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Abstract: São Paulo is the most populous state in Brazil, home to around 22% of the country’s
population. The total number of Covid-19-infected people in São Paulo has reached more than
1 million, while its total death toll stands at 25% of all the country’s fatalities. Joining the Brazilian
academia efforts in the fight against Covid-19, in this paper we describe a unified framework for
monitoring and forecasting the Covid-19 progress in the state of São Paulo. More specifically, a freely
available, online platform to collect and exploit Covid-19 time-series data is presented, supporting
decision-makers while still allowing the general public to interact with data from different regions of
the state. Moreover, a novel forecasting data-driven method has also been proposed, by combining
the so-called Susceptible-Infectious-Recovered-Deceased model with machine learning strategies
to better fit the mathematical model’s coefficients for predicting Infections, Recoveries, Deaths,
and Viral Reproduction Numbers. We show that the obtained predictor is capable of dealing with
badly conditioned data samples while still delivering accurate 10-day predictions. Our integrated
computational system can be used for guiding government actions mainly in two basic aspects:
real-time data assessment and dynamic predictions of Covid-19 curves for different regions of the
state. We extend our analysis and investigation to inspect the virus spreading in Brazil in its regions.
Finally, experiments involving the Covid-19 advance in other countries are also given.

Keywords: Covid-19; SIRD; data-driven models; machine learning; interactive platform

1. Introduction

According to the official report published by the World Health Organization (WHO) [1],
up to November 2020, the novel coronavirus infected more than 6 million people in Brazil.
While some countries in Europe are facing the second wave of the pandemic, Brazil is
suffering the adverse impacts of Covid-19’s lasting wave while still preparing for the arrival
of a new wave hitting the country at the end of the year. In particular, in the state of São
Paulo, which is the most populous state, holding around 22% of the country’s population,
the infections have reached more than 1 million people [2].

Another disconcerting fact about the Covid-19 situation in the state of São Paulo is
that it currently accounts for 25% of all deaths in the country [2]. As a result, the state
has been the epicenter of the coronavirus outbreak in Brazil. It can be compared to other
countries, placing São Paulo (until October 2020) in the 5th and 6th positions globally with
respect to confirmed cases and deaths, thus above Germany, France and the UK [3], as one
can see in Figure 1.

Sensors 2021, 21, 540. https://doi.org/10.3390/s21020540 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6945-8376
https://orcid.org/0000-0002-1073-9939
https://orcid.org/0000-0002-0904-6561
https://orcid.org/0000-0002-5461-6463
https://doi.org/10.3390/s21020540
https://doi.org/10.3390/s21020540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020540
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/540?type=check_update&version=2


Sensors 2021, 21, 540 2 of 25

Figure 1. Comparison of cumulative number of cases and deaths per million: São Paulo state, France,
Germany and United Kingdom. Country data are from Johns Hopkins University [4].

Due to the unclear scenario of the Covid-19 pandemic in São Paulo state, the public
health system has been dealing with many challenging issues as those currently faced
by other countries such as the availability of free beds in hospitals [5,6], monitoring of
control measures [7–9] and implementation of immediate mitigation plans [10,11] to contain
the advance of coronavirus. These also include the development of effective data-driven
responses such as real-time monitoring systems and forecasting models to track and predict
Covid-19 advance in each region of the state, even under real-world circumstances that
are hard to handle in practice. For example, a drastic reduction in data updates for a few
days, because of a delay in making Covid-19 test results public as well as a retroactive
data refresh due to inconsistencies that occur when managing multiple data sources, can
result in a poorly trained model with high chances of failure when fitting Covid-19 data.
Moreover, the forecasts strongly reflect the accuracy of the collected data, as notifications
are usually recorded by date of disease confirmation rather than the date of occurrence.
In fact, more realistic predictions depend on successive updates with accurate data in
order to be effective [12–14]. Therefore, the first goal of this work is to address the issue of
inaccurate/delayed data for predicting 10-day Covid-19 curves with a satisfactory level
of accuracy.

Another issue when extrapolating epidemiological data is that the model’s parameters
are assumed to be constant, e.g., transmission rate and rate of recovery, as typically taken
by classic Susceptible-Infectious-Recovered (SIR)-based approaches [15,16]. Despite the
existence of very effective SIR variants that take the model’s parameters as constant [17],
their calibration when concomitantly assessing a great variety of regions with distinct
traits is not a straightforward task since some of the tunable values depend on local
government-regulated measures, which are difficult to get in practice, especially in the
Brazilian context. In order to circumvent the parameter issue of classic SIR-derived methods
while still allowing the mathematical model to cope with time-varying coefficients, the
use of Machine Learning strategies has been a popular choice and a trend. Indeed, recent
developments involving variable-parameter SIR variants to assess the course of Covid-19
can be found in [18–28], which include the use of effective Artificial Intelligence (AI)
strategies, for example in [18,19,29–33]. Following these recent efforts in modeling Covid-
19 dynamics from epidemic models tuned with learning mechanisms, in this paper we
propose an effective, data-driven SIR model whose parameters are fully calibrated by
temporal functions, learned from individual regressors and trained on different data
sources. The predictions are obtained using a time-dependent SIR-based model [34]
coupled with an intelligent architecture that learns the model’s parameters for each one of
the regions analyzed in our study.

