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I N T R O D U C T I O N

Voltage-gated ion channels constitute a superfamily of 
ion channels that have evolved over millions of years 
and are known to mediate a variety of physiological pro-
cesses ranging from electrical and chemical signaling 
(Hille, 2001) to gene expression (Dolmetsch, 2003) and 
cell division (DeCoursey et al., 1984; Day et al., 1993). 
Among the various protein superfamilies involved in 
signal transduction, they are one of the largest. They 
share a common minimal architecture of a central pore 
domain surrounded by four voltage-sensing domains 
(Long et al., 2005; Moiseenkova-Bell et al., 2008; Wang 
and Sigworth, 2009; Payandeh et al., 2011). In addition 
to membrane potential, some members of this super-
family are regulated by other physical and chemical 
stimuli, which sometimes involve additional regulatory 
domains. For instance, the BK channels are also regu-
lated by free calcium (Marty, 1981), whereas the activity 
of members of the transient receptor potential (TRP) 
channel family is regulated by heat, ligands, and/or 
mechanical stretching (Caterina et al., 1997; Clapham, 
2003; Voets et al., 2004). This polymodal behavior of 
many members of the voltage-gated ion channel super
family makes them outstanding models to study the 
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fundamental basis of signal propagation in membrane 
proteins (Horrigan and Aldrich, 2002).

To gain insight into the mechanisms of how infor-
mation is transferred between domains, it is necessary 
to map the network of residues involved in mediating 
such crosstalk. This appears seemingly straightforward 
because all it would require is to measure the effect  
of site-specific perturbation on interaction energies. In 
practice, however, domain-level interaction energies can-
not be directly estimated and require development of 
detailed discrete state models to fully explain the voltage- 
and ligand-dependent properties of these ion channels. 
This can be an enormous challenge because even a sim-
ple model of a dually regulated tetrameric ion channel 
requires a minimum of 50 states (Magleby, 2003). Sym-
metry arguments would reduce the number of free equi-
librium parameters to a minimum of six, but even this 
is by no means straightforward. These practical consid-
erations restrict the analyses of interaction networks to 
a limited set of well-defined sites and to systems where 
detailed kinetic models have been developed.

In this study, we examine the free-energy relationships 
between ligand- and voltage-gating pathways of poly
modal ion channels. Our aim is to develop a theoretical 
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12 Free-energy relationships in polymodal ion channels

In Eq. 1, x represents the ligand concentration and B i
0  is related 

to the chemical energy of the state (which includes contributions 
from the intrinsic energies of the different component structural 
units and the interactions between them). The probability distribu-
tion of the conformational states will depend on the ligand concen-
tration. The average number of ligands bound to the protein is:

	 X x n P xi ii
( ) ( ).= ∑ 	 (2)

The free energy of the system is:

	 G x k T ZB( ) ln .= − 	 (3)

For a small change in ligand concentration, the change in the 
free-energy of system can be obtained through partial differentia-
tion of Eq. 3 and thus:

	 dG x
G

x
d x( )

ln
ln .=

∂
∂








 	 (4)

Using Eqs. 2 and 3, Eq. 4 can be converted to:

	 dG x k T X x d xB( ) ( ) ln .= − 	 (5)

To obtain the net change in free-energy of the system due to a 
process completely driven by the ligand, we integrate Eq. 5 from 
zero to a specified ligand concentration:

	 G k T X x d xx
x

B
x

| ( ) ln .= −∞
= − ∫0

	 (6)

Thus the free energy associated with a ligand binding process is 
related to the area under a ligand binding curve (X vs. ln x). Inte-
grating the right side of Eq. 6, by parts, gives:

	 ∆G x k T X x x dXB x
x X x

( ) ln | ln .
( )

= − −( )= ∫0 0
	 (7)

In the above integral equation (Eq. 7), we have used the bound-
ary condition that at zero ligand concentration, X = 0. At saturating 
ligand concentration, X approaches Nmax, which is the maximum 
number of ligands that each protein molecule can bind. Using these 
limits in Eq. 7, the net free-energy change associated with full-scale 
transformation of the protein, associated with binding of ligand, is:

	 ∆G k T N x k T x dXB B
N

= − + ∫max ln ln .max

0
	 (8)

The free-energy expression in Eq. 8 comprises of two terms: the 
first is a nonsaturating component that increases in magnitude with 
increasing ligand concentration; the second component is a saturat-
ing component that equals the area between the ligand binding 
curve and the ordinate axis, as shown in Fig. 1.

What do these individual components mean? We take a look at 
the overall “reaction” that is occurring here:

	 N X P P XNmax[ ] [ ] [ . ].
max

+ → 	

[P]and [ . ]
max

P XN
represent the completely unbound and bound 

states of the protein. The overall free-energy change of this process 
can be represented as:
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framework that will allow us to extract the various free 
energies without requiring a detailed knowledge of ki-
netic models. Our approach is, to a degree, an exten-
sion of Wyman’s linkage principles to electrochemical 
equilibria (Wyman and Gill, 1990). A direct conse-
quence of these ideas is that the total chemical free- 
energy change of a voltage- or ligand-dependent system 
is directly estimable by extracting the median voltage of 
activation or the median ligand concentration from 
the gating-charge displacement (charge-voltage; Q-V) 
or the ligand binding curve, respectively (Wyman, 1967; 
Chowdhury and Chanda, 2012). Here, we show that the 
ligand binding curve at any voltage can be obtained by 
measuring the Q-V curves at multiple ligand concentra-
tions and a single reference ligand binding curve. This 
information can be further transformed to obtain the 
net free-energy change of a bimodal system. Finally, we 
show that the net displacement of the Q-V curve on the 
voltage axis between zero and fully saturating ligand 
concentrations is linearly related to the total interaction 
energy of the ligand binding sites with the pore and the 
voltage sensors. We apply these theoretical propositions 
on BK channels and hyperpolarization-activated hyper-
polarization activated cyclic nucleotide-gated (HCN) 
channels, both of which are regulated by voltage and 
ligand, to estimate the interaction energies between the 
two regulatory domains. Finally, we discuss the poten-
tial of applicability of our theoretical framework to 
systems of varying size and complexity and even to non-
allosteric systems.

T H E O R Y

Free-energy component for the ligand-  
or voltage-dependent pathway
As shown by Wyman, the work done to saturate a macromolecule 
with a ligand can be directly estimated from the ligand binding 
curve, by extracting the median ligand concentration (Wyman, 
1967; Wyman and Gill, 1990). In his original derivation, however, 
it was assumed that the free energy of the macromolecule does 
not change upon ligand binding (Wyman, 1964). Here, we show 
that such an assumption is not essential to deduce energetic infor-
mation from the binding curves.

Consider a protein that can bind a ligand (X). The protein is 
presumed to exist in N different conformational states. Each state 
is associated with a variable ni, which depicts the number of mol-
ecules of ligand X bound to the conformational state. The prob-
ability of occurrence of each state is assumed to follow a Boltzmann 
distribution such that

	 P
E

Z
i

i=
−exp( )

,
β

	

where  = 1/kBT, Ei is the energy of the state, and Z is the partition 
function of the system (Z e E

i
i= −∑ β). The Boltzmann weight of 

each state, Bi (= e Ei− β), is assumed to have an overall functional 
form as:

	 B B xi i
ni= 0. . 	 (1)
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x

x

m

m
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ln
maxln−∞

∞

∫ ∫= − 	 (10)

Using this definition, ∆Gc is:

	 ∆G k T x dX k T N xc B
N

B m= =∫ ln ln .max

max0
	 (11)

The thermodynamic equations describing a ligand binding 
process are strictly analogous to those of a voltage-driven pro-
cess. We have previously shown (Chowdhury and Chanda, 2012) 
that for a purely voltage-driven process, the net change in the 
chemical free energy of the system can be estimated directly via 
the measurement of the gating-charge displacement versus volt-
age curves as:

	 ∆G VdQ Q Vc
Q

M= =∫0
max

max , 	 (12)

where V is the voltage, Q is the mean gating-charge of the ensem-
ble, Qmax is the maximum number of gating-charge translocated 
in the voltage-dependent activation of the protein, and VM is the 
median voltage of activation.1 VM is defined in a manner similar 
to Eq. 10:

	 Q dV Q Q dV
V

V

M

M−∞

∞

∫ ∫= −( ) .max
	 (13)

The physical significance of the median transformation of the li-
gand binding and gating-charge displacement curves is discussed 
in more detail in Appendix 1.

