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Foraging is a vital behavioral task for living organisms. Behav-
ioral strategies and abstract mathematical models thereof have
been described in detail for various species. To explore the link
between underlying neural circuits and computational principles,
we present how a biologically detailed neural circuit model of
the insect mushroom body implements sensory processing, learn-
ing, and motor control. We focus on cast and surge strategies
employed by flying insects when foraging within turbulent odor
plumes. Using a spike-based plasticity rule, the model rapidly
learns to associate individual olfactory sensory cues paired with
food in a classical conditioning paradigm. We show that, with-
out retraining, the system dynamically recalls memories to detect
relevant cues in complex sensory scenes. Accumulation of this
sensory evidence on short time scales generates cast-and-surge
motor commands. Our generic systems approach predicts that
population sparseness facilitates learning, while temporal sparse-
ness is required for dynamic memory recall and precise behavioral
control. Our work successfully combines biological computational
principles with spike-based machine learning. It shows how
knowledge transfer from static to arbitrary complex dynamic con-
ditions can be achieved by foraging insects and may serve as
inspiration for agent-based machine learning.
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Navigating toward a food source during foraging requires
dynamical sensory processing, accumulation of sensory evi-

dence, and appropriate high-level motor control. Navigation
based on an animal’s olfactory sense is a challenging task due
to the complex spatiotemporal landscape of odor molecules. A
core aspect of foraging is the acquisition of sensory cue sam-
ples in the natural environment, where odor concentrations vary
rapidly and steeply across space. Experimental access to the
neural substrate is challenging in freely behaving insects. Bio-
logically realistic models thus play a key role in investigating
the relevant computational mechanisms. Consequently, recent
efforts at understanding foraging behavior have focused on iden-
tifying viable computational strategies for making navigational
decisions (1).

An odor plume is often considered a volume wherein odor
concentration is generally above some behavioral threshold.
At macroscopic scales and in a natural environment, however,
plumes are turbulent (2, 3). In turbulent conditions, a plume
breaks up into complex and intermittent filamentous structures
that are interspersed with clean air pockets or below behavioral-
threshold concentration patches (4, 5). The dispersing filaments
form the cone-like shape of the macroscopic plume, where the
origin of the cone yields the position of the odor source. When
entering the cone, flying insects encounter odor filaments as
discrete, short-lived sensory events in time.

Several features have been derived from the statistics of an
odor plume that provide information regarding the location of
the odor source (3, 4). The mean concentration varies smoothly
in lateral and longitudinal directions of time-averaged (and
laminar) plumes. However, for behavioral strategies, animals
cannot afford the time it takes to obtain stable macroscopic esti-
mates of mean concentrations (2). Hildebrand and colleagues

(6) proposed the time interval between odor encounters as an
informative olfactory feature, while ref. 3 suggested intermit-
tency, the probability of the odor concentration being above
some behavioral threshold, as the relevant feature. However,
similarly to estimating mean concentration, acquiring a suffi-
cient number of samples for stable estimates of these quanti-
ties exceeds the time typically used to form behavioral deci-
sions (2). Hence, obtaining time-averaged quantities is not an
optimal strategy to guide navigational decisions, as concluded
by ref. 7.

Most animals perform searches at large distances from the
odor source, where the intermittency of plumes poses a more
severe problem, as available sensory cues become more sparse
in space and time. Thus, strategies that exploit brief, local-
ized sensory cues for navigation have been studied by several
groups. One strategy for medium- and long-range navigation that
has consistently been observed across species of flying insects
emerges from a sequence of chained sensorimotor reflexes: cast-
ing and surging (8). Encountering a whiff of odor triggers an
upwind surge behavior, during which the insect travels parallel
to the wind direction. After losing track of the plume, it evokes
a cross-wind cast behavior, in which a flight path perpendicular
to the direction of airflow is executed. Performing repeated casts
by U-turning allows the insect to reenter and locate the plume
in order to trigger the next upwind surge (8–10). As the subject
approaches the source, it increasingly makes use of visual cues
for navigation as the plume narrows down (8).

A number of studies have proposed abstract mathematical
models for optimal search algorithms that assumed different
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types of relevant navigational cues. The infotaxis method pro-
posed in ref. 11 depends on extensive memory and priors regard-
ing a plume’s structure. To the contrary, in ref. 8, only local
cues are used. A standard algorithm for navigational problems
in robotics is simultaneous localization and mapping (SLAM),
which has been used in ref. 12 to study olfactory navigation in
bumblebees. An algorithm that works without space perception
has been proposed by ref. 13 using a standardized projection
of the probability of source position and minimization of a
free energy along the trajectory. Finally, the work of ref. 10
compares several models and shows that it is difficult to discrimi-
nate between different models based on behavioral responses. A
recent work (7) using information-theoretic analysis shows that
plumes contain both spatial and temporal information about the
source’s position.

While all of these previous mathematical methods for olfac-
tory search algorithms have proven to successfully solve this task
based on the respective assumptions, they share the same major
drawback: None of them uses the computational substrate of
the brain, spiking neurons and networks thereof. Instead, all
methods make heavy use of symbolic math and advanced mathe-
matical concepts that are not available to the biological brain. It
is further unclear how and to what extend these methods could
be implemented or learned by the nervous system. Additionally,
the problem of navigation and foraging is often considered as an
isolated task, independent from sensory processing.

Our approach distills recent experimental results to formu-
late a biologically plausible and detailed spiking neural-network
model supporting adaptive foraging behavior. We thereby take
advantage of the rapidly accumulating knowledge regarding
the anatomy (e.g., refs. 14–16) and neurophysiology (e.g., refs.
17–19) of insect olfaction and basic computational features (20,
21). We follow the idea of compositionality, a widely used con-
cept in mathematics, semantics, and linguistics. According to this
principle, the meaning of a complex expression is a function
of the meanings of its constituent expressions [Frege principle
(22)]. In the present context of foraging and navigation, this
means dynamically recombining memories of individual sensory
cues present within a plume.