A important advantage of our data-driven approach is that it only assumes as input the
raw data of infected, recovered and deaths to produce the definitive forecasts. In fact, the
current learning scheme does not require any prior knowledge of specific time-series such
as the transmission rate curve. Another relevant aspect to be observed is that the designed
technique does not impose any particular probability distribution to the epidemiological
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curves, thus avoiding the use of pre-fixed forms of data distribution such as exponential
solutions and logistic regression-based models.

Contributions The main contributions of this paper can be summarized as follows:

• The implementation of urgent responses, as listed below, to mitigate the progress of
coronavirus in São Paulo state, which is the most populous and economically active
state in Brazil, responsible for 34% of the Brazilian GDP [35].

• A novel forecasting model that combines the simplicity of SIR-based formulation
with the effectiveness of data-driven learning strategies for predicting Covid-19 cases,
deaths, recoveries and the virus reproduction number. The designed method is also
capable of addressing “the curse of delay”, as usually observed in the Brazilian reports
of cases and deaths, determining whether or not a coronavirus-related time-series
period is “well-posed”.

• Our predictive approach learns the epidemiological parameters as time-dependent
functions, which are calibrated by a recursive training approach based on an Artificial
Neural Network, therefore allowing the forecaster to fit and customize Covid-19
curves for each region of the state.

• The availability of a comprehensive Covid-19 data repository and a freely available
online platform, which has been accessed by citizens, authorities and media agencies to
track and inspect the Covid-19 progress in São Paulo state. New Covid-19 notifications
are immediately available throughout the platform, by getting fresh data published
daily by 92 city halls spread over the state (the so-called first-hand local sources), in an
attempt to reduce the delay in reporting the new cases and deaths as often observed
in the Brazilian government updates [36,37].

This paper is organized as follows: Section 2.1 introduces the problem description
and the mathematical design of our data-driven epidemiological model, while Section 2.2
describes the details of the proposed training apparatus to learn the model’s parameters.
Next, Section 3 brings the validation study of our approach and numerical experiments with
real data focused on São Paulo state and Brazilian regions. Experiments involving other
countries are also given. Finally, Section 4 summarizes our findings, observed conclusions
and future work, while in the Appendices A–C, we present our online tracking platform
used by decision-makers and other interested people in interacting, auditing and navigating
coronavirus-related data in the state of São Paulo. Implementation details as well as side
forecast results are also provided as part of the Appendices A–C.

2. Materials and Methods
2.1. Mathematical Modeling: A Time-Dependent SIR-Based Model

In this section, we present the mathematical design for the proposed data-driven
epidemiological model to forecast Covid-19 trends.

Let N be the size of the total population we intend to model. The classical SIR
model [34] is given by the following system of Ordinary Differential Equations (ODEs):

dS
dt

= −β
SI
N

,

dI
dt

= β
SI
N
− γI,

dR
dt

= γI,

(1)

where S = S(t), I = I(t) and R = R(t) are the numbers of susceptible, infected and
recovered individuals, respectively, as the time t varies. The canonical form of SIR modeling
assumes N = S(t) + I(t) + R(t), while the transmission rate β and the rate of recovery γ
are taken as real constants. The so-called basic reproduction number R0, which is one of
the key metrics in epidemiology, is defined by R0 = β

γ [21,38].
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In our mathematical approach, we introduce a new population group D(t) to represent
the total number of infected people who died. A normalized total population, N = 1,
is also taken in the ODE system (1) so that the resulting modified SIR model, namely
Susceptible-Infectious-Recovered-Deceased (SIRD) [39], is derived:

dS
dt

= −βSI,

dI
dt

= βSI − (γr + γd)I,

dR
dt

= γr I,

dD
dt

= γd I.

(2)

Parameters γr and γd account for the rates of recovered and mortality, respectively.
In our formulation, we assume that the transmission rate has a transient trajectory, i.e.,
β = β(t). As a consequence, we get a time-dependent reproduction number on the form:

R0(t) =
β(t)

(γr + γd)
S. (3)

The so-called effective reproduction number, R0(t) or Rt, is an important epidemio-
logical metric that quantifies the average number of new infections arising from a primary
infected individual in the population [25,40]. In practice, Rt measures the Covid-19 spread
rate, and it changes as either the individuals gain immunity or die. The ODE system (2) with
β = β(t) is also known as variable coefficient Susceptible-Infected-Removal (vSIR) [21],
time-varying SIR epidemic [22], or simply as time-dependent SIR model [19,23]. Table 1
lists the mathematical symbols used in this work.

Table 1. List of symbols.