The preceding thermodynamic relations, although esoteric 
in construction, are simply the consequence of a fundamental 
thermodynamic proposition; the work done by a system under-
going a reversible change equals the decrease in the free  
energy of the system. Thus the free-energy change of a system 
caused by a change in an intensive environmental variable  
(such as voltage, pressure, temperature, ligand concentration, 
etc.) is directly estimable through the measurement of the con
jugate extensive (charge, volume, entropy, bound ligands, 
etc.). The median measure (median voltage, median ligand 
concentration) is simply a convenient transformation of the free- 
energy change, enabling straightforward comparisons to gauge 
the energetic perturbation of the system. The physical impli-
cation of the median transformation is further discussed  
in Appendix 1.

Net free-energy change for combined ligand  
and voltage-dependent activation
So far we have seen that the Q-V and the ligand binding curve 
give an accurate estimate of the total free-energy change associ-
ated with the full-scale activation of a voltage-dependent and a  
ligand-dependent process, respectively. How does one estimate 
the net free-energy change when the channels are regulated by 
both voltage and ligand?

Consider a protein with dual sensitivity to voltage and a ligand 
(X). It exists in N different conformational states, each of which 
has an associated charge (or valence), qi, as well as a variable ni, 
which depicts the number of molecules of ligand X bound to the 

 of each component of the reaction is its chemical potential. 
The chemical potential of the free/unbound ligand in turn 
has two components, with the standard chemical potential 
(0) superposed on a secondary term, kBT ln x, which origi-
nates from “mixing” (entropic factors) of the free ligand in 
solution (Depaula and Atkins, 2009). Comparing Eqs. 8 and 9, 
therefore, tells us that the nonsaturating term in Eq. 8 is the 
mixing term, whereas the second term is associated with the 
full-scale binding of the ligand to the protein. The difference 
in our derivation from Wyman’s principally results in the ap-
pearance of the nonsaturating component in the free-energy 
change expression (Eq. 8).

Following Wyman’s elegant mathematical analysis, the saturat-
ing component of Eq. 8 (∆Gc ) can be shown to be related to the 
overall chemical free-energy change of the protein–ligand system 
using the median ligand activity (xm; Wyman, 1964). The latter is 
defined as follows (Fig. 1):

Figure 1.  Median ligand activity of an arbitrary three-step ligand 
binding process. (A) A three-step sequential ligand binding pro-
cess (Nmax = 3) where Bi represents the state of the protein with 
“i” ligands bound (i = 0, 1, 2, and 3) and Kj is the equilibrium 
constant for the jth step of the process (j = 1, 2, or 3). In each step, 
a single molecule of the ligand binds to the protein, B. (B) The li-
gand binding curve for Scheme I generated using arbitrary values 
of Kj (K1 = 0.01 M1, K2 = 0.1 M1, K3 = 10 M1). Demarcated by 
horizontal broken lines is the area between the binding curve and 
the ln x = 0 axis (solid black vertical line), which represents the 
integral lnmax x dX

N

0∫ . By virtue of the integration, the area on the 
right of the ln x = 0 axis is negative and that on its right is positive. 
The sum of these areas (taking their signs into consideration) is 
a measure of total free energy associated with saturating the protein 
with the ligands (∆G RTC / , where ∆G RT K K KC = − ln( )1 2 3 ). 
The vertical red dashed line is the median ligand activity axis.  
By its definition, the two shaded regions on either side of the ln xm 
axis are equal in area. Eq. 11 implies that the region demarcated 
by the horizontal dashed lines and the rectangle defined by the ln 
x = 0, ln xm, X = 0, and X = Nmax lines are equal in area and that 
both give a measure of ∆GC .

1In this paper, we designate the median voltage of activation by VM, which 
is different than what was we had previously used (Chowdhury and 
Chanda, 2012). This was done to avoid confusion with membrane poten-
tial that is routinely designated by Vm (our previously used symbol for me-
dian voltage). However, for the median ligand concentration, we retain 
the designation xm, originally used by Wyman (Wyman, 1964, 1967).
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To deconstruct the free-energy changes associated with charge 
movement and ligand binding in such a system, we look at the 
thermodynamic cycle shown in Fig. 2. Our initial reference state 
(Sref) is the one where all the gating charges are in the resting 
state with no bound ligands. The final state of the system (Sfinal) is 
where all the gating charges have translocated to activated state 
and the channel is fully liganded. We are specifically interested in 
evaluating the free-energy difference between Sfinal and Sref, i.e., 
G V x G V x( , ) ( , )→∞ →∞ − → −∞ = 0 . The net free energy of acti-
vation of this system can be calculated in two different ways. In the 
first pathway, all the gating charges are moved (step I a), and 
subsequently the ligands are allowed to bind (step I b), whereas  
in the second pathway, we first saturate the system with ligands 
(step II a) and then allow the translocation of the gating-charges 
(step II b). Each of these steps are associated with a free-energy 
change and, therefore, the net free-energy change associated with 
the full-scale activation of the protein is GIa + GIb = GIIa + GIIb = 
G V x G V x( , ) ( , )→∞ →∞ − → −∞ = 0 .

We first consider the free-energy estimation strategy along Path I. 
From our previous discussion, GIa is estimable from the Q-V 
curve for the channel at zero ligand concentration, whereas GIb 
can be calculated from the ligand binding curve obtained at 
highly depolarizing voltages. Thus the total free-energy change in 
the system, Gnet, can be obtained as:

	
∆ ∆ ∆G G G

Q V x dV k T X V x d x

net Ia Ib

B

= + =

− = − → ∞
−∞

∞ ∞

∫ ∫( , ) ( , ) ln .0
0

	 (17)

The first integral in Eq. 17 is the area under the Q-V curve at 
zero ligand concentration, whereas the second is the area under 
the ligand binding curve at highly depolarized voltages, when all 
charge has moved. Similarly the free-energy estimation along the 
second pathway can be accomplished as:

conformational state. The probability distribution of states, and 
thus the free energy of the system, G , will now be sensitive to volt-
age as well as ligand. Q is the mean gating charge of the entire 
ensemble and is equal to q P V xii i∑ ( , ) , where Pi (V, x) is the oc-
cupancy of the ith state at voltage V and ligand concentration, x. 
Similarly, X  is the average number of bound ligands.

The differential change in free energy in such a system will be:

	 dG
G
V

dV
G

x
d x

x V

=
∂
∂








 +

∂
∂










ln
ln . 	 (14)

In Eq. 14, the subscript in each partial differential indicates the 
parameter held constant during the differentiation. Using our 
previous descriptions in Eq. 14, it can be shown that:

	 dG Q V x dV k T X V x d xB= − −( , ) ( , ) ln . 	 (15)

Suppose we measure the Q-V curve at a particular ligand con-
centration. Integrating the area under the curve will yield a mea-
sure of the net free-energy change that has occurred:

	 G V x G V x Q V x dV
V

V
( , ) ( , ) ( , ) .2 1

1

2− = −∫ 	 (16a)

This free-energy change is the work done to change the dis-
tribution of states by changing only voltage, whereas ligand 
concentration is maintained as a constant. A similar relation-
ship can be derived for a transformation caused by a change in 
ligand concentration alone:

	 G V x G V x k T X V x d xB x x

x x
( , ) ( , ) ( , ) ln .2 1

1

2− = −
=

=

∫ 	 (16b)

Figure 2.  A thermodynamic cycle for a channel dually modulated by voltage and ligand. The reference state of the system is that in 
which all gating charges are in their resting position and all ligand binding sites are unoccupied (at hyperpolarizing voltages and zero 
ligand concentration). The final state of the system is where all gating charges have moved and all ligand binding sites are occupied 
by the ligand (depolarizing voltages and saturating ligand concentrations). The free-energy difference between these two states can be 
calculated by two different ways. In Path I, Q-V is measured at zero ligand concentration followed by the ligand binding curve at highly 
depolarized voltages. In Path II, the ligand binding curve is measured at hyperpolarizing voltages, whereas the Q-V curve is measured at 
saturating ligand concentration. The free energy expressions for each of the steps are shown alongside.
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The differentials depicted in Eqs. 19a and 19b are reminiscent 
of Maxwell’s thermodynamic relations. We multiply both sides of 
Eq. 19b with dV and perform the integration, i.e.:

	 k T dX
Q V x

x
dVB V

V

V

V

→−∞

→∞

→−∞

→∞

∫ ∫=
∂
∂

( , )
ln

. 	 (20a)

This integral equation can be rewritten as:

	
k T X V x X V x

x
Q V x dV Q

V x
x

B

M
V

V

{ ( , ) ( , )}

ln
( , )

( )
lnmax

→∞ − → −∞ =
∂

∂
= −

∂
∂→−∞

→→∞

∫ .
	 (20b)

Eq. 20b tells us that the gradient of median voltage of activation 
with respect to the natural logarithm of the ligand concentration 
is linearly related to the change in the number of ligands bound to 
protein, because of a change in voltage. Note that in Eq. 20b it has 
been assumed that Qmax is not affected by the ligand.