Results
We approached the problem of foraging by decomposition into
four components: first, sensory processing with temporal sparse
and population sparse coding in the mushroom body (MB); sec-
ond, associative learning for assigning a valence to individual
odor identities; third, the time-dependent detection of valenced
cues resulting from encounters of discrete odor filaments to pro-
vide an ongoing and robust estimate of sensory cue evidence;
and fourth, the translation into online motor command signals
to drive appropriate behavior.

For sensory processing, we used a three-layer spiking neu-
ral network model of the insect olfactory pathway (Fig. 1).
The generic blueprint of the insect olfactory system is homol-
ogous across species and comprises three successive processing
stages (see Materials and Methods for details): the periphery with
olfactory receptor neurons (ORNs), the antennal lobe (AL),
and the MB. Excitatory feed-forward connections across layers
from ORNs to projection neurons (PNs), from ORNs to local
interneurons (LNs), and from PNs to the MB Kenyon cells (KCs)
are fixed. Lateral inhibition within the AL uses fixed synaptic
weights from LNs to PNs. For neuron numbers and their connec-
tivity patterns, we here rely on the adult Drosophila melanogaster,
where anatomical knowledge is most complete (14, 23, 24). A sin-
gle MB output neuron (MBON) receives input from all KCs and
plasticity at the synapses between KCs, and the MBON enables
associative learning (25, 26).

Sparse Coding in Space and Time. The olfactory system transforms
a dense olfactory code in the AL into a sparse stimulus code at

Fig. 1. Spiking network model of the insect olfactory system. Olfactory
receptor neurons (N = 2,080) at the antenna bind and respond to volatile
odorant compounds. ORNs expressing the same (1 of 52 different) genetic
receptor type converge onto the same glumerus in the AL. Each of the 52
glomeruli comprises one PN and one LN. Each LN forms lateral inhibitory
connections with all PNs. PNs randomly connect to a large population of
KCs (N = 2,000), where each KC receives input from, on average, 6 random
PNs. All KCs project to a single MBON via plastic synapses.

the MB level. In the large population of KCs, a specific odor stim-
ulus is represented by only a small fraction of all KCs (population
sparseness), and each stimulus-activated KC responds with only
a single or very few action potentials (temporal sparseness). In
our model, temporal sparseness is achieved through the cellu-
lar mechanisms of spike-frequency adaptation (SFA; refs. 21, 27,
and 28) implemented at two levels of the system.

ORNs show clear stimulus-response adaptation that has been
attributed to the spike-generating mechanism (29). Based on this
experimental evidence, we introduced a slow and weak SFA con-
ductance in our model ORNs (Materials and Methods). At the
level of the MB, KCs have been shown to express strong SFA-
mediating channels (18). This is matched by the SFA parameters
of our model KCs (Materials and Methods; ref. 21). As an effect of
cellular adaptation in ORNs and KCs, odor stimulation (Fig. 2A)
results in temporally precise and adaptive responses across all
layers of the network (Fig. 2B). The effect of SFA implemented
in ORNs is transitive and, thus, carries over to the postsynaptic
PN and LN populations in agreement with experimental obser-
vations across species (30–33). SFA has the additional advantage
of inherently reducing the variability of spiking output (28, 34).

In the KC population, the background firing rate is very low
(∼ 0.4 Hz). This is partially due to the outward SFA conductance
and in agreement with experimental results (17). The KC popu-
lation response is highly transitive where individual responding
cells generate only a single or very few response spikes shortly
after stimulus onset. This is in good qualitative and quantita-
tive agreement with the temporal sparse KC spike responses
measured in various species (17, 30, 35).

Population-sparse stimulus encoding at the level of KCs is
supported by two major factors. First, the sparse divergent-
convergent connectivity between the PNs and the 20-times-larger
population of KCs is the anatomical basis for sparse odor
representation (15, 20, 21, 36) (SI Appendix, Table S1). Sec-
ond, lateral inhibition mediated by the LNs in the AL (37)
facilitates decorrelation of odor representations (37) and con-
tributes to population sparseness (21). The sparse code in the

Rapp and Nawrot PNAS | November 10, 2020 | vol. 117 | no. 45 | 28413

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009821117/-/DCSupplemental


0s 3s 0s 3s

500ms
CS-

Trial 1 Trial 2

US US

500ms
CS+

DIFFERENTIAL CONDITIONINGA

(in
pu
t)

(s
ub
se
ts
)

B

1 5 10 15 20
trial

0

20

40

60

80

100

co
rr

ec
t r

es
po

nd
er

s 
[%

]

CS+
CS-

C

D
0 10 25 50

# trials

0

20

40

60

80

100

ac
cu

ra
cy

 [%
]

mean
s.e.m.

Fig. 2. Rapid associative learning expressed in neuronal plasticity and CR
behavior. (A) Sketch of differential conditioning protocol. In appetitive tri-
als, a first sensory cue (conditioned stimulus; CS+; orange) is paired with
a reward (unconditioned stimulus; US). In aversive trials, a second sensory
cue (CS−; blue) is paired with a punishment. Both trial types are presented
randomized within blocks (Materials and Methods). (B) Sensory input and
neuronal responses across all four circuit layers (ORN, AL, MB, and MBON)
in response to a CS+ odor presentation during the 10th training trial. Stimu-
lus onset is at t = 0 s. From top to bottom: Model input is provided through
independent noise-current injection into the ORNs. The stimulus-induced
input currents are clearly visible (hot colors) on top of the background noise
for the subset of ORNs that are sensitive to the CS+ odor (stimulus pro-
file). Stimulus response is clearly visible by an increase in the spiking activity
across all neuron populations. For ORNs (blue) and PNs (red), relevant sub-
sets of 60 and 35 neurons are shown. The population of 2,000 KCs (magenta)
shows a temporal and spatial sparse odor response. Only 2% of all KCs are
activated during a brief transient response following stimulus onset (black
histogram). The MBON generates a single action potential in response to cue
onset, which is the correct learned response to the CS+ odor. (C) Learning
performance of the MBON across N = 100 independent models as a function
of the number of training trials. In any given trial, the MBON response was
correct if exactly one action potential was generated during CS+ presenta-
tion or if no action potential was generated during CS− presentation. (D)
The behavioral learning curve expresses the percentage of individuals that
showed a correct behavior in the respective CS+ or CS− trial. The behavioral
output is binary with either response or no response. The model triggers a
response if the MBON generates one or more spikes.