Notation Description

S(t) number of susceptible at time t

I(t) number of infected at time t

R(t) number of recovered at time t

D(t) number of deaths at time t

β transmission rate

β(t) transient transmission rate

γr rate of recovered

γd rate of mortality

R0(t) or Rt time-dependent reproduction number

βnet(t) prediction for the transmission rate at time t

M pre-specified training period

p desirable forecast period

Yi and Ẏi real and predicted daily values with respect to a given target variable

The Differential Equations system (2) is numerically solved for S, I, R and D from a
given set of initial condition values, S0, I0, R0 and D0, producing the numerical solutions
S̄ = S(tn), Ī = I(tn), R̄ = R(tn) and D̄ = D(tn) for a discretized time tn with a fixed time
step ∆t. To do so, we run the Livermore Solver of Ordinary Differential Equations with
Automatic Method Switching (LSDOA) [41], which is implemented in the Python library
scipy. ODE system (2) is recurrently solved as part of an integrated training pipeline, which
learns the model’s parameters according to data signatures of each state region, as we will
discuss below.
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2.2. Learning Epidemiological Parameters: An Integrated Data-Driven Approach

In this section, we describe our hybrid machine learning pipeline to fit the epidemio-
logical parameters β(t), γr and γd by recursively refining the solution of the ODE system (2).
The proposed learning scheme relies on the solution of an inverse problem, given in terms
of the SIRD model (2) coupled with an Artificial Neural Network (ANN) to learn from the
Covid-19 data, the infected, recovered and deceased cases, denoted here as Idata, Rdata and
Ddata. The unified ANN architecture with SIRD model is illustrated in Figure 2.

We construct an ANN to predict the values of β(t) for each discrete time tn, generating
a full time-varying curve βnet(t). The proposed ANN architecture is composed of a hidden
layer, containing 10 neurons, and the Sigmoid kernel as the network activation function.
The output layer is fully connected to the hidden layer thorough a single neuron with no
bias weights, wherein the ReLU is taken to trigger the neuron. As the loss function, we
minimize the following aggregated error measure, given in terms of the model’s variables
I, R and D:

L(βnet(t), γr, γd) = lI + lR + lD (4)

where:

lI =
1
M

M

∑
n=0
‖log(Idata(tn))− log( Ī(tn))‖2

2, (5)

lR =
1
M

M

∑
n=0
‖log(Rdata(tn))− log(R̄(tn))‖2

2, (6)

lD =
1
M

M

∑
n=0
‖log(Ddata(tn))− log(D̄(tn))‖2

2 . (7)

(a) SIRD Model

(b) ANN for β(t)
Figure 2. (a) Susceptible-Infected-Recovered-Deceased (SIRD) model with its corresponding parame-
ters and (b) the ANN design for learning β(t).
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In Equations (5)–(7), M is the pre-specified training period, ‖·‖2 accounts for the
euclidean norm, and the log operator has the role of improving training performance
regardless of data scalability, as the analyzed dataset is normalized before running the
learning process.

The SIRD parameters βnet(t), γr and γd are predicted by solving the following ANN-
related optimization problem:

arg min
W,b,γr ,γd

L(βnet(t), γr, γd). (8)

In the proposed learning formulation, the trained parameters are the set of the ANN
weights {W, b}, and the outputs are the time-varying function βnet(t) and the epidemio-
logical parameters γr and γd. In our tests, we solve the ANN optimization problem (8) by
running the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [42].
Notice that the use of ANN instead of any other particular data-driven approach relies
on two basic aspects: (i) the effectiveness of neural network design in learning trends and
patterns from time-series data, and (ii) the success of more recent works on applying ANN
to forecast Covid-19 epidemiological curves as, for example, in [43,44].

Once the epidemiological parameters are estimated via the neural network architec-
ture, we solve the ODE-SIRD system (2) for the infected, recovered and deceased cases
so that a recursive learning procedure is established. More precisely, the loss function
L(βnet(t), γr, γd) is re-evaluated for the current set of SIRD parameters, and both the nu-
merical resolution of Equation (2) and the training scheme (8) are repeated until the loss
function reaches a minimum. Figure 3 illustrates this step.

Figure 3. Illustration of the parameter calibration step.

Improving Data Fitting Robustness and Accuracy

As our pipeline makes use of fresh data to learn the parameters, the untimely posting
of a few city datasets in certain time intervals may affect the training task, especially
when M varies in ODE-SIRD system (2). A low value for M may cause the training to
ignore past events, thus overfitting the most recent disease occurrences. On the other hand,
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taking a large value for M can lead the mathematical model to drop newer information.
Additionally, as the data are recurrently updated, there is no straightforward way to detect
these particular badly conditioned sub-intervals over the full time-series.

In order to improve data fitting of ill-behaved data portions while preserving the
epidemiological traits of SIRD modeling, we have adopted a moving window-based
strategy to balance the contributions for the forecasted variables over different training
intervals. More precisely, our approach takes the following steps:

1. Compute training outputs for several time windows by repeatedly solving the ODE-
SIRD system (2) for M = Mi ∈ {M1, M2, ..., Mn}, where M1 = 10, M2 = 11, ..., Mn =
30 days, calibrating the net weights, bias, and parameters γr and γd for different
simulation intervals.

2. Once the set of epidemiological curves Λ = {Ci : Ci = {Ii(t), Di(t), Ri(t)}} is ob-
tained, we compute the Mean Absolute Percentage Error (MAPE) (9), taken here as an
error assessment metric, to decide whether or not a subset of C′i s from Λ is classified as
“outlier”, i.e., a badly conditioned time-series period whose epidemiological variables
Ii(t), Di(t), Ri(t) and R0(t) highly diverge from other periods. In our tests, we discard
the ill-behaved Ci’s whose MAPE errors are greater than 20% for any of the variables
Ii(t), Di(t) or Ri(t).