Although it may be experimentally challenging to obtain ligand 
binding curves at different voltages, obtaining a single ligand 
binding curve in the absence of membrane potential (0 mV) is 
relatively simpler. By using this reference binding curve and Q-V 
curves at different ligand concentrations, it is possible to obtain 
the entire ligand binding surface. Integrating Eq. 20a and within 
finite limits:

		
(21)k T d X

x
Q V x dV

k T X V x X V x

B V

V

V

V

B ref

ref ref
∫ ∫=

∂
∂

=

−

ln
( , )

{ ( , ) ( , )}.  

The right-hand side of Eq. 21 is the change in the ligand occu-
pancy caused by a change in voltage from Vref to V. This can be 
obtained by computing the gradient of the area under the Q-V 
curve, between Vref and V, with respect to ln x. Because V is arbi-
trary and X V xref( , ) (the ligand binding curve at a reference voltage) 
is available, we can potentially generate the entire ligand binding 

	
∆ ∆ ∆G G G

k T X V x d x Q V x dV

net IIa IIb

B

= + =

− → −∞ − → ∞
∞

−∞

∞

∫ ∫( , ) ln ( , ) .
0

	

In the preceding equation, the first integral is the area under 
the ligand binding curve at highly hyperpolarized voltages, 
whereas the second integral is the area under the Q-V curve at 
saturating ligand concentrations. The chemical component of 
this free-energy change, ∆GC

net , can be extracted by calculation of 
median variables (Eqs. 10–13). In summary,

	 ∆G Q V k T N x

Q V k T N x
C
net

M x B m V

M x B m V

= =
+

= →∞

→∞

max max

max max

| + ln |

| ln |
0

→→−∞ .
	 (18)

Voltage dependence of ligand occupancy from Q-V curves
As shown in the previous section, if we measure the ligand binding 
curves at various voltages and the Q-V curves at various ligand con-
centrations, we can directly map the free-energy landscape for 
dual regulation by ligand and voltage (Eq. 16). Although the Q-V 
curves can, in most cases, be measured at different ligand con-
centrations, estimating the ligand binding curve at very high  
or very low voltages is not straightforward. In this section, we 
describe how this information can be extracted from thermo
dynamic principles.

Because the free energy, G , is a state function, the differential, 
dG , (from Eqs. 14 and 15) is exact. The result is the relation:

	 ∂
∂ ∂

=
∂

∂ ∂

2 2G
x V

G
V xln ln

	 (19a)

or

	 ∂
∂

=
∂
∂

Q
x

k T
X
VBln

. 	 (19b)

Figure 3.  Energetic linkage between the voltage-dependent and ligand-dependent pathways. (A) An allosteric model of a hypothetical 
ion channel with a single voltage-sensing and ligand binding domain. The voltage sensor exists in two states (VR and VA) and its activa-
tion energetics are governed by its intrinsic equilibrium constant, KV

0 , and its voltage dependence, zV. The pore unit has an intrinsic 
activation constant and intrinsic voltage dependence given by KP

0  and zP, respectively. The ligand binding domain has an intrinsic 
binding affinity of KB

0 . All the three “structural units” are allosterically coupled to each other via interactions represented by the terms 
VP, LV, and LP. The model parameters are KV

0  = 0.1, KP
0  = 0.01, KB

0  = 100 M1, VP = 100, LV = 1, LP = 1,000, zV = 2.5, and zP = 1.5. 
(B) Simulated fractional gating charge displacement (Qf vs. V) curves for this system at saturating (closed circles) and zero (open circles) 
ligand concentrations. The red vertical line is the VM axis for each of the curves and the shaded area is equal to the area of the rectangle 
bound the two VM axes. This area, when scaled by Qmax of the system (zP + zV), gives the net energetic facilitation of the voltage-dependent 
pathway by the ligand and is equal to kBTln(LVLP). (C) The fractional ligand binding curves (Xf vs. ln x) at very low (open circles) and 
very high voltages (closed circles) are shown, and the red vertical lines are the corresponding ln xm axes. The area of the shaded region 
is equal to area of the rectangle bound the two ln xm axes, which when scaled by Nmax of the system (equal to 1 in this case) and kBT, gives 
the net energetic facilitation of the ligand-dependent pathway by voltage and is equal to kBTln(LVLP). Note that the two shaded in 
areas in B and C after appropriate scaling will be equal.
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activity by multiple modulators. Our derivation that the double 
integral of the linkage function is an energetic measure of coopera-
tivity (or linkage) in the system is one example of its utility. In gen-
eral, the reason why such a mathematical formulation reflects 
cooperativity in a system can be understood by evaluating the par-
tial differential in terms of the microscopic state/system variables:

	 ∂
∂

= − ( )× ( ) = −∑ ∑ ∑Q V x
x

q n P q P n P qn Q Xi i ii i ii i ii

( , )
ln

. . 	(25)

Noting the functional expression on the right of Eq. 25, one can 
see that the linkage function is actually a measure of the covari-
ance between gating-charge movement and ligand binding. If the 
two processes are strongly interdependent, the covariance will be 
higher, and in the case of independent processes, the covariance 
will be zero.

R E S U L T S

Ligand binding curves as an estimate of total free-energy 
change in ligand gated ion channels
The first major conclusion of our thermodynamic treat-
ment is that total free-energy change associated with 
saturating a macromolecule with a ligand is estimable 
from the ligand binding curve, via extraction of the me-
dian ligand activity (ln xm) and the maximum number 
of ligands that can bind to the macromolecule. This is 
fundamentally different from the Hill equation based 
metrics to characterize the free-energy responses in  
ligand-gated ion channels (Nache et al., 2008; Gleitsman 
et al., 2009). We consider two ligand-gated channels, 
the cyclic nucleotide-gated (CNG) channels and the 
HCN channels, both of whose direct ligand binding 
curves have been measured using a fluorescent ligand 
(Biskup et al., 2007; Kusch et al., 2010, 2012). Kinetic 
models of activation of these channels have been de-
veloped using constraints from direct ligand binding 
and ionic current measurements. We compared the 
free-energy estimate obtained directly from the kinetic 
model parameters and the median metric, extracted 
from the simulated ligand binding curves.

In both these channels, there are four ligand binding 
sites. The cooperativity in the different ligand binding 
steps are asymmetric: the second and fourth steps of li-
gand binding show positive coupling, whereas the third 
step shows negative coupling. The ligand-dependent ac-
tivation of these channels can be described by a 10-state 
model with five closed and five open states, each of 
the five states being unique in the number of bound 
ligands (Fig. 4 A; Biskup et al., 2007; Kusch et al., 2012). 
Our initial reference state for both the channels is the 
closed state with zero ligands bound, and the final state 
of the channel is the open state with all the ligand bind-
ing sites occupied with ligands. Using the equilibrium 
model parameters, we simulated the binding curves  
of both channels and extracted their median ligand con-
centrations (Fig. 4 B). For the CNG channel, the median  
metric comes out to be 29.4 kcal/mol, which is nearly 

surface. Similarly, the Q(V, x) surface can also be obtained once a 
reference Q-V curve and ligand binding curves at different volt-
ages are generated.

Free energy of interaction between voltage-  
and ligand-dependent pathways
In the bimodal systems considered here, a change in the Q-V 
curve caused by changes in ligand concentration is caused by en-
ergetic coupling of the voltage-dependent and ligand-dependent 
pathways. How can the strength of this energetic linkage be es-
timated? Under zero ligand conditions, the area under the Q-V 
curve is the work done to move all the charges when all the ligand 
binding sites are unoccupied (GIa). Under saturating ligand 
conditions, the area bound by the Q-V curve is the work done 
to move all the charges when all the ligand binding sites are oc-
cupied (GIIb). The difference between the two energy measures 
is the energetic connectivity between the voltage-dependent and 
the ligand-dependent processes. Mathematically, the net free en-
ergy of interaction, ∆GV X−

int , between the ligand-dependent and 
voltage-dependent pathways is:

		
(22)
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Thus, the change in the areas under the Q-V curve between 
fully saturating and zero ligand concentrations gives a measure 
of the energetic connectivity between the voltage- and ligand- 
dependent pathways. Specifically, if the maximum charge translo-
cated in the voltage-dependent activation pathway is unchanged 
due to the ligand, Eq. 22 can be rewritten as:

	 ∆ ∆G Q V V Q VV X M x M x M− →∞ == − =int
max max( | | ) .0

	 (23a)

This principle is illustrated for a hypothetical channel gated by 
voltage and ligand (Fig. 3 A). As shown in Fig. 3 B, the area be-
tween the Q-V curves measured at zero and fully saturating ligand 
concentrations equals the area of the rectangle bound by the me-
dian voltage axes of the two Q-V curves. This area is the energetic 
facilitation afforded by ligand binding on the voltage-dependent 
activation pathway of the protein.

