
controlling objects on the screen and other output feedback responses (Figure 1).

Objective assessment of cognitive processes is another example of a response that
could trigger a clinical report or even treatment in the form of brain stimulation. In the
presented application, when the patient is requested to select one object amongst many, the
correctness of the selection can be represented on a dichotomous scale by either 1 (correct)
or 0 (incorrect). This enables the responses to be statistically compared in one-tailed Fisher’s
exact test with a random distribution of zeros and ones reflecting chance selection of the
correct object (without awareness). The resultant values from the statistical test, i.e., the
odds ratio and the corresponding p-value, quantify and test the level of consciousness
or performance in the reading comprehension task. In this case, odds ratio values for
p < 0.05 determine the above-chance conscious performance. The same responses in the
reading comprehension skills test can also be assessed using a 5-point scale (5—ability
preserved, 4—light impairment, 3—moderate impairment, 2—severe impairment, and
1—ability ceased) following the standard protocol of the speech comprehension test, as
previously reported [29]. All in all, these eye-tracking measures of cognitive processes were
able to detect conscious responses in patients who failed to show signs of consciousness
with traditional examination methods [28]. Likewise, it was determined that patients with a
minimally conscious state (MCS) preserved the partial ability of reading comprehension [29].
Such a noninvasive and objective assessment of brain functions was made possible with
artificial intelligence of the eye-tracking BCIs, which complemented traditional clinical
assessment tools and ultimately led to change in the clinical report and patient diagnosis.



Sensors 2021, 21, 7605 5 of 7

One can foresee how detecting momentary conscious responses or reading could trigger a
therapist response or brain stimulation to augment and treat cognitive functions.

There are various other eye-tracking BCI applications in research and clinical studies
of memory and cognition [30]. The three case studies presented in more detail in this
perspective are aimed at providing a general glimpse into the present and future interfaces
that probe memory, consciousness, and reading skills. Learning new information is another
function that can be assessed and analyzed more automatically with gaze-tracking. Using
simple measures such as the number of saccades, fixations, and blinks, it was shown that
supervised and unsupervised machine-learning classification methods can provide learning
profiles across different age groups [31]. Other, more abstract cognitive functions, can be
probed with new eye-tracking interfaces. Artistic creativity can be expressed through
a human–robot interaction, in which a robotic arm is teleoperated by projected gaze
movements to draw [32]. Even an intention to select an object visually can be decoded from
gaze fixation features [33]. The gaze-tracking and pupillometric features can themselves be
further enhanced and complemented with other measures of head motion to provide more
precise signals for robotic interfaces [34]. All in all, memory and cognitive brain functions
can now be probed with a wide range of interfaces, including robotic control devices, that
circumvent recording brain signals.

3. CyberEye—Definition and Future Perspectives

The various applications presented here are merely a few examples in a growing
body of BCIs based on eye-tracking. Although signals acquired directly from the brain
remain indispensable for studying the mechanisms of memory and cognition, there is now
a general trend for developing more accessible technologies to assess, treat, or improve
cognitive functions noninvasively. Some can even be worn with the IR camera inside special
glasses [35]. Having an eye-tracking camera built in the glasses opens up opportunities
for individualized systems, e.g., with corrections of convex and concave lenses for specific
visual impairments. Still, compared with traditional BCIs, these technologies are limited
in terms of the amount of information that can be mined from eye-tracking signals and
the possibility to modulate cognitive processing in the brain. For instance, a BCI for
communication-based on an intracranially implanted grid of electrodes decoded cortical
motor commands for handwriting specific letters and characters to typing sentences at
speeds greater than those achieved by keyboard typing with gaze-tracking interfaces [15].
The rates were comparable to text messaging on smartphones. Whether specific letters or
words could be as quickly decoded from patterns of macro- and micro-scale eye movements
(saccades and microsaccades) remains yet to be determined. In general, direct recording and
modulation of brain activities provide greater opportunities than eye-tracking interfaces
alone. Combining the two may prove to be a powerful augmentation to classic BCI designs
for treating memory and cognitive functions (Figures 1 and 2). It could, for instance,
improve the classification of cognitive states to enhance memory performance [36–38].
A noninvasive prediction of cognitive states from eye-tracking can thus be utilized in
emerging brain stimulation technologies that target memory and cognition.

In addition to describing a new trend for more accessible noninvasive interfaces, we
propose a new term, ‘CyberEye’, to define the various BCIs based on eye-tracking that
target cognitive functions. This class of BCIs is characterized by providing a window or
‘an eye’ to the brain’s internal processes and the mind [39]. The ‘CyberEye’ BCIs effectively
exchange information between the ‘internal’ brain and the ‘external’ computer processes. In
other words, the internal processes become available to be externalized and distributed to
the virtual reality of local devices or remote cloud computations. Distributed processing of
neural signals has already been applied in the management of seizures in epilepsy [40–42]
and could analogously be extended to cognitive functions. CyberEye technologies enable
the distribution of the cognitive processing reflected in pupillometric signals, which are
used without the need to record neural activities from the brain. They could be conceptu-
alized as a noninvasive computer sensor of information about the internal mental states
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that are made available for distributed external processing. One could think of a whole
range of implementations in addition to the ones showcased here for machine learning and
artificial intelligence tools to classify states of consciousness, attention, memory, or specific
mental contents. Allegorically, we propose that CyberEye is the interface where human
and artificial intelligence meet beyond the brain.
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