3. Finally, the remaining trained curves are used to compute the definitive forecasts using
the numerical solution of the SIRD system for t ∈ [0, M + p], where p is the desirable
forecast period. This is performed so as to balance the well-behaved contributions in
the set of ODE solutions Λ, taking the mean of these outputs to determine Ii(t), Di(t),
Ri(t) and R0(t).

The rationale behind the above-described outlier filtering scheme is that it prevents
bad training results that interfere with the forecast quality. Indeed, the filtering acts as
an adaptive data-driven classifier, identifying badly conditioned time window periods
over the full time-series while still ensuring a better data fitting performance and smooth-
ing. Further, as the effective reproduction number R0(t) drives the slope of the infection
curve (if R0(t) < 1, the number of new infections in the next generation will be reduced,
while R0(t) > 1 holds the opposite situation), it is expected that different successful
training results produce similar estimations for the true observed data of I, D and R so
that the learning process will take into account only well-behaved parameters to estimate
the definitive R0(t) curve. Figure 4 illustrates the filtering approach results, while the
implementation details are given in Appendix C.

(a) Pipeline overview.
Figure 4. Cont.



Sensors 2021, 21, 540 8 of 25

Outlier
Removal

Filtered
Windows

Definitive
Forecast

Training
Windows

(b) Training Windows

Outlier
Removal

Filtered
Windows

Definitive
Forecast

Training
Windows

(c) Discarded windows

Outlier
Removal

Filtered
Windows

Definitive
Forecast

Training
Windows

(d) Acceptable matches

Outlier
Removal

Filtered
Windows

Definitive
Forecast

Training
Windows

(e) Definitive prediction

Figure 4. (a) The complete filtering pipeline. (b) Training outputs for different time windows. (c) The selected ill-behaved
training periods (discarded trainings). (d) Training results that have passed the error criteria for good training. (e) Averaged
results as the definitive prediction.

3. Results and Discussion
3.1. Data Organization

In order to track the daily evolution of Covid-19 while collaborating with the decision-
makers of the Brazilian public body, we rearranged the collected data into 22 large regions
corresponding to each Regional Health Department of the state (see Figure 5a). Particularly,
due to the huge urban sprawl around São Paulo city, state government has grouped the
so-called Greater São Paulo Region into seven sub-regions (São Paulo North, São Paulo
Southeast, São Paulo Southwest, São Paulo Northeast, São Paulo Metropolitan, São Paulo
East and São Paulo West), as illustrated in Figure 5b. As a result, for each one of the
22 Health Departments, time-series for confirmed cases and deaths were obtained, with
entries ranging from 1 April to 31 October, i.e., a seven-month period of daily records.
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(a) (b)

Figure 5. Sub-region maps of São Paulo state: (a) State map showing the 22 state sub-regions, and (b) São Paulo
metropolitan region.

3.2. Metrics

In our experiments, the forecasts are assessed by applying the Mean Absolute Percentage
Error (MAPE), a classic evaluation metric widely used in time-series analysis [45,46]:

MAPE(Yi, Ẏi) =
1
n

n

∑
i=1

∣∣∣∣Yi − Ẏi
Yi

∣∣∣∣× 100, (9)

where Yi and Ẏi account for the real and predicted daily values of any target variable as
forecasted by our data-driven model. In our assessments, we follow [46] so that a threshold
of 10 % is established for MAPE in order to ensure a “satisfactory level” of accuracy
regarding the predictive performance.

Another evaluation metric taken in our qualitative analysis is the Normalized Root
Mean Square Error (NRMSE), computed according to the following expression [47]:

NRMSE(Yi, Ẏi) =
1
n

√
∑n

i=1(Yi − Ẏi)2

Y
, (10)

where Y determines the average of the observed data.
Finally, we also make use of the Variance to assess how the trained parameters can

affect the reproduction number R0(t) as the training interval i in the SIRD model varies.
Such statistical metric is calculated for each time tj of the training period by applying the
following formula:

s2
j =

1
nj − 1

nj

∑
i=1

(R(i)
0 (tj)− R0(tj))

2 , (11)

where R(i)
0 (tj) represents the estimated value of R0(t) at the discretized time tj.

3.3. The Proposed Forecasting Approach: Main Features and General Capabilities
3.3.1. Badly Conditioned Samples × Data Fitting Robustness and Accuracy

As previously discussed in Section 2.2, the amount of data used to calibrate the
model’s parameters can impact the Covid-19 estimations, such as the actual infections
I(t) and reproduction number R0(t), as specific time-series periods are made up of badly
conditioned data. In order to show how such an issue can influence the forecasts, and
how our moving window-based training scheme can fix it, we present in Figure 6 both the
R0(t) and infection I(t) curves in the period when there were no full updates of Covid-19
data in several São Paulo state regions, as pointed out by the Brazilian press news [48].
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Notice from the results with badly conditioned data that although the predicted values
produced large peaks and valleys in both R0(t) and I(t) curves, the definitive forecasts
(in red) were successfully fitted, keeping very close to the true data. Indeed, even in more
drastic cases involving bad behaving data (see Greater SP Southeast and Marília regions),
our data-fitting approach performed well, ensuring the correct tendency of the real curves.
Finally, it can be seen that the reproduction number R0(t) dictated the slope of infection
curves, as expected.