A similar relation can be derived for the ligand binding curve 
as well, wherein ∆GV X−

int  is estimated from the difference in the 
area’s ligand binding curves obtained at highly depolarized (all 
gating charge has moved) and hyperpolarized (all charges in rest-
ing configuration) voltages (Fig. 3 C). This is a consequence of 
the thermodynamic cycle in Fig. 2: GIIb  GIa = GIb  GIIa. 
Thus, in terms of the ligand binding curves, ∆GV X−

int will be:
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Eqs. 22, 23a, and 23b have an important historical context to 
understand, with which we transform Eq. 22 as:
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	 (24)

The partial differential under the double integral on the left of 
Eq. 24 is an example of hetero-tropic linkage functions (Wyman, 
1984; Gill et al., 1985; Wyman and Gill, 1990), which have been 
the cornerstone of Wyman’s linkage theory (Wyman, 1964) and 
have been used to understand the cross-regulation of enzyme 
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measurements. For the CNG channel model, this is not 
a complication because PO at zero ligand is very small, 
whereas it is approximately one under saturating li-
gand concentration. However, for HCN channels, the 
minimum PO in absence of ligand is 0.55 (from kinetic 
models). Because the C-to-O transition is ligand inde-
pendent, even in complete absence of ligand all the 
channels are not in C0 state. As described in Chowdhury 
and Chanda (2012), we can apply equivalent correction 
factors to estimate the complete free energy of activa-
tion of the ligand-dependent pathway. Thus, the net 
expression for the work done in saturating the channel 
with the ligand is:

	 ∆G N RT x RT P RT PC m O O= − + −max
max minln ln ln( ),1 	 (26)

where PO
max  is the open probability at saturating li-

gand concentration and PO
min  is the open probability at 

zero ligand concentration. The first of the two correc-
tion factors (−RT POln max) accounts for the fact that at 
saturating ligand concentrations, there might be some 
closed states with relatively large occupancy, whereas 
the second (RT POln( )min1− ) accounts for the fact that at 
zero ligand concentration, there might be substantial 
occupancy of the open states of the channel. For the 
case of the wild-type HCN channel model, this correc-
tion factor amounts to 0.5 kcal/mol, which is much 
smaller than the median metric estimate alone. How-
ever, this might be an important consideration to 
accurately describe the activation energies of delete-
rious mutations.

Generating ligand binding curves at different voltages in  
allosteric ion channels modulated by voltage and ligand
Another important utility of the linkage principles de-
scribed in the theory section is the ability to generate 
ligand binding curves at different voltages by measuring 
the Q-V curves at multiple ligand concentrations and 
one reference ligand binding curve (at zero voltage). 
Here, we test this idea using the BK channel for which 
well-described kinetic models are available (Rothberg 
and Magleby, 1998; Horrigan and Aldrich, 1999; Horrigan 
et al., 1999; Rothberg and Magleby, 2000; Horrigan and 
Aldrich, 2002; Niu and Magleby, 2002). We consider  
the two-tier Horrigan and Aldrich (HA) model (Fig. 5 A) 
with four identical voltage-sensing domains, each of which 
have an intrinsic activation constant J0 and a voltage-
dependence zJ. The pore has an intrinsic activation 
constant L0 and an intrinsic voltage-dependence zL. The 
equilibrium constant of activation of voltage sensor  
(J) and that of the pore (L) are assumed to have an  
exponential voltage dependence (I = I0 exp[zIFV/RT], 
where I = J or L). In the absence of calcium, the voltage-
dependent activation of the channel can be described 
by a 10-state Monod-Wyman-Changeux (MWC)-type allo-
steric scheme (Cox et al., 1997; Cui et al., 1997; Talukder 

identical to the kinetic model based on the free-energy 
change estimate from state C0 to O4. This estimate is 
very different from the estimates derived by fitting the 
Hill equation to the ligand binding curve (or the simu-
lated dose response curve; Table 1). Similarly, for the 
HCN channel, the median metric and the kinetic model 
yield matching estimates of the total free-energy change 
for ligand-dependent activation of the channel. The 
simulations clearly demonstrate the utility of the median 
metric and its applicability even when ligand binding 
steps are energetically asymmetric.

It is important to consider the limiting states of 
the ensemble while inferring energetics from these 

Figure 4.  Comparison of median estimates of free-energy change 
in CNG and HCN channels. (A) The proposed model of the ligand- 
induced activation pathway of the CNG and HCN channels. 
There are five open and closed states (labeled Oi and Ci, (I = 0, 
1, 2 . . ., 4), where “i” represents the number of ligands bound to 
state). KAi (i = 1, 2, 3, or 4) indicates the step-wise binding affini-
ties of the ligand in the closed state. Ei (i = 1, 2, . . ., 5) represents 
the closed-open equilibrium constant for a unique ligation state 
of the channel. For the CNG channel, each state is considered to 
have a multiplicity of 4!/(4  i)!i! (i = 0, 1, 2, . . ., 4), whereas for 
the HCN channel, each of the states are considered to be unique 
(multiplicity = 1). (B) Using the model parameters provided 
in Biskup et al. (2007; for the CNG channel) and Kusch et al. 
(2012; for the HCN channel), the steady-state open probability 
curves (open symbols) and the fractional binding curves (closed 
symbols) were simulated. The vertical broken lines represent the  
median ligand concentration axes (for the binding curves) for 
the CNG (black) and HCN (red) channels. For the HCN chan-
nels, these curves represent the channel response at 130 mV.
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Using such a method of estimation, the total free- 
energy change associated with full-scale activation of 
the BK channel was estimated as 24 kcal/mol. This 
value is nearly identical to that estimated from the 
model parameters (Table 2). It is to be noted that 
the reference binding curve used in Fig. 5 E is in-
ferred directly from the kinetic model; direct calcium 
binding curves for the BK channel have not yet been 
measured, although calcium-induced conformational 
changes in purified preparations of calcium-binding 
domains have been spectroscopically monitored (Yusifov 
et al., 2010).

The principle utility of the formulation shown in  
Fig. 5 is that it allows us to estimate the total free en-
ergy of the activation of the channel. It is important to 
remember that standard biochemical assays of ligand 
binding are performed over time scales much longer 
than those of electrophysiological recordings. This may 
allow the proteins to populate slowly accessible long-
lived desensitized states (Colquhoun, 1998) that are 
not normally detectable during the time scale of elec
trophysiology measurements. The median metric ex
tracted from such binding curves would incorporate 
the free-energy contributions of such transitions, along 
with the energetic changes occurring during the early 
channel activation transitions. Thus, to estimate the 
free energy of activation (i.e., the transition from  
the first closed state, where all voltage sensors are 
resting and all ligand binding sites are unoccupied 
to the final open, conducting state, where all voltage 

and Aldrich, 2000), wherein the pore is capable of 
opening but with reduced potency at very low voltages, 
and depolarization-induced activation of the voltage-
sensing domains progressively facilitates channel open-
ing. This facilitation is described by an interaction 
parameter, D. To explain the calcium regulation, it is as-
sumed that there exists a single calcium-binding site in 
each of the subunits, each with a dissociation constant 
KD. The binding equilibrium constant is described as: 
x/KD. Calcium binding can facilitate the opening of the 
pore via an interaction described by the parameter, C. It 
could also facilitate activation of the voltage-sensing do-
main (within the same subunit) via an interaction param-
eter, E. This model of channel activation has been shown 
to accurately describe the steady-state and kinetic proper-
ties of channel gating over a wide range of voltages and 
ligand concentrations, and hence will be the primary 
model on which we test our derivations.