KC population has been shown to reduce the overlap between
different odor representations (38, 39), and, consequently, pop-
ulation sparseness is an important property of olfactory learning
and plasticity models in insects (40–44). The system response to
a single odor presentation in Fig. 2B demonstrates the transfor-
mation of a dense olfactory code at the ORN and PN layers
into a population-sparse representation at the KC layer, where
less than < 2% of the total KC population is active at any time
during stimulus presentation. This is in good agreement with
quantitative estimates in the fruit fly (23, 39, 45).

Few-Shot Learning Rapidly Forms an Associative Memory of Single
Cues with Rewards. Many insects exhibit a rapid learning dynam-
ics when trained in classical olfactory conditioning tasks. They
typically acquire high retention scores (test accuracy > 60%) for

a binary conditioned response (CR) behavior within only very
few trials (e.g., refs. 46–48).

We here mimic a standard experimental laboratory protocol
for differential conditioning (or acuity learning) to form associa-
tive memories and to generate a binary CR behavior by training
our network (Fig. 1). Across successive learning trials, we present
two different odors in pseudo-random trial order (Fig. 2A). Each
trial constitutes a single odor presentation for 500 ms, followed
by a reinforcing stimulus (US) occurring shortly after the stimu-
lus presentation. The CS+ odor is paired with a reward, the CS−
odor with a punishment (Materials and Methods). In order to
establish a neural representation of the odor valence at the MB
output (49–52), the MBON is trained (25, 26) to elicit exactly one
action potential in response to the CS+ stimulus that is paired
with the reward and zero action potentials when the CS− stimu-
lus is presented (Materials and Methods). The system response to
a single CS+ stimulus after nine conditioning trials is shown in
Fig. 2B.

In a first step, we quantified the learning performance by con-
sidering the accuracy of the MBON response. MBON output is
counted as correct if exactly one spike is generated during a CS+
trial and zero spikes during a CS− trial. The average accuracy
over N =100 independently trained model instances across suc-
cessive trials is shown in Fig. 2C. The learning dynamics shows a
steep and steady increase, indicating that an accurate memory is
formed rapidly reaching up to 80% accuracy after 50 (25× CS+
and 25× CS−) training trials.

Next, we consider the behavioral learning curve, i.e., the acqui-
sition of a binary CR behavior across successive learning trials.
In each trial, the model generates a behavioral response if the
MBON produces one or more action potentials in response to
the stimulus. No response is generated if the MBON remains
silent. A CR is counted as correct if the MBON generates a
response to the CS+ cue or no response to the CS− cue. The
learning curve in Fig. 2D represents the percentage of correctly
responding individuals across N =100 independently trained
models. The untrained model, by default, does not generate any
output spike; consequently, 100% of the independent models
correctly respond to CS− trials from the beginning (Fig. 2D,
blue). The orange curve shows a rapid learning success where up
to 70% of individuals generated the correct, appetitive CR to the
CS+ stimuli within only three to five trials. The learning curve
saturates after ∼ 10 trials with an asymptotic value of ∼ 80% cor-
rect responders. This reproduces the rapid learning dynamics of
insects in classical conditioning experiments and fits qualitatively
and quantitatively the CR behavior in honeybees (for review, see
ref. 47).

We conclude that our statically configured sensory network
model with a single plastic readout neuron is capable to success-
fully form associative memories by few-shot learning, replicating
the classical conditioning experiments in the typical laboratory
situation. The computational mechanism of population sparse-
ness implemented in our model increases discriminability of
the two different stimuli supporting a rapid learning dynamics
and a high accuracy of memory recall (SI Appendix, Figs. S1
and S2).

Robust Dynamic Memory Recall and Odor-Background Segregation
in Complex Sensory Scenes. We now challenge our previously
trained model (Fig. 2) in a novel task asking whether the already-
learned odor associations can be reactivated in a complex and
dynamic olfactory scene. To this end, we mimicked the encounter
of odor filaments in a turbulent odor plume during a forag-
ing flight (Fig. 3A). For this, we presented random sequences
of nonoverlapping olfactory cues within T =10 s (Materials
and Methods). Each cue was of variable duration in the range
between 1 and 200 ms. Odor identity of each cue was randomly
assigned to either the CS+, CS− odor or one out of three addi-
tional background odors (Fig. 4A). The use of nonoverlapping
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Fig. 3. Recognition of valenced odor cues in complex dynamic scenes. (A)
Sketch of the dynamical memory-recall task mimicking the sensory experi-
ence during a natural foraging flight. In each single trial of 10s duration, the
model encounters multiple (on average five) cues of different odor identi-
ties, including the CS+ odor (orange), the CS− odor (blue), and background
odors (gray). (B) Network response to one example input sequence made
up of three CS+ cues, two CS− cues, and two distractor cues (bg odor), as
indicated at the top. The ORN input sequence indicates the fluctuating dura-
tion of odor cues. Transient PN and LN response profiles faithfully represent
individual odor-cue onsets in time and odor identity across neuronal space.
The KC population shows clear responses to all individual odor cues, albeit
with < 4% of activated cells at any time. The MBON correctly produced a
single action potential in response to each of the three CS+ cues, and zero
output else.

cues follows the rationale that, in nature, filaments originating
from different odors do not mix perfectly (53).