(a) R0(t) for Greater São Paulo North region. (b) I(t) for Greater São Paulo North region.

(c) R0(t) for Greater São Paulo Southeast region. (d) I(t) for Greater São Paulo southeast region.

(e) R0(t) for Marília region. (f) I(t) for Marília region.

Figure 6. Cont.
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(g) R0(t) for Ribeirão Preto region. (h) I(t) for Ribeirão Preto region.

Figure 6. Reproduction number R0(t) and infected I(t) predictions for the mean, minimum and maximum forecasted
values as the training window moves, i.e., by varying M = 10, 11, ..., 40 in Equation (2) and training the parameters in a
coupled and recursive way. Red lines establish the mean predicted values after the full learning procedure is finished, while
the vertical dotted lines split the training and forecasting periods.

The forecasting results from Figure 6 were also assessed via quality metrics. Besides
the well-established MAPE score, we take Equation (11) as a popular assessment metric
to gauge data variability and inconsistency level. More precisely, given a fixed point tj
in the simulation domain, we compute the variance sj with respect to all i samples of

R(i)
0 (tj), generated as the i-th training window varies during the full learning process. As a

result, if the variance sj is low, the trainable infected values for all i indices will follow the
same common tendency, which means that the node tj does not hold badly conditioned
data. On the other hand, if the variance is high, then there are training intervals i probably
inconsistent and badly behaved. From Table 2, one can check that our training approach
delivered low error measurements, producing very stable estimations with low prediction
variations, as measured by the variance. For example, the largest MAPE error was around
4%, while the highest value for the variance to the predicted effective reproduction number
R0(t) was 1.478.

Table 2. Variance computed during the training process, and average MAPE for active cases (infected)
with respect to Figure 6 results.

Region Variance Norm (||s2||2) MAPE for Active Cases (%)

Greater São Paulo North 0.098 2.658

Greater São Paulo Southeast 1.478 4.414

Marília 0.378 1.928

Ribeirão Preto 0.063 3.894

3.3.2. The Transient Behavior of Transmission Rate

As discussed in Section 2.2, an important strategy adopted in our mathematical ap-
proach is the use of a simple, but effective, Artificial Neural Network (ANN) for estimating
the transmission rate β in a transient context.

To better emphasize the neural network importance in ensuring a transient behav-
ior to the transmission rate, we compared the results with/without the ANN so that a
transient/constant behavior for β was achieved. In particular, we selected two distinct
regions: a small one (Presidente Prudente) and the biggest region of the São Paulo state
(São Paulo city).

Figure 7a,c shows the infected curves. Blue lines give the estimation for transient
β, while the orange curves represent the homogeneous behavior for β. From the plotted
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curves, we can confirm that the best predictions for the number of the infected are those
using the βnet(t) for both regions. For the effective reproduction number R0(t), Figure 7b,d
displays the importance of taking into account the transient form of β for a more accurate
estimation. Notice that by assuming a constant value for β, one can get R0(t) with a low
variation and adjustability, especially in the test period, as no significant changes have
been found for the reproduction number. Finally, we measure in Figure 8 the effective
impact of transience on β, by assessing the MAPE for the number of infections in the same
time period as considered in Figure 7. From the reported scores, one can see that there
was a substantial reduction in the MAPE errors as the transmission rate β was estimated
from a transient way. Moreover, by assuming a data-driven β learned via an intelligent
architecture such as ANN, one can verify that β = βnet(t) is not only suitable to improve the
prediction accuracy of the SIRD-based formulation, but it also improved the well-known
SIR model. In fact, both SIR and SIRD when coupled with a learned transmission rate
βnet(t) performed similarly, producing much lower prediction errors than the case for
which β is taken as a non-learned function.

(a) Active cases (b) R0(t)

(c) Active cases (d) R0(t)
Figure 7. Infected and effective reproduction number using constant and transient values for β: São Paulo region (first row)
and Presidente Prudente region (second row).
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Figure 8. Comparison of MAPE errors for constant and transient values of β: SIR and SIRD models.

3.3.3. Invariance to Training Periods

This section is dedicated to confirming that our approach can accurately predict
accumulated, recovered and deceased cases regardless of the data training period. In order
to verify such a method’s feature, we follow the usual subdivision of the São Paulo state to
group the whole population into four main regions: Coastal, Greater São Paulo, West, and
East areas, as illustrated in Figure 9.

Figure 9. São Paulo state subregions.

As our trained model can estimate distinct epidemiological metrics, in this experiment
we focused on the pandemic parameters for which the MAPE can be properly computed,
i.e., accumulated, recovered and deceased cases. In our quantitative analysis, we trained
our approach by taking a full period of M = 30 consecutive days to predict the next
10 days of the aforementioned variables over three different forecasting periods: August,
September and October, as listed in Table 3. One can check from the tabulated scores that the
predictions were quantitatively accurate and stable since MAPE errors were substantially
low for all regions. The maximum MAPE was observed for recovered cases in Greater
São Paulo for the first period, while both accumulated and deceased cases delivered low
errors, even the biggest measured ones, as reported to death curve of East’s first period
(3.465) and Coastal’s second period for Covid-19 cases (1.536). Therefore, our data-driven
approach turned out to be stable and robust over different prediction periods, even with a
small amount of data taken to generate the training set: a 3-to-1 ratio with respect to the
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full test set, i.e., 30 past days for training the model, and 10 days for future predictions. In
fact, in Table 4, we show that the proposed learning approach still remained unchanged
and consistent as the window size of the training set changed.