To estimate the ligand binding curve at a particu-
lar voltage (say 200 mV), we first generate a set of QV 
curves at different ligand concentrations. For each QV 
curve at a particular concentration, we evaluate the area 
bound the curve, the V = 200 mV axis, and the refer-
ence voltage axis (Vref = 0 mV; Fig. 5 B), and plot these 
areas with respect to ln x (Fig. 5 C). The gradient of this 
plot with respect to ln x gives a measure of the change 
in the ligand occupancy of the protein due to change in 
voltage (Fig. 5 D). A linear addition of this curve with 
the reference-binding curve (at 0 mV) generates the 
binding curve at 200 mV (Fig. 5 E).

Ta b l e  1

Comparison of free-energy estimates of CNG and HCN channel obtained from dose–response curves, binding curves and kinetic models

Response Free-energy estimation method Free-energy estimate

CNG HCN

Fitting function Parameters Parameter  
values

∆GC
Parameter  

values
∆GC

kcal/mol kcal/mol

DRCa P
P P

x xO
O O

H
min

max min

/( / )
+

−
+1 1 2

x1 2/ 1.65 µM
7.7

0.54 µM
8.3

H 1.9 1.3

BCb
1

1 1 2+( / )/x x H
x1 2/ 2.3 µM

7.5
0.54 µM

8.4
H 0.75 1.14

BCc Nmax RT ln xm + CF

xm 2.42 µM

29.4 (30d)

0.45 µM

33.6 (33.8d)Nmax 4 4

CF 0 0.5 kcal/mol

The table lists the estimates of free-energy change of ligand-dependent activation of CNG channel and HCN channel (at 130 mV) calculated by different 
methods.
aThe simulated dose-response curve (DRC, relative open probability curve) is fitted with a Hill equation, normalized to account for nonzero open 
probabilities at zero ligand concentration, i.e., PO

min (and non-unity open probabilities at saturating ligand concentrations, PO
max ). ∆GC is calculated as 

RT lnx1/2.
bThe simulated binding curve (BC) is fitted with the Hill equation, and GC is calculated as RT lnx1/2.

cFrom the simulated binding curve (BC), the median ligand concentration is extracted. CF is the correction factor in Eq. 26 (informed by PO
min

 
and PO

max ).
dGC estimates of the net free-energy difference between the first closed state (C0) and the last open state (O5) ( − →RT KC Oln

1 5

0 ) obtained from the 
kinetic model parameters (Fig. 4 A).
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sensors are activated and all ligand bind sites are oc-
cupied), one needs to incorporate a correction factor 
related to the maximum open probability at saturating 

ligand concentrations and very high voltages, measured 
at very long time scales. The final free-energy equations 
in this scenario will be:

Figure 5.  Generating ligand binding curves at different voltages using Q-V curves at different ligand concentrations. (A) The allosteric 
model proposed for the BK channel (Horrigan and Aldrich, 2002). There are four voltage-sensing domains, four ligand binding sites 
(one per subunit), and a single pore. Each of the voltage sensors and the ligand binding sites are allosterically linked to the pore. Each 
ligand binding site is coupled to a single voltage sensor (in the same subunit). J0 and L0 are the voltage-independent components of the 
equilibrium constants of activation of the voltage sensor and the pore, respectively. zJ and zL reflect the voltage dependence of activation 
of each voltage sensor and the pore. KD is the dissociation constant of each of the ligand binding sites. The voltage sensor and pore cou-
pling is described by the cooperativity parameter, D. E and C depict the cooperativity parameters describing coupling of the ligand bind-
ing sites with the voltage sensors and pore, respectively. The best fit estimates of these parameters (Fit B; Horrigan and Aldrich, 2002) 
are: J0 = 0.0319, KD = 0.000011, L0 = 9.8 × 107, C = 8, D = 25, E = 2.4, zJ = 0.58, and zL = 0.3. (B) Q-V curves at two ligand concentrations, for 
the model shown in A. The cross-hashed area (A2) is the area under the Q-V curve at 5 nM ligand concentration, between 0 and 200 mV. 
The area under the Q-V curve at 10 µM ligand concentration, between 0 and 200 mV, is the total shaded area (A1 + A2, A1 being the area 
between the two curves). (C) The area under the Q-V curve between 0 and 200 (or 90) mV is plotted against ligand concentration. As 
the ligand concentration increases, the Q-V curve shifts leftward and thus this area increases as depicted in B. (D) The change in ligand 
occupancy of the protein caused by increasing the voltage from 0 to 200 (or 90) mV (derived as the gradient of the curves in C) is plotted 
against different ligand concentrations. In the intermediate ligand concentrations (ln x between 15 and 10), changing voltage brings 
about a large change in the mean number of ligands bound to the protein, even though the ligand concentration is unchanged. (E) The 
linkage equation–derived ligand binding curve at 200 and 90 mV, obtained by adding X versus ln x curves for individual voltages to the 
reference ligand binding curve. In this case, the reference binding curve was simulated from the model parameters.
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the parameters described by the HA model (Horrigan 
and Aldrich, 2002). Thereafter, each of the parameters 
were varied over several orders of magnitude, and in 
each case we extracted the median voltage at VM at zero 
calcium (VM (x = 0)) and at saturating calcium concen-
trations (VM (xsat)) from the simulated Q-V curves. For 
this system, Qmax = 4zJ + zL. We plotted QmaxFVM (VM = 
VM(xsat) – VM(x = 0)) against different values of KD, J0, L0, 
and D (Fig. 6 A). The plot shows that this free-energy 
metric, QmaxFVM, is completely independent of the 
ligand binding affinity, the intrinsic stability of the voltage-
sensing and pore domains, and the voltage sensor and 
pore coupling.

Next, we simulated the Q-V curves for three charac
teristic model parameters provided by Horrigan and 
Aldrich (2002; Fits A, B, and C) at multiple calcium con-
centrations and plotted the VM values at those ligand 
concentrations (Fig. 6 B). Fit B was chosen as the best 
fit by Horrigan and Aldrich based on multiple tests. 
Interestingly, the VM versus ln x plots show that each 
of the fits generate characteristically different features. 
When only the interaction terms of the ligand binding 
domains (parameters C and E) were modified for Fit B  
to match those in Fit A, a different curve was gen-
erated. Strikingly, the VM values converge at limiting 
ligand concentrations as long as the interaction terms 
between the two sets of model parameters are the same. 
Next, we plotted QmaxFVM against different values of 
the parameters C and E (Fig. 6 C). The planar 3D sur-
face generated shows that QmaxFVM is linearly related 
to interaction energies of the ligand binding domain 
with the voltage sensor and the pore even when they are 
varied over several orders of magnitude.

Are these numerical simulations consistent with our 
theoretical proposition? To understand this, we first 
write the partition function for this system:

	 Z J K JKE L JD KC JKCDE= + + + + + + +( ) ( ) .1 14 4 	 (28)

Under zero calcium conditions, K = 0 and Eq. 28 re-
duce to:

	 Z x J L JD( ) ( ) ( ) .= = + + +0 1 14 4 	

QmaxFVM (x = 0) is the measure of the nonelectrical 
free-energy change associated with full-scale voltage- 
dependent activation of the channel. Thus:
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At saturating calcium conditions, Eq. 28 reduces to:

	 Z x K JE LK C JDE( ) ( ) ( ) .→∞ = + + +4 4 4 4 41 1 	
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and
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where, t →  indicates that the measurements are made 
on a very long time scale. It is to be noted that for the 
kind of systems to which this discussion directly pertains 
to (e.g., BK channels), the existence of such deep de-
sensitized states has not yet been reported. This issue 
however may be more pertinent for the cys loop recep-
tor channels, which are not directly voltage dependent 
and are not the systems toward which our current dis-
cussion is geared toward.