The objective in this memory-recall task is to correctly detect
the occurrences of the positively valenced odor (CS+) by means
of a single MBON action potential as model output, while no
output should be generated for all other cues (CS− or distractor
odors). Fig. 3B shows the system’s response to a single random
stimulus sequence where the MBON correctly generated a single
action potential in response to each of three CS+ encounters.
For quantification of task accuracy, we considered the overall
response to a given sequence to be correct if the number of
action potentials generated by the readout neuron is equal to the
number of CS+ cues.

For assessing model performance, we systematically varied
task difficulty by varying the number of possible background
odors (between one and three) and their similarity with the CS+
odor (Fig. 4). In a first task variant, background-odor activation
profiles are rather distinct from the CS+ odor and more similar
to the CS− odor (Fig. 4A). Accuracy of the model response was
computed across 200 test sequences as shown in Fig. 4B. We find
that our previously trained model successfully generalized to this
new task with ∼80% accuracy for different sequence complexity
in terms of identity and number of background odors. In a sec-
ond task variant, we reversed the odor contingency of the CS+
and CS− odors during initial differential conditioning. Thus, the
reward predicting odor CS+ is now more similar to two of the
background odors, while similarity with the third background
odor remains unchanged (Fig. 4C). In this more challenging case,
accuracy reduces to ∼ 50% of sequences for which the model
produced the correct number of MBON output spikes. Note that
the accuracy measure in Fig. 4 is based on the correct cumu-
lative spike count during a complete trial of 10 s. The more
similar a background-odor stimulus profile is to the CS+ odor,
the more likely the model will produce false-positive (FP) action
potentials in response to such a similar odor and, thus, a total
spike count that is higher than the number of CS+ occurrences.
This is reminiscent of the effect observed in insects and other
animals in odor-discrimination tasks, where perceptually similar
odors are more difficult to distinguish from previously learned
CS+ odors than perceptually dissimilar odors during memory-
retention tests. This might be overcome if similar odors are used
during the initial differential conditioning.

We conclude that our network model is able to recall pre-
viously learned neural representation of odors and signal their
valence in a temporally dynamic setting, where the rewarded
and punished odors appear with up to 500-times shorter dura-
tions and within an unpredictable temporal cue sequence of
previously unknown background odors. The model, thus, also
solves the problem of odor vs. background segmentation under
quasinatural conditions (54).

Accumulation of Sensory Evidences Informs Motor Control in Forag-
ing. We now consider the situation of foraging within a natural
environment (Fig. 5A). The objective is to locate the food source,
which emits an attractive odor (CS+), by utilizing the sensory
cues present in its turbulent odor plume. We show that cast-and-
surge behavior can emerge by accumulation and exploitation of
sensory evidence of sequentially experienced individual cues.

For this task, we assumed that thin odor filaments within a
cross-wind plane of the concentric odor plume were approxi-
mately Gaussian-distributed. This is a reasonable assumption,
particularly in a wind-tunnel setting with laminar flow, as typ-
ically used in experimental settings (8, 55). When the insect
performs a cast through the plume, it encounters filaments as
short-lived discrete, sequential events, where each encounter
represents a single sensory cue (sketch in Fig. 5B). Therefore, in
our simulation of casting flights, the agent encounters sequences
of cues and distractors where cue onsets for the CS+ odor are
drawn from a Gaussian distribution, while distractor cue onsets
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appear uniformly distributed over time (Materials and Methods).
We further assume that the subject has already formed an asso-
ciation of food with the attractive odor, either through learning
or through some genetically predetermined innate valence. To
this end, we again used the trained model from the classical
conditioning task above (Fig. 2) without any further retraining.

We simulated four consecutive casting trajectories where the
agent senses odor cues of sequentially experienced filament
encounters. Ongoing accumulation of sensory evidence (Fig. 5C)
by low-pass filtering of the readout neuron’s output assumes
positive values shortly after entering the plume cone and further
increases while approaching the plume’s center line. When trav-
eling beyond the center line, sensory evidence slowly decreases
until the agent leaves the plume cone boundary. When sensory
evidence drops to zero and after a fix delay, the agent initiates a
U-turn motor command to perform another cross-wind cast.

Responses from our model’s readout neuron precisely fol-
lowed the ground truth of CS+ odor cues, as shown by 10
random casting trajectories in Fig. 5D. Performing analysis by
averaging of sensory evidence across these 10 casting trajectories
yielded an average evidence (Fig. 5E) that faithfully resembled
the underlying, true Gaussian profile of the simulated filaments.
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Fig. 4. Performance in the dynamic memory recall task. (A) Input activation
profiles across ORNs for five different odors. The model had been previ-
ously trained in the differential conditioning protocol using the orange CS+
and the blue CS− odors. In the dynamic memory-recall task (see Robust
Dynamic Memory Recall and Odor-Background Segregation in Complex Sen-
sory Scenes), background odors (gray) were presented as distractor cues,
along with CS+ and CS− cues. In the first task variant, two background odor
profiles were rather distinct from CS+ (dark gray), and one was more similar
(light gray). (B) Task accuracy across 200 trials in four different scenarios. A
single trial consists of a random temporal sequence of sensory-cue presen-
tations during 10 s. Each single cue is of random duration between 1 and
200 ms. The single trial model response was correct if the MBON generated
exactly as many action potentials as CS+ cues had been presented. The four
task scenarios varied number (between one and three) and type (distinct vs.
similar) of distractor cues, as indicated. (C) In the second task variant, the
same odors were used for cue presentation in a random temporal sequence.
However, the model had been trained with reversed CS+/CS− odor contin-
gency, such that two distractor odors (light gray) were now more similar
to the CS+ odor (orange). (D) As in B, but for reversed CS+/CS− odor con-
tingency, where distractor cues were overall more similar to the CS+ odor,
increasing task difficulty.

We conclude that the model output provides an accurate
and robust estimate of sensory evidence that can be used to
reason about a plume’s spatial extend and center line. Both
pieces of information are crucial to generate appropriate motor
commands for U-turn and upwind surge behavior, necessary to
successfully execute the cast-and-surge strategy. Apart from the
existence of filaments inside a plume and absence outside a
plume’s cone, our model does not make any specific assumption
regarding the plume’s structure and statistics. It, thus, provides a
generic mechanism implemented in a neural system to perform
cast-and-surge behavior during foraging flights.