Table 3. MAPE errors for different forecasting periods.

Region MAPE Error
for Cumulative Cases (%)

MAPE Error
for Cumulative

Recovered Cases (%)

MAPE Error
for Cumulative

Deceased Cases (%)

15 August 2020–24 August 2020

Coastal 1.513 0.951 1.046

Greater São Paulo 0.753 3.731 1.394

Interior (East) 0.454 1.491 3.465

Interior (West) 1.085 1.826 2.618

15 September 2020–24 September 2020

Coastal 1.536 0.347 2.503

Greater São Paulo 0.598 0.344 0.926

Interior (East) 0.937 0.461 1.157

Interior (West) 1.277 0.753 0.603

15 October 2020–24 October 2020

Coastal 0.533 0.249 0.268

Greater São Paulo 0.105 0.438 0.776

Interior (East) 1.413 0.886 0.236

Interior (West) 0.832 1.097 0.881

Table 4. MAPE errors for Greater São Paulo region as the size of the training window varies.

Training Windows MAPE Error
for Cumulative Cases (%)

MAPE Error
for Cumulative Deceases (%)

MAPE Error
for Cumulative Recovereies (%)

10-30 days 0.285 0.753 0.293

10-40 days 0.762 0.928 0.321

10-50 days 1.179 0.894 0.592

3.4. Quantitative and Qualitative Analyses

We now discuss the forecasting results provided by the proposed methodology under
10-day time horizons for all the São Paulo regions. Additionally, we extend our analysis to
better understand and discuss both the past pandemic situation and the rise of a second
wave in the whole country, as we have recently observed from the most current data.
In such particular case, the Brazilian dataset has been downloaded directly from the
government official source [2], and it covers all the five regions of the country (see Figure 10
for an illustration). From the available data, we performed our analysis in terms of the
following Covid-19 indicators: accumulated, recovered and deceased cases. These data,
together with new hospitalizations, have been the main pandemic metrics used by the
public body to assess the Covid-19 scenario in São Paulo and Brazil [2]. Finally, it is worth
mentioning that, in synergy with the efforts made at both state and national levels, we
have continuously collaborated with different press conglomerates and public authorities,
especially in the last few weeks, where a substantial increase in new cases of Covid-19 and
hospitalizations have been firstly warned by our data analysis tool—Info Tracker (see [49–51]
for a few English news published by Brazilian media agencies).
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Figure 10. Brazilian regions.

3.4.1. São Paulo State Regions

Firstly, we provide in Table 5 both MAPE and RMSE measurements for the São Paulo
state regions. As one can verify, all the MAPE errors were lower than 1, except the Coastal
region, where a MAPE of 1.2 was calculated. Regarding RMSE, regions presented very low
errors, whose values were on the order of 10−2 on average, thus attesting to the high-quality
performance of our hybrid SIRD enhanced by a machine learning-based approach.

Table 5. Tabulated errors for the predictions depicted in Figure 11 (São Paulo state regions).

Region
Cases Recoveries Deaths

MAPE NRMSE MAPE NRMSE MAPE NRMSE

Costal 0.325 0.004 0.907 0.010 1.200 0.012

Greater São Paulo 0.680 0.007 0.371 0.004 0.714 0.007

Interior (East) 0.818 0.010 0.592 0.007 0.312 0.004

Interior (West) 0.376 0.005 0.626 0.007 0.826 0.009

State of São Paulo 0.219 0.003 0.455 0.005 0.475 0.005

For completeness, we have plotted the results for the São Paulo state in Figure 11. In
particular, comparisons between real data and our estimates for accumulated, recovered
and deceased cases are presented in the first, second and third columns in Figure 11. To
better emphasize the Covid-19 transmissibility in the state, the reproduction number was
also displayed in the last column. Considering the prediction intervals from test periods,
we can see that the proposed model reached a very accurate agreement between the true
data and the forecasts of accumulated, recovered and deceased cases in São Paulo state.
Another important aspect to be noted is that our model accurately fits the real data in the
training interval, regardless of the epidemiological indicator.
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Figure 11. Forecasting results for São Paulo state.

3.4.2. Brazilian Regions

The next experiment comprised the Brazilian case, where predictions of confirmed,
recovered and deceased cases have been delivered for all the five regions of the country.
In terms of quantitative assessment, Table 6 reports the MAPE and RMSE, where one can
verify that the predictions for the accumulated, recovered and deaths were numerically
consistent and reliable. Additionally, we have plotted the results for Brazil in Figure 12,
including the predictions of confirmed, recovered and deceased cases. Similar to the São
Paulo state case, we also provide R0(t). Particularly, well-behaved curves were produced
considering the extrapolation of real data for the whole country, thus demonstrating the
effectiveness of the proposed method in dealing with a huge amount of Covid-19 data.

Table 6. Tabulated errors with respect to predictions depicted in Figure 12 (Brazilian regions).