Energetic interdependence of voltage- and ligand-induced 
transitions in bimodal allosteric ion channels
To obtain the interaction energy between the ligand- and 
voltage-dependent pathways, we generated Q-V curves 
at zero and fully saturating calcium concentrations using 

Ta b l e  2

Energetic parameters for the BK channel gating model

Energetic parameter Value

VM (x = 0)a 138.6 mV

VM (x → )a 30.7 mV

xm (V → )b 14.7 µM

xm (V → )b 0.83 µM

Q FV RT N xM x m Vmax max| ln |= →∞+0

c 24.1 kcal/mol

Q FV RT N xM x m Vmax max| ln |→∞ →−∞+
d

23.9 kcal/mol

Gmodel
e 24.6 kcal/mol

Q F VMmax ∆
f 6.7 kcal/mol

−








→∞

→−∞

RT N
x
x

m V

m V
max ln

|
|

g

6.5 kcal/mol

∆G int (model)h 6.8 kcal/mol

aVm values were extracted from Q-V curves simulated in the absence and 
saturation concentrations of ligand (x = 75 µM) using parameters of Fit B 
of the HA model.
bThe ligand binding curves at very high (300 mV) and very low (150 mV) 
voltages were deduced using the linkage method (Eq. 21), using the 
binding curve at 0 mV (directly simulated from the model) as the 
reference curve.
cThe free-energy change along Path I of thermodynamic cycle, GIa + 
GIb.
dThe free-energy change along Path II of thermodynamic cycle, GIIa + 
GIIb.
eGmodel is directly obtained from the model parameters:

fEnergetic connectivity calculated as: GIIb  GIa.
gEnergetic connectivity calculated as: GIb  GIIa.
hEnergetic connectivity evaluated from the model parameters: 
RT ln(CE)4.
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These simulations illustrate our theoretical results 
and highlight the crucial utility of Q-V curve measure-
ments in understanding ligand-dependent gating of 
polymodal systems such as the BK channels. The model 
of the BK channel considered here, to some extent, is 
restrictive because it assumes that there exists a single 
ligand binding site per subunit of the channel that is 
allowed to interact with the voltage sensor only of the 
same subunit (Bao et al., 2002; Shi et al., 2002; Xia  
et al., 2002; Magleby, 2003). In Appendix 2 we show that 
our overall relationship is valid even when there is more 
than a single binding site per subunit of the protein.

A striking outcome of Eq. 29 is that for a constant 
value of C and E, Qmax and VM will be inversely related. 
For two sets of parameters (Fits B and B), we plotted 
VM with respect to the intrinsic voltage-dependence of 
voltage sensors, zJ (Fig. 6 D). The curves clearly show that 
the net sensitivity of the Q-V curve to ligand reduces as 

The median metric will now yield the following free-
energy measure:
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From this analysis, it is easily seen that the net 
change in the median voltage of charge movement will 
be given by:
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The conclusion is that the net displacement of the 
Q-V curve upon ligand binding is solely determined by 
the interaction of the ligand binding domain with the 
voltage sensor and the pore.

Figure 6.  Dependence of the shift of Q-V curves due to ligand concentration on different parameters of an allosteric model. 
(A) QmaxFVM is plotted against the (logarithm of) a subset of parameter values for the allosteric model of the BK channel (Fig. 5 A). 
In each case, a single parameter of the model was changed, whereas the others were maintained at the control (Fit B) values. Symbols 
correspond to different parameters that were varied. For all the four equilibrium parameters tested (J0, L0, KD, and D), QmaxFVM re-
mains constant at 6.8 kcal/mol. (B) VM of the simulated Q-V curves is plotted against ligand concentrations for four sets of the BK 
channel model parameters as described previously (Horrigan and Aldrich, 2002): for Fit A, J0 = 0.03807, KD = 0.000032, L0 = 2 × 106, 
C = 2.4, D = 18.4, E = 31, zJ = 0.55, and zL = 0.4; for Fit B, J0 = 0.0319, KD = 0.000011, L0 = 9.8 × 107, C = 8, D = 25, E = 2.4, zJ = 0.58, and 
zL = 0.3; for Fit C, J0 = 0.0319, KD = 0.000011, L0 = 9.8 × 107, C = 11, D = 25, E = 1, zJ = 0.58, and zL = 0.3; for Fit B, same as Fit B except the 
coupling terms C = 2.4 and E = 31. (C) QmaxFVM was evaluated through simulations for values of C and E, varying over several orders of 
magnitude, and is plotted against log C and log E. (D) A plot of VM with respect to zJ for Fits B and B. VM for Fits B and B are more 
significantly different for low values of zJ (red broken arrow) than higher values (red solid arrow).
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In the wild-type channel, the PO value is zero or unity 
under all other limiting conditions of voltage and li-
gand. However, many mutations compromise the chan-
nel’s ability to fully close or fully open and thus the 
PO values at each of the four limiting conditions have 
to be taken into account to calculate the net inter
action energy for the voltage- and ligand-dependent 
pathway. Thus, extending Eq. 31 for the thermody-
namic cycle shown in Fig. 7, we can write a general 
formula from of net interaction energy between the 
two pathways:
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where Vmin and Vmax are the highly hyperpolarizing 
and depolarizing limits, respectively, and xmin and 
xmax are the zero and saturating ligand concentra-
tions, respectively.

For HCN2 channels, ligand binding curves have 
been measured at multiple voltages using confocal 
microscopy combined with voltage clamp fluorome-
try. However, to the best of our knowledge, the Q-V 
curves for the same subtype are not available (al-
though Q-V curves for spHCN channels have been 
reported; Männikkö et al., 2002, 2005; Ryu et al., 
2012). Using the binding curves reported in Kusch  
et al. (2010), our thermodynamic relationships (Eqs. 23a, 
23b, and 32) allow us to predict that the net inter
action energy between the ligand binding domain 
and other domains for HCN2 channels is nearly 3 
kcal/mol (Table 3). Furthermore, from the kinetic 
model for ligand-induced activation of the HCN2 
channel, the net interaction between the ligand bind-
ing domains and the pore can be estimated to be 
2.2 kcal/mol. This implies that the net energetic 
coupling of the voltage sensors and the ligand bind-
ing domains is weak (0.8 kcal/mol). This is con-
sistent with the notion that cAMP binding to the 
HCN channels does not affect the voltage-dependent 
transitions but modifies the final, voltage-indepen-
dent closed–open transition (Craven and Zagotta, 
2004; Shin et al., 2004). It is to be noted however that 
the coupling associated with ligand binding domains 
in the HCN2 channels is not completely symmetrical 
(Ulens and Siegelbaum, 2003); some steps (the sec-
ond and fourth) show positive coupling whereas the 
others (the third) show negative coupling (Kusch  
et al., 2012). Hence the relative small interaction en-
ergy estimates may be the result of the net balance  
of interaction energies. This prediction can be fur-
ther tested by measuring the Q-V curves at different 
ligand concentrations and Eqs. 23a and 23b.

zJ increases. Furthermore, if zJ is large, the Q-V curves 
are less sensitive to coupling interactions between the 
two pathways. This can be mathematically proven by dif-
ferentiating Eq. 29 with respect to zJ for a constant value 
of C and E:

	 ∂
∂

=
+

∆V
z

RT C E
F z z

M

J J L

4
4

4 4

2

ln( )
( )

. 	 (30)

Eq. 30 demonstrates that the total gating charge on 
the channel can influence its sensitivity to ligands. 
Significantly, the estimated total gating charge of BK 
channels is 2.5 eo (Ma et al., 2006), which is much 
lower than that of a canonical voltage-gated ion chan-
nels such as the Shaker Kv channel (Schoppa et al., 1992; 
Aggarwal and MacKinnon, 1996; Seoh et al., 1996).

Linkage relationships in a hyperpolarization- and  
ligand-activated channel with a voltage-independent pore
In this section, we consider the hyperpolarization- 
activated, cyclic nucleotide gated HCN channels in which 
the pore is believed to be intrinsically voltage-independent 
and negative coupling with the four identical voltage-
sensing domains causes it to close as the voltage sen-
sors activate (Altomare et al., 2001; Chen et al., 2007). 
However, ligand binding favors channel opening like 
the BK channel.

To address such a system, we modified the thermo-
dynamic cycle (Fig. 7). We chose the closed channel 
state as a reference state, which in this case is predomi-
nant at high voltages and zero ligand concentration. 
This was necessitated by the fact that the ligand bind-
ing domain and voltage sensors are oppositely coupled 
to the pore, unlike BK channels. The final state of the 
system is the open state, where all ligand binding sites 
are saturated with ligand and all voltage sensors are 
deactivated. As shown in Fig. 7, this transformation 
can be achieved via two paths. Applying the princi-
ples that we have detailed in the previous sections on 
this thermodynamic cycle, our primary energy-linkage 
equation is:

	 ∆ ∆G Q F V RT N
x

xV X M
m V

m V
−

→∞

→−∞

= − = −










int
max max ln

|

|
. 	

In the HCN channels, the PO does not approach 
unity at hyperpolarizing conditions in the absence of 
ligand. This means that an ensemble of states is pop-
ulated under these conditions. To account for this 
multiplicity of states, we add a correction term to the 
interaction energy for HCN channels,

	 ∆ ∆G corr Q F V RT P V xV X M O− = − +int
max min min( .) ln ( , ). 	 (31)

The correction factor used in Eq. 31 is equivalent to 
that shown in Eq. 26 for the ligand-dependent activation. 
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Thus, using the Q-V curves at zero ligand concen
trations and ligand binding curves at depolarizing 

D I S C U S S I O N

In a recent study (Chowdhury and Chanda, 2012), we 
have shown that the net free energy associated with volt-
age-dependent activation of an ion channel can be esti-
mated by extracting the median voltage of activation 
from the Q-V curve using the relation:

	 ∆G Q FVC M= max . 	