Discussion
Distinct Functional Roles for Population and Temporal Sparse Stimu-
lus Encoding. Population sparseness improves discriminability of
different stimuli to facilitate associative learning. This has been
demonstrated in theory and experiment (15, 20, 36, 39). We have
shown that our neural network model implements this feature
in a biologically realistic way, and our results confirm the func-
tional role of population sparseness to support rapid and robust
memory acquisition through associative learning.

Experimental (39) and theoretical (20, 56) studies in the
fruit fly suggest that inhibitory feedback through the anterior
paired lateral (APL) neuron improves population sparseness and
learning in the KC population. In the adult fly, it likely receives
input in both the calyx and the lobes of the MB, and it is thought
to widely inhibit KCs and possibly PN synaptic boutons that are
presynaptic to KCs in the calyx. Whether this neuron is gen-
erating sodium spikes or whether it is a nonspiking neuron is
currently under debate (57). Here, we tested the performance
of our model when implementing the APL neuron as spiking
neuron that receives excitatory input from all KCs and inhibits
all KCs via weak inhibitory synapses (SI Appendix, Fig. S2).
Feedback inhibition increased the robustness of model func-
tion: In the case of more dense PN–KC connectivity and mod-
erate to low sparseness (∼ 5− 10% response-activated KCs),
inhibitory feedback could partly re-establish rapid learning dur-
ing training as well as high performance in the transfer test (SI
Appendix, Fig. S2) and the foraging task (SI Appendix, Fig. S3).
GABAergic feedback from MB output onto MB input is a recur-
ring motif across species. In the locust, this is provided by a single
nonspiking neuron (58). In the cockroach, there are exactly four
spiking inhibitory feedback neurons per hemisphere that have
been shown to receive input from the calyx and the lobes (59),
while in the honey bee, a population of ∼ 50 spiking and plas-
tic neurons provides GABAergic feedback onto the synaptic
boutons of PNs in the calyx (60, 61).

Our model demonstrates how temporal sparseness can be
exploited to generate short-patterned signaling of cue identity.
This enables perception of high temporal stimulus dynamics.
In our model, this is achieved independently of the duration
of individual stimulus incidents and their distribution in time
and makes temporally precise and robust sensory evidence avail-
able. It allows for the ongoing computation of derived estimates
such as cue distributions or changes in cue density. Maintain-
ing temporally sparse representations mechanistically supports
the principle of compositionality [or Frege principle (22)], where
an atomic stimulus entity is represented and can be learned by
the readout neuron before processing this output—for example,
by estimation of densities or recombination with other entities
to form composite perception or memory readout. The tempo-
ral stimulus dynamics remains intact throughout the system even
after learning of stimulus relevance. Thus, valence is encoded
with the same dynamics and faithfully captures occurrences of
relevant cues. This allows compression of code to relevant stim-
uli, while retaining full stimulus dynamics of the external world.
Compression of code along the sensory-processing pipeline is
particularly relevant for small-brained animals like insects, which
need to economize on their neuronal resources.
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Fig. 5. Dynamical sensory processing and motor control serving chemotaxis. (A) Sketch of a typical olfactory experimental setup in a wind tunnel with a
pleasant odor source (orange flower) and a second distractor source (gray flower). Due to turbulence, the odor molecules emitted by a single source form
dispersing, intermittent filaments within a cone-like boundary that constitutes the odor plume. The plume is modeled as Gaussian-distributed filaments. A
behaving model insect (here, D. melanogaster) performs stereotypic cast-and-surge behavior to locate the food source. This constitutes alternating between
scanning cross-wind and U-turning after running past the plume-cone boundary where no filaments are present. Eventually, after several casts (here,
three), it surges upwind until it loses track of the plume cone and starts over. (B) Filament encounters during this behavior result in sequential brief on/off
stimulations of the olfactory system. The probability of encountering filaments is> 0 within the plume and zero outside of the plume. Sensory evidence e(t)
can be viewed as a likelihood function of filament encounters that increases toward the plume’s center line and is zero outside of the plume. The properties
of this function can be used to generate optimal motor commands for chemotaxis. (C) Evidence e(t) and derivative de

dt over four simulated successive casting
trajectories estimated from the MBON spiking activity. U-turn motor commands (purple diamonds) are generated when e(t) runs below a fixed threshold
(0.01), and surge motor commands (purple circles) are generated when de

dt turns negative. The motor commands generated by the model match well with
the theoretically optimal commands, as sketched in B. (D) Spiking activity of the MBON (orange) in response to 10 casting trajectories. The MBON reliably
predicts the true sensory cues of positively valenced filaments (dark gray) and ignores background cues (light gray). (E) Smooth peristimulus time histogram
computed over 10 casting trials recovers an accurate estimate of the true underlying sensory-cue distribution simulated as Gaussian distribution.

Odor-Background Segregation: A Joint Effect of Temporal and Pop-
ulation Sparse Cue Representation. The task presented in Fig. 3
implicitly addresses the issue of odor-background segregation.
This refers to the problem that, in nature, cues of multiple
odors of different sources are present, either in terms of mix-
tures or stimulus-onset asynchrony due to turbulent conditions
(53, 54). For behavior, it is relevant to reliably isolate and detect
the relevant cues from any background or distractor cues. The
results presented in Fig. 4 show that this works nicely in our
system. This is achieved by exploiting the joint effect of tem-
poral and population sparseness. Optimal discrimination of cue
representation is guaranteed by population sparseness and tem-

poral precision by means of temporal sparseness. Our plastic
output neuron requires population sparseness for learning, and
the plasticity rule (25, 26) allows for temporally precise mem-
ory recall. We predict that our model can solve the challenge of
odor-background segregation.