Region
Cases Recoveries Deaths

MAPE NRMSE MAPE NRMSE MAPE NRMSE

Midwest 1.169 0.014 0.989 0.013 0.856 0.009

North 0.889 0.010 0.282 0.003 0.173 0.003

Northeast 0.244 0.003 0.342 0.005 0.487 0.005

South 4.413 0.047 7.111 0.072 0.397 0.004

Southeast 0.815 0.009 0.675 0.009 0.427 0.005

Brazil 0.323 0.004 0.638 0.008 0.273 0.003
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Figure 12. Forecasting results for Brazil.

3.4.3. The Second Wave of Covid-19: Investigations in Brazil and Other Countries

In this section, we discuss our predictions considering the rise of a second wave of
coronavirus hitting Brazil. Particularly, one important aspect of our tracking platform is its
capability for dealing with real data resulting possibly from a second wave of Covid-19, as
already pointed out by our warnings, discussed at the beginning of Section 3.4. Moreover,
with the eminence of a fast acceleration in new cases, as reported in European countries
in the last months, very recent papers relying on SIR-based models have been presented
in the literature (e.g., [52–55]). Therefore, following the aforementioned works, we make
use of our SIRD + machine learning methodology for both purposes: (i) analyzing the
historicity of the pandemic’s most recent past in Brazil, and (ii) supporting the state and
federal government to implement immediate decisions in order to contain the advance of
coronavirus in the country.

A warning, real case involving the predictions resultant from our approach is depicted
in Figure 13. First, one can verify that the trajectory, as well as the real values for new
infections and deaths in both training and prediction periods have been successfully
captured. Second, the high upward trend of new infection curves suggests that both São
Paulo and Brazil have recently suffered from substantial growth in new cases and deaths.
Note that the new infections in the state of São Paulo jumped from 70,000 on 14 November
to 110,000 on 3 December: an increase of 57% in a short period of 19 days. When inspecting
the Brazilian curves, a similar finding was observed: a jump from 415,000, on 14 November,
to around 630,000 in early December, i.e., a worrying increment of 51% in just three weeks.
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(a) São Paulo state

(b) Brazil

Figure 13. Infected and deaths for São Paulo state and Brazil over recent data. The high increase in
both indicators suggests the eminence of a “second wave” of coronavirus hitting the country and
starting in the second half of November.

To provide further evidence concerning the feasibility of the current methodology, we
have investigated the spread of Covid-19 for three different data sets: Italy, Portugal and
Ukraine. The analysis was conducted considering the data provided by Johns Hopkins
University [4], from 25 October to 3 December. Particularly, according to Figure 14, we can
observe that our methodology was able to fit the real data for all the European countries
concerning the total number of infected and deceased. Therefore, these results confirm that
our SIRD model enhanced by a learning scheme can be successfully applied to inspect the
Covid-19 spread in several regions of the world.

(a) Italy

Figure 14. Cont.
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(b) Portugal

(c) Ukraine

Figure 14. Infected and deaths for Italy, Portugal and Ukraine over recent data.

4. Conclusions and Future Work

In this paper we proposed different data-driven responses against the Covid-19
outbreak for São Paulo state and Brazil. These include a free, interactive platform for
tracking coronavirus-related data, a novel SIRD-based mathematical model, which learns
epidemiological parameters to best fit the corresponding data of each analyzed region,
and a comprehensive experimental evaluation of both past and the current situation of the
pandemic in Brazil and the state of São Paulo.

As discussed in Section 3.4 and Appendix A, our tracking platform—Info Tracker—
has supported public authorities, society and press agencies in better understanding and
exploiting Covid-19 data, by intuitively interacting with them through a simple and easy-to-
communicate interface. Regarding our second contribution against the novel coronavirus,
i.e., a functional forecasting model that works properly even when there are delays in case
notifications, we have found that the predictions matched the true data both qualitatively
and quantitatively. As shown in our battery of tests, our unifying SIRD + machine learning
approach produced considerably low MAPE and RMSE errors, as shown in Tables 5 and 6.
Indeed, MAPEs were less than 1 in almost all the measurements. Another important aspect
noted in our experiments is that the trained forecaster turned out to be very effective and
robust when dealing with badly conditioned data, as shown in Section 3.3.1 (see the listed
variances in Table 2).

We discussed in Section 3.4.3 how our predictions can be successfully used to assess
the impact of a second Covid-19 wave starting in São Paulo and Brazil, warning about
the sudden growth of new cases of coronavirus so as to put health authorities and the
country’s population on alert for the coming weeks. Additionally, we have discussed in
Section 3.4.3 the applicability of our data-driven model for predicting the Covid-19 spread
in Italy, Portugal and Ukraine.

As future work, we plan to incorporate new visualization and interactive features into
Info Tracker in addition to the study of population mobility between intra-geographical
areas as part of our mathematical approach. These are useful, but difficult-to-obtain, data
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in the Brazilian context, which could improve the modeling of the Covid-19 spread in terms
of identifying the spatial–temporal dynamic of the disease flow, similar to [56].