This relationship is analogous to Wyman’s thermody-
namic description of ligand binding equilibrium (Wyman, 
1967), which when applied to ligand-dependent ion 
channels, yields the relation:

	 ∆G N RT xC m= max ln . 	

Thus for ligand-gated ion channels, the total work 
done to drive the channels to activated conformation 
can be obtained by measuring the median ligand activ-
ity and the maximum number of bound ligands.

Here, we extend these thermodynamic principles to 
develop the free-energy relationships in ion channels 
dually modulated by voltage and ligand. For these sys-
tems, the net free-energy change for activation by both 
ligand and voltage is:

Figure 7.  Thermodynamic cycle for a hyperpolarization- and ligand-activated ion channels. In this case, our reference state is where 
all the gating charges are in activated conformation and all the ligand binding sites are unoccupied (at depolarizing voltages and zero 
ligand concentration). The choice of reference state is based on the considerations of type of coupling between voltage- and ligand- 
dependent pathways. The final state of the system is where all the gating charges are in the resting conformation and ligand binding  
sites are saturated. This state will be preferred when the voltage is low and the ligand concentration is high. As in the previous thermo-
dynamic cycle, the net free energy of activation of this channel can be calculated by two alternate paths.

Ta b l e  3

Energetic parameters for the HCN channel

Parameter Parameter value

xm (V → ) (V = 160 mV)a 0.54 µM

xm (V → ) (V = 30 mV)a 1.72 µM

−








 +→∞

→−∞

RT N
x
x

Cm V

m V
Fmax ln

|
|

b
3.0 kcal/mol

Gint (ligand pore)c 2.2 kcal/mol

aThe median ligand concentrations at very low and high voltages were 
approximated to the EC50 values of the ligand binding curves reported in 
Kusch et al. (2010).
bThe interaction energy between the ligand binding domain and 
the rest of the protein and CF is the correction factor (Eq. 31). The 
following limiting values were used in calculating CF: PO(Vmin, xmin) = 
0.58; PO(Vmin, xmax) = 1; PO(Vmax, xmax) = PO(Vmax, xmin) = 0.
cThe interaction between the ligand binding domains is the pore domain 
calculated from the HCN channel model parameters proposed in Kusch 
et al. (2012; equal to −RT E Eln( / )5 1 ; Fig. 4 A).
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VM of the Q-V curves, measured at saturating and zero 
ligand concentrations, directly yields an estimate of the 
interaction energy between the voltage-dependent and 
the ligand-dependent pathways of the channel. This in-
teraction energy can also be estimated from the shift in 
the ligand binding curve between hyperpolarizing and 
depolarizing voltages:

	 ∆ ∆G Q F V RT N
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This relationship is independent of the number of 
possible intermediates and the nature of connectivity 
between them. This is an important experimental ad-
vantage, as identification of allosteric pathways in the 
complex polymodal ion channels most often requires 
tedious and complex model fitting procedures. For in-
stance, in the HA model for BK channels, ligand bind-
ing involves four identical and independent binding 
sites. However, additional ligand binding sites have 
been described, some of which also interact with each 
other (Bao et al., 2002; Shi et al., 2002; Xia et al., 2002; 
Magleby, 2003; Sweet and Cox, 2008; Zhou et al., 2012). 
By measuring the VM value and total gating charge, 
we can estimate the interaction energies of the bind-
ing sites with the voltage-dependent pathways, as was 
shown for BK and HCN channels in Tables 2 and 3. 
This approach can be also used to identify sites that me-
diate coupling interactions between voltage- and ligand- 
dependent pathways. Note that in case the channel  
undergoes slowly developing desensitization transitions 
during binding measurements (not observed in the 
time scale of gating current measurements), correction 
factors, related to the limiting PO values (as described 
in Eq. 27), need to be incorporated with the median 
ligand concentration measures.

It is important to note that this energy metric is a de 
facto measure of interaction energy only in systems 
that are allosteric in nature. For instance, in BK chan-
nels, voltage sensor activation, ligand binding, and 
pore opening are independent equilibria, but they 
interact with each other allosterically. To ascertain 
whether such an allosteric framework is applicable, 
two conditions have to be satisfied. First, Qmax of 
the protein is independent of ligand concentration 
such that irrespective of ligand concentration, all the 
charges can be moved if a sufficiently large voltage is 
applied. Second, the shift in the Q-V curve saturates at 
both high and low ligand concentrations. If either 
condition is not fulfilled, it would imply that certain 
transitions are under the obligatory control of the li-
gand and occur only in the presence of ligand. Similar 
conditions apply to ligand binding phenomenon wherein 
the maximum possible occupancy is independent of 
voltage and the shifts in ligand binding curves saturate 
at limiting voltages. Additionally, in allosteric systems 

conditions, we can determine the net free energy for 
activation of a voltage- and ligand-activated channel. 
The thermodynamic cycle (Fig. 2) dictates that we can 
also obtain the same information by measuring the Q-V 
curves at saturating ligand concentration and ligand 
binding curves at hyperpolarizing conditions.

Although Q-V curves at zero and saturating ligand con-
centrations can be obtained, measuring ligand binding 
curves at various holding potentials is not straightfor-
ward. Recent technological developments have allowed 
us to directly estimate the ligand binding curves for cer-
tain ion channels, but this approach has not been ex-
tended to many other voltage- and ligand-activated ion 
channels. Here, we derive another thermodynamic rela-
tionship, which allows us to estimate the ligand curves  
at various potentials by using a single reference ligand 
binding curve. Accordingly, the ligand occupancy at vari-
ous voltages and ligand concentrations is:

	 X V x X V x
RT x

Q V x dVref V

V

ref
( , ) ( , )

ln
( , ) .= +

∂
∂ ∫

1 	

If we obtain ligand occupancy at a particular voltage 
and ligand concentration, X V xref( , ) , then the Q-V curves 
for the channel at various ligand concentrations will  
allow us to generate the entire ligand binding surface. 
This formulation is further illustrated in Fig. 5. Typi-
cally, ligand binding curves are measured biochemically 
using detergent solubilized protein preparations that 
lack a voltage gradient (Szallasi et al., 1999; Jordt and 
Julius, 2002; Picollo et al., 2009; Piscitelli et al., 2010; 
Yusifov et al., 2010). In such cases, Vref is 0 mV, and this 
ligand binding curve can serve as a reference. Similarly, 
using multiple ligand binding curves at different volt-
ages, we can also obtain Q-V curves at multiple ligand 
concentrations as long as a single reference Q-V curve 
is available.

These thermodynamic relationships need some quali-
fications. The median metric of net free-energy change 
of polymodal channel (Eq. 18) incorporates all the 
sources of free-energy change in the system including 
the (true) binding energies of the ligands and the rela-
tive stabilities of the voltage sensors and the pore, as 
well as interactions between them. In case the channel 
undergoes inactivation/desensitization, its free-energy 
contribution is also linearly incorporated in the median 
metric. This free-energy metric allows us to characterize 
the net energetic effect of a site-specific perturbation 
(which includes its effect on the free energies of all 
transitions accompanying the “full-scale” activation of 
the protein) without any assumptions about the nature 
and connectivity of intermediate states. Under condi-
tions, correction factors have to be considered that can 
be obtained by using open probability measurements.

Possibly the most important thermodynamic relation-
ship that we propose here is that the difference between 
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be very sensitive to ligand concentration as long as the 
total gating charge is small. Similarly, decreasing the  
total number of ligand binding sites will increase the mag-
nitude of voltage-dependent shifts in ligand binding 
curves. This implies that for proper physiological func-
tion of these polymodal channels, both the charge of 
the channel and interaction energies associated with 
the ligand binding domains have to be optimized. Thus, 
a low value of Qmax observed in many polymodal allo
steric channels may provide an evolutionary advantage, 
which renders channel gating highly sensitive to spe-
cific ligands.

A P P E N D I X  1

The median measure is able to extract the free-energy 
estimates associated with voltage-dependent and ligand-
dependent transitions, but the reason “why it works” 
needs some more clarification. Such a clarification does 
not have any direct bearing on the overall utility of the 
median transformation, but is necessary to show that 
the median transformation is not just an arbitrary trans-
formation, but has a core thermodynamic principle be-
hind it.