Rapid Learning within Few Trials. The ability of insects to quickly
form associative memories after three to five trials has been
demonstrated experimentally (47). However, in general, few-
shot learning remains a difficult task for computational models,
including insect-inspired models (62). We find that, when com-
pared with learning-dynamics data of real insects (47), our model
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is able to show realistic learning dynamics that matches with
the experimental observations. Due to frequent changes in the
environment, it might be a better strategy to trade off fast and
reasonable accurate learning against slow and high-precision
learning. Additionally, acquisition of training samples might be
costly, or they generally occur very sparsely.

In fact, few-shot learning likely is a fundamental skill for
survival. We have demonstrated that our neurobiologically moti-
vated approach using spike-based computations is capable to
perform few-shot learning with similar speed as insects. We fur-
ther showed that our model can transfer learned associations
to novel, complex combinations that have not been part of the
training data.

Innate vs. Learned Behavior. Cast-and-surge behavior belongs to
the innate behavioral repertoire of airborne insects and emerges
from a set of sensorimotor reflexes (8). It can be considered as
a base strategy that guarantees survival. The base system can
be modulated and improved throughout an animal’s lifespan by
experience-based learning. This is superior to alternative strate-
gies that would solely rely on learning appropriate behaviors
and, thus, require constant retraining, as is the case in machine-
learning (ML) approaches. Here, we assumed that our readout
neuron was tuned to a pleasant odor. In the present work, this
tuning was learned (adaptive process) in a classical condition-
ing task. However, a tuning can generally be learned by other
mechanisms, e.g., reinforcement or unsupervised learning. We
demonstrated that the existence of such a tuned neuron allows
cast-and-surge foraging behavior to emerge.

There are other ways how such a tuned neuron can come
about, for example, due to genetically predetermined wiring
or during development from larval to adult stage. The cast-
and-surge behavior can be executed on innately valenced olfac-
tory cues, and our suggested model for motor control dur-
ing cast and surge (Fig. 5 A and B) also works for innate
valenced stimuli. Learning is important to adapt behavior to
changing environmental circumstances, and associative learning
provides a means to learn new valences on demand in such
situations. Our model learns odor valences at the MB out-
put, and it has been shown that MBONs signal odor valence
(49–52). We suggest that this valence is then used downstream
to execute higher-level functions of motor control. At this
processing stage, it might be integrated with innate valences
and other necessary sensory modalities to form behavioral
decisions.

Implications for Other Sensory Systems. Sparse stimulus encoding
has been identified as a powerful principle used by higher-
order brain areas to encode and represent features of the
sensory environment in invertebrate (17, 23, 45) and verte-
brate (63–66) systems. Sensory systems with similar coding
principles may share similar mechanisms when it comes to
learning and multimodal sensory integration. The MB is a cen-
ter for integration of multimodal sensory information. Thus,
our model can be extended to incorporate input from differ-
ent sensory modalities. It is known that olfactory search and
foraging strategies do not solely rely on olfactory cues, but
require additional sensory information from at least visual cues
and wind direction. Extending our model to include additional
sensory-processing systems for vision and wind direction can pro-
vide a comprehensive functional model to study foraging and
navigation.

Potential Improvement through Multiple Readout Neurons. Our
current approach only comprises the simplest case of a sin-
gle readout neuron. This model can be extended to multiple
readout neurons. Different readout neurons can be tuned to dif-
ferent odors or groups of odorants. This would allow foraging for
different types of food sources and, further, be useful for multi-

modal sensory integration and learning of valences of multiple
odors. Another way to use multiple readout neurons is to create
an ensemble learning model. Particularly, one can perform boot-
strap aggregation (bagging) to decrease variance of predictions.
With this technique, multiple, independent readout neurons can
be trained for the same target, and their outputs are averaged
to produce a single output. This approach can be useful when
the level of noise increases due to different input models used to
drive the network. Another possible extension is to use a single
readout neuron to code for multiple odors by associating dif-
ferent numbers of action potentials to different odors (e.g., two
or three). The choice of model for the readout neuron and the
plasticity rule allows us to do this (25).

Top-Down Motor Control and Lateral Horn. The model currently
lacks a neuronal implementation of sensory-evidence integra-
tion and generation of motor commands. Integration of sensory
evidence is modeled by low-pass filtering of the readout neu-
ron’s spike train, and its derivative is numerically estimated.
Drift-diffusion models (67) provide a straightforward alternative
to implement integration of evidence to generate a stochastic
decision variable that can be thresholded in order to take a
behavioral decision for turn or surge (68, 69). Our ultimate goal
is a model extension by a neuronal circuit for behavioral deci-
sion and top-down motor control. This circuit may involve basic
neuronal mechanisms. For example, ref. 70 has shown that a
single-compartment Hodgkin–Huxley neuron can operate in two
computational regimes. One is more sensitive to input variance,
and the model then acts as differentiator, while in the other
regime it acts as integrator. Similarly, ref. 71 has shown that
the subthreshold current of neurons can encode the integral or
derivative of their inputs based on their tuning properties. This
and other suggested mechanistic implementations (e.g., ref. 72)
could serve as a basis for estimating the low-pass-filtered sensory
evidence and its derivative solely by using neural computations.
The initiation of a turning behavior based on a time-dependent
evidence signal could be implemented, e.g., through disinhibition
of motor-command neurons when reaching a decision threshold.
The mechanism for U-turning could rely on either cell-intrinsic
properties such as SFA, where a neuron initiates a fast turning
movement that decays with a fixed time constant, or through
state-switching dynamics in neuronal populations.

Relevance for ML and Artificial Intelligence. Learning and building
artificial intelligence (AI) agents capable of interacting with their
environment are major objectives in the fields of ML and AI.
Deep artificial neural networks (73) have demonstrated great
success over the recent years, particularly in the domains of
image recognition, natural language processing, and deep rein-
forcement learning (74, 75). Three challenges currently hamper
further progress in the theoretical understanding of deep neural
networks. These are expressivity, optimization, and generaliz-
ability (76). The latter is of interest in the context of the present
results. It refers to a model’s ability to correctly classify previ-
ously unseen data samples during testing that stems from the
same a priori defined sample distribution. A related, but much
harder, problem is classification of unseen out-of-distribution
(OOD) samples that are drawn from a different distribution. Sev-
eral methods have been proposed for mastering generalization
or OOD in deep-learning models, including retraining on new
tasks, continual learning (77), meta-learning (78), and transfer-
learning (79). However, these methods bear new challenges, such
as catastrophic forgetting (80), and some progress has been made
toward novel solutions (81). We trained our model on exactly two
odor stimuli (CS+ and CS−; Fig. 2A). These were drawn from
a distribution that is predefined in time (fix stimulus duration)
and in neuronal space (receptor activation model; Fig. 4A). After
training, the model performed well in the dynamical memory-
recall task (Fig. 4 B and D) and in the cast-and-surge task
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(Fig. 5 D and E). In both test situations, the previously trained
model faced novel stimuli of varying receptor-activation profiles
and random stimulus durations, both drawn from different dis-
tributions, as used during training. Adding to previous studies
on generalizability and learning convergence of the multispike
tempotron (MST) model in ML-related problems (25, 26), our
results support the idea that spiking neural networks can gen-
eralize and solve OOD problems in a biological context, which
can possibly be carried over to ML-related tasks. We predict
that knowledge transfer from research in neural computation to
research in ML and AI will become increasingly important.

Materials and Methods
Code and data sets are available through our GitHub profile at:
https://github.com/nawrotlab (82).

Spiking Network Model. All neurons of the olfactory network are modeled
as conductance-based leaky integrate-and-fire neurons with SFA. Specifi-
cally, the membrane potential follows the dynamical current balance (Eq. 1).
On threshold crossing, a hard reset of the membrane potential is performed
by Eq. 2. SFA is modeled as outward current by term 4 of Eq. 1. Strength
of the adaptation current is modeled by a constant (b) decrease on each
threshold crossing. Input to the model is modeled as direct, time-dependent
current injection of shot noise to all ORNs by the term Istim(t). All simula-
tions of the network are carried out by using the BRIAN2 (83) simulator.
The membrane potential of each neuron within a population is initialized
randomly ∈ [Vrest , Vthreshold]. To avoid any artifacts, the network is brought
to equilibrium by driving the network for 2 s with background activity only
before starting the actual simulation.

Cm
dv

dt
= gl(El − v) [1]

+ ge(Ee− v)− gi(Ei − v)

− gIa(EIa− v) + Istim(t)︸ ︷︷ ︸
only for ORNs

v = Vrest on threshold crossing [2]

τIa
dgIa

dt
=−gIa [3]

gIa = gIa− b on threshold crossing [4]

For this work, the number of neurons within each layer and connec-
tivity schemes are chosen to match the numbers found in the adult D.
melanogaster (14, 24). Our model comprises 2,080 explicitly modeled ORNs
organized in 52 different receptor types. ORNs of the same receptor
type converge onto the same glomerulus (52) by feed-forward excitatory
synapses. Each glomerulus is formed by a PN and a LN. LNs provide lateral
inhibition to all other PNs and LNs. PNs randomly project to a large popula-
tion (2,000) of KCs with excitatory synapses, such that each KC on average
receives input from six random PNs (connectivity degree parameter K). This
sparse random convergence implements population-sparse responses. The
single, plastic MBON is fully connected to all KCs.

We used the cellular mechanism of SFA to achieve temporal sparseness.
ORNs are configured to have slow and weak SFA in accordance with exper-
imental findings (29, 32). For PNs and LNs SFA has been turned off and
KCs are set to produce fast and strong adaptation currents (18, 84). The
property of temporal sparseness can also be achieved by an alternative
implementation through feedback inhibition as proposed by (56, 85).

The synaptic weights of all connections within the network have been
manually determined such that an average background firing rate of 8 to
10 Hz is achieved in the LN population.

Stimulus-Response Profile of ORNs. The stimulus-response profile of ORNs
is determined by the ORN tuning curves. We follow a similar method as
used in ref. 21, where cyclical tuning over receptor types is modeled as half-
period sine waveforms. Our model comprises Ntype = 52 receptor types and
supports 52 different stimuli (e.g., different odors), where ktype refers to
the receptor-type index (∈ [0, 51]) and kodor to the stimulus index (∈ [0, 51]).
Norn = 15 determines the number of receptor types activated by a stimulus.
The tuning strength r of the ORNs can be computed as 0.5 cycle of a sine
wave with peak amplitude rmax = 1. In the present work, all tuning profiles
are normalized to have a peak amplitude of one.

x =
ktype− kodor mod Ntype

Norn + 1
[5]

r = rmax

{
sin(xπ) for 0< x< 1

0 else
[6]

Model Input. Input to the MB model is modeled as time-dependent, direct-
current injection into all ORNs. In the absence of any stimuli, ORNs exhibit
spontaneous activity (29). The model input thus consists of spontaneous
background activity and stimulus-related activity. To generate the back-
ground activity, a current time-series is generated for each ORN by simu-
lating shot noise. For each ORN, background activity events are generated
from a Poisson process with high rate (λ= 300) (independent Poisson pro-
cesses are drawn for each individual neuron). Events of the Poisson process
are filtered by a low-pass filter with τ = 0.6 s. Using this shot-noise model is
consistent with experimental findings of odor transduction at the ORNs (29).
To induce stimulus-related activity to this time-series of ORN j, it is multiplied
point-wise with a stimulation protocol time-series sj(t), which is rescaled by
a constant determined by the tuning strength (rj ∈ [0, 1]) to the specific odor
of the ORN. This results in a current time-series, where during stimulus, the
current magnitude is increased proportional to the ORN’s tuning strength
and otherwise remains at the magnitude of the background activity.

We define a stimulation-protocol function s(t), which is a step function
taking on the value one at all time points t where a stimulus or sensory
cue is active. For each ORN, a rescaled instance of the stimulation protocol
is defined as sj(t) = rjs(t), where the scaling parameter rj ∈ [0, 1] is given by
the stimulus response profile (Eq. 6) of the ORN to the specific stimulus.

s(t) =

{
1 if some stimulus is present

0 else.

Sequences of Sensory Cues. Each sequence has a duration of 10 s. Sequences
of sensory cues are generated by drawing the total number of cues within
a single sequence from a Poisson distribution with mean λ= 8. Onset times
of the cues between 0 and 10 s are drawn from a random uniform distri-
bution, and it is assured that there is no temporal overlap between cues.
A stimulus relates to a single sensory cue, and its duration is drawn uni-
formly between [1, 200] ms. Finally, each sensory cue is associated with a
random odor drawn from a fixed set of possible odors (random sampling
with replacement and equal probability). This results in sequences with
a random number of sensory cues, random onset, random duration, and
randomized odor and distractor combinations.

Model of Sensory Cues within (Gaussian) Plume. The same procedure is used
as above to simulate the experience of sensory cues during a single cast-
ing trajectory within a turbulent odor plume. The number of pleasant cues
experienced in a casting trajectory is drawn from a Poisson distribution
with mean λ= 14. The cue onset times are drawn from a Gaussian distri-
bution with µ= 5,σ= 1.5. The number of distractor cues is drawn from
a Poisson distribution with mean λ= 5 and are distributed uniformly in
time. Duration of both, pleasant and distractor cues, is drawn uniformly
between [100, 500] ms. In total, 200 different casting trajectories have been
generated by using this procedure.

Readout Neuron and Learning Rule. To fit the readout neuron to the stimuli
such that it generates one spike for pleasant odor stimuli (CS+) and zero
spikes for any other stimuli (CS−), we used a modified implementation of
the MST (25, 26). Thus, the readout neuron is modeled as voltage-based
leaky integrate-and-fire neuron with soft reset following the dynamical Eq.
7. Incoming spikes evoke exponentially decaying postsynaptic potentials.
When the membrane potential reaches the spiking threshold at some time
t0, an output spike is generated, and the membrane potential is reset by the
last term of Eq. 7.

V(t) = Vrest︸︷︷︸
:=0

+
N∑

i=1

ωi

∑
tj
i<t

exp. PSP kernel︷ ︸︸ ︷
K(t− tj

i ) [7]

− ( ϑ︸︷︷︸
:=1

−Vrest)
∑
tj
sp

e
−

t−tj
sp

τm

The dynamical equation can be decomposed into two parts, the unreset
subthreshold potential V0(t) (Eq. 8) minus the remaining terms for the soft
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reset. The neuron was trained to generate one spike for pleasant odor stim-
uli (CS+) and zero spikes for any other stimuli (CS−). To fit the desired
neural code, a training step was performed after each stimulus presenta-
tion. A training step was performed only if the number of spikes generated
in response to a stimulus was not correct. The training target was given by
the difference between number of output spikes the model generated and
the number of output spikes associated with the stimulus. We denote the
desired critical threshold value, the voltage value that generates d = 1 spike,
as ϑ* and the time point where this voltage value is reached by t* (more
generally the critical threshold value to generate d spikes). We briefly sketch
the idea and intuition of the MST learning rule. For detailed derivation of
the rule, we refer to ref. 25 (section the ϑ* gradient). The MST training
algorithm works by differentiating the membrane potential of the critical
threshold with respect to the synaptic weights (~ω). This can be done since
ϑ* is a regular voltage value, that can be expressed by the neuron’s dynam-
ical equation (Eq. 7), with the special identities shown in Eq. 10. This allows
us to take the full derivative, as shown in Eq. 11.

V0(t) =
N∑

i=1

ωi

∑
tj
i<t

K(t− tj
i ) unresetsub− thresh.potential, [8]

V(t) = V0(t)−ϑ
∑
tj
sp

e
−

t−tj
sp

τm , [9]

ϑ* = V(t*) = V(tj
sp) critical thresh. that makes d spikes, [10]

∇~ωϑ* =
∂

∂ω
V(t*) +

m∑
j=1

∂

∂tj
sp

V(t*)
d

dω
tj
sp. [11]

The gradient of the critical threshold with respect to a single synapse i is
given by Eq. 12:

(ϑi*)′ =
d

dωi
ϑ* =

d

dωi
V(t*) =

d

dωi
V(tj

sp), [12]

(ϑi*)′ =
∂

∂ωi
V(t*) +

m∑
j=1

∂

∂tj
sp

V(t*)
d

dωi
tj
sp recursive expr. exists. [13]

Data Availability. Code and datasets are available through our GitHub
profile at https://github.com/nawrotlab. Datasets and source code
data have been deposited on GitHub at https://github.com/nawrotlab/
SpikingNeuralProgramForagingInsect-PNAS.
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60. B. Grünewald, Morphology of feedback neurons in the mushroom body of the
honeybee, Apis mellifera. J. Comp. Neurol. 404, 114–126 (1999).

61. J. Haenicke, N. Yamagata, H. Zwaka, M. Nawrot, R. Menzel, Neural correlates of odor
learning in the presynaptic microglomerular circuitry in the honeybee mushroom
body calyx. Eneuro 5, ENEURO.0128-18.2018 (2018).

62. C. B. Delahunt, J. N. Kutz, Putting a bug in ML: The moth olfactory network learns to
read MNIST. Neural Network. 118, 54–64 (2019).

63. T. Hromádka, M. R. DeWeese, A. M. Zador, Sparse representation of sounds in the
unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

64. W. E. Vinje, Sparse coding and decorrelation in primary visual cortex during natural
vision. Science 287, 1273–1276 (2000).

65. J. Wolfe, A. R. Houweling, M. Brecht, Sparse and powerful cortical spikes. Curr. Opin.
Neurobiol. 20, 306–312 (2010).

66. J. S. Isaacson, Odor representations in mammalian cortical circuits. Curr. Opin.
Neurobiol. 20, 328–331 (2010).

67. J. I. Gold