Finally, it is important to point out that several papers are dealing with forecasting
of Covid-19 based on learning strategies. In particular, Chen et al. [19] combined Finite
Impulse Response (FIR) filter with a ridge regression (regularized least-squares), while
in [44] the authors adopted a Genetic Algorithm to estimate the infection rate, delivering a
hybrid scheme which combines an ANN and a Fuzzy logic model to forecast Covid-19 data.
New studies are welcomed to provide insights concerning the pros and cons of data-driven
models. Therefore, as future work, we intend to compare our current methodology with
different learning methods to forecast the Covid-19 spread.
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Appendix A. SP Covid-19 Info Tracker

Aiming at facing the pandemic scenario in São Paulo state, we designed an in-
teractive platform for real-time monitoring and predictive analysis of Covid-19 data.
Our tracking system, called SP Covid-19 Info Tracker (Platform website (in Portuguese):
http://www.spcovid.net.br), is available to civil society, press agencies, government poli-
cymakers and the scientific community, and it provides accurate information and detailed
reports about the daily progress of coronavirus in more than 90 cities spread across the
state. Figure A1 illustrates the released platform.

The data are collected at the municipal level, i.e., daily taken from the epidemiological
bulletins as provided by the 92 city halls monitored by our project [57], which are the
primary sources of case notifications in Brazil [37]. In terms of representativeness, these
cities together comprise “a universe” of 35 million people, i.e., the same as Poland’s
population, or twice as large as the Netherlands’ residents. Another important aspect to be
noted is that São Paulo is the most populous state in Brazil, and it has been the epicenter of
the pandemic in the country. Until the end of November 2020, the state corresponded to
more than 20% of total confirmed cases in Brazil [2].

Our motivation to design a new data repository from first-hand sources comes from
the necessity of delivering rapid responses against Covid-19, providing not only more
accurate records of new cases and deaths but also the hospitalizations, suspected cases,
testing levels, social isolation rates and deaths under investigation, among other pandemic-
related indicators that have not been made available by state and federal bodies. Moreover,
the use of “fresh” data as promptly published by municipal sources allows us to anticipate
the virus spread estimation in the state, thus mitigating the Brazilian government’s delay
in updating their reports, as the notifications can take several days or even weeks to be
inserted into the central repository, as reported by the Brazilian media [36,37,58]. Once
the data are collected, they are made available day after day on the platform, including
holidays and weekends. This process has been carried out since 20 March 2020 in an effort
to keep the data as accurate as possible.

www.spcovid.net.br
https://github.com/CSSEGISandData/COVID-19
https://covid.saude.gov.br
https://covid.saude.gov.br
http://www.spcovid.net.br
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Similar to the efforts made by the scientific community to overcome Covid-19 in other
social contexts of technology use, such as collaborative learning platforms [59] and real-time
social-distancing detection systems [60], we focus on promoting digital inclusion through
our interactive platform, bringing up coronavirus-related issues like data transparency and
epidemiological statistics to those interested in understanding the pandemic’s course in
São Paulo and, consequently, in Brazil. The Info Tracker platform had over 120,000 visits
in 6 months (since June 2020). Finally, our online system has also been used by media
agencies to audit municipal governments and other data transparency issues (see the list of
news: http://www.spcovid.net.br/notícias).

Figure A1. SP Covid-19 Info Tracker Platform (http://www.spcovid.net.br): First page view.

Appendix B. Qualitative Results for São Paulo State and Brazilian Regions

As previously observed from the results of São Paulo state (see Figure 11), our pre-
dictions can be considered appropriate for Coastal, Greater São Paulo, Interior East and
West regions, as depicted in Figure A2. Even in the more drastic case of deaths as shown in
the Coastal region, where the reproduction number jumped from 0.5 to 0.9, the method
satisfactorily estimates the total number of fatalities. Finally, we present a similar analysis
for the five regions of Brazil in Figure A3. From the plotted curves, it can be seen that
no matter what kind of signature the reproduction number has (increasing or decreasing,
lower or higher 1.0), our approach correctly captured the true data in almost all the cases.

(a) Coastal

Figure A2. Cont.

http://www.spcovid.com.br/not%C3%ADcias
http://www.spcovid.net.br
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(b) Greater São Paulo

(c) Interior (East)

(d) Interior (West)

Figure A2. Forecasting results covering all the main regions of São Paulo.

(a) Midwest region

(b) North region

(c) Northeast region

Figure A3. Cont.
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(d) South region

(e) Southeast region

Figure A3. Forecasting results for Brazil’s regions.

Appendix C. Algorithm

Algorithm A1: Parameter Calibration and Forecast Process
Data: # of infected, # of recovered, # of deceased, Mmin, Mmax, tolL, tolMAPE
Result: Predictions of S̄, Ī, R̄ and D̄

1 for M = Mmin,..., Mmax do
2 Set t0 =< current day > − < Mdays >
3 Set S0 = Sdata(t0)
4 Set I0 = Idata(t0)
5 Set R0 = Rdata(t0)
6 Set D0 = Ddata(t0)
7 while L(βnet, γr, γd) is greater than tolL do
8 Calculate β(t) using ANN
9 Solve (2) numerically for tn ∈ [0, M]

10 Evaluate (4)
11 Adjust the ANN weights and bias, γr and γd to minimize the error
12 end
13 Calculate the predictions by solving (2) numerically for tn ∈ [0, M + p] using

the trained parameters
14 Evaluate the MAPE error (9) between Idata and Ī on t ∈ [0, M]
15 end
16 Discard results whose MAPE error is greater than tolMAPE and calculate the

average of the remaining results
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