To understand this principle, we first consider a 
simple binary voltage-dependent transition between 
two states: Si and Sf. Si is the state of the channel with 
zero gating charge/valence and Sf is the state of the 
channel with all translocated gating charge. In such a 
binary system, monitoring the occupancy of any one 
of the states (say Sf) gives completely thermodynamic 
information about the entire system. At a particular 
voltage, when the two states are equally populated, the 
chemical energy difference between the two states is 
counterbalanced by the electrical energy difference 
between the two states. This voltage, the V1/2, is fre-
quently measured by monitoring the occupancy of the 
open state of the channel (through conductance mea-
surements). If the charge associated with the binary 
transition is known, then the electrical energy differ-
ence between the two states at V1/2 can be easily cal-
culated, which in turn yields the chemical free-energy 
difference between the two states.

In the more general case, where voltage-dependent ac-
tivation pathways are multistate, there would be several 
intermediate states between Si and Sf. Also, in channels 
that undergo inactivation, Sf might not be the final 
“open” state, but rather simply the final state (whether 
conducting or not). The parameter of interest is still the 
free-energy difference between Si and Sf. In such situa-
tions, it has been shown that Si (the state with zero gating 
charge) and Sf (the state with maximum gating-charge) 
are equally populated, not necessarily at V1/2, but at VM, 
the median voltage. This implies that at the median 
voltage, the electrical energy difference between the 
two states balances the chemical component of the 

where ligand binding processes are directly voltage de-
pendent because of the interaction of the ligand with 
the membrane electric field, Qmax for the voltage-
dependent transitions might change with ligand con-
centration, and the effect of ligand on Qmax (in addition 
to VM) must be taken into consideration in the calcula-
tions described.

The median method of interaction energy has the ad-
vantage in that it can provide an estimate of interaction 
energy in a relatively straightforward manner. Other 
methods such as the -value analysis (Chowdhury and 
Chanda, 2010) can also provide an estimate of inter
action energies, but these measurements require limiting 
conditions where the signal-to-noise ratio is low. The 
BK channels, for instance, have a large single channel 
conductance, which makes it possible to obtain these 
estimates at potentials where the PO values are <108. 
Most other ion channels have 10-fold lower single 
channel conductance, which makes such measurements 
under limiting conditions a challenging proposition. 
To eschew potential incorrect experimental application 
of our thermodynamic relationships, it must be empha-
sized that these relationships may be applied directly 
using only Q-V curves or the direct ligand binding curves 
and not the more commonly used conductance–voltage 
or dose-response curves. Channel open probability mea-
surements sample only the states that are conducting 
and thus cannot be used directly as the conjugate exten-
sives to extract the energetic details of the system, as 
described here.

Allosteric voltage-dependent ion channels such as the 
BK, HCN, and KCNQ channels are known to be acutely 
sensitive to ligands, such as calcium, cyclic nucleotides, 
PIP2, etc. However, all of these channels are believed 
to have a much lower Qmax than the Shaker KV chan-
nels (Craven and Zagotta, 2006; Ma et al., 2006; Miceli 
et al., 2012), despite having a large number of positively 
charged residues on their S4 segments. Additionally, ex-
perimental evidence has been reported wherein muta-
tion of a gating charge residue in the S4 segment of BK 
channel increased the channel’s sensitivity to calcium 
(Cui and Aldrich, 2000). This mutual reciprocity may 
initially seem to be obvious, when considering a simpli-
fied two-state process where the single transition is di-
rectly influenced by voltage and ligand. Nevertheless it 
is unclear why this inverse correlation should hold in 
multistate allosteric systems where voltage and ligand 
act through different pathways. Furthermore, quantifi-
cation of such correlations, using the simplified two-
state process–based calculations, is at best empirical. 
Our generalized thermodynamic analysis shows that if 
the interaction energy remains unchanged, changes in 
ligand concentration will cause greater shifts in the Q-V 
curves if the gating charge is reduced. In other words, 
even if the interaction energy between two pathways is 
modest, the voltage-dependent activation will appear to 
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A P P E N D I X  2

We consider here the case of a channel with a single 
pore domain that is allosterically coupled to “m” identi-
cal voltage sensors (one in each subunit). There are “n” 
binding sites per subunit (in different subunits, the ith 
binding sites have the same ligand binding affinities, 
but within the same subunit, the different sites have dif-
ferent binding affinities). Each of the voltage sensors 
have an equilibrium constant J0 and an intrinsic voltage-
dependence zJ. The pore domain has an intrinsic activa-
tion constant L0 and an intrinsic voltage dependence zL. 
The equilibrium constant of activation of voltage sensor 
(J) and that of the pore (L) are assumed to have an  
exponential voltage dependence (as described for the 
other models considered in this study). The voltage- 
dependent activation of the channel in zero calcium 
conditions is described by a 2× m-state MWC-type allo-
steric scheme. Activation of each voltage sensor facili-
tates the opening of the pore through interactions 
described by D. The ith binding site of the channel has a 
binding affinity Ki (i = 1, 2, . . . n). The ith binding site 
interacts with the jth voltage sensor, the interaction be-
ing described by Eij (j = 1, 2, . . . m), whereas its inter
action with the pore is described by the parameter Ci. 
The binding sites within the same subunit do not neces-
sarily interact equally with the pore or the voltage sen-
sors, but the same binding site in different subunits 
interact equally with the pore and the voltage sensors 
(i.e., Ci and Eij are the same for the ith binding site in 
different subunits, but Ci may or may not equal Ck, and 
Eij may or may not equal Ekj).

For this system, at zero calcium, the median metric 
would be related to the overall free-energy change of 
the system as

	 Q FV x RT J D LM
m m

max ( ) ln ,= = −0 0 0
	 (A6)

where Qmax is mzJ + zL. Under saturating calcium con-
centration, at very low voltages, all the ligand binding 
sites will be occupied to start with. Upon full translo-
cation of the gating charge, the activated voltage sen-
sors and the open pore begin to interact with the 
ligand binding sites. These interactions along with the 
change in energy caused by the voltage-dependent 
pathway will govern the free-energy change associated 
with voltage-dependent activation under saturating li-
gand concentrations. Thus, the median metric at very 
high calcium ligand concentrations will yield the fol-
lowing equation:
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m m
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Hence the displacement of the Q-V curve along the 
voltage axis, according to Eqs. A6 and A7, will be:

free-energy difference between the two states, and 
thus the total change in chemical free energy of the 
system can be directly estimated using VM and Qmax. 
The same logic would apply to ligand-dependent 
cases as well where at the median ligand activity, the 
completely unbound, and the fully bound forms are 
equally populated.

To understand the principle of median response bet-
ter, we take a different approach and consider the slope 
of the Q-V curve (generally referred to as the slope 
function) in a voltage-dependent channel. The total 
gating-charge translocated over a voltage range can be 
written as:

	 Q
Q
V

dV
V
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∂
∂−∞∫ . 	 (A1)

Similarly we write Eq. 14 as:
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We divide both Eqs. A1 and A2 with Qmax, noting that 
fractional gating charge moved, Q f , is Q Q/ max . As a re-
sult, we end up with the following pair of equations:
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The important consequence of Eqs. A3 and A4, is 
that, because ∂ ∂Q Vf /  is continuous and differentiable, 
and its infinite limit integration over voltage is unity, it 
represents a probability density function (pdf), and the 
median voltage is mean of the pdf. More interestingly, 
it can be realized that the V1/2 (the voltage at which half 
of all the gating-charges have moved) is

	 ∂

∂
=

−∞∫
Q

V
dVfV1 2 0 5/ . , 	 (A5)

which is the definition of the median of a pdf. Thus (by 
Eq. A5), V1/2 of the Q-V curve is the median of the pdf, 
and VM of the Q-V curve (by Eq. A4) is the mean of the 
pdf. In a similar manner, ln xm can be shown to be the 
mean of the pdf described by the slope of the fractional 
ligand binding curve, and ln x1/2 is the median of the 
pdf. These pdfs (the slope functions) encapsulate sev-
eral thermodynamic details, for example about cooper-
ativity (Di Cera et al., 1988; Di Cera and Chen, 1993), 
and will be left for a more detailed exposition later.
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This equation imposes a constraint on the maximum 
gating charges transferred, maximum number of ligand 
binding sites (mn), VM, and the change in the median 
ligand concentrations caused by an increase in voltage. 
The linkage relations that we describe also remain valid 
in this situation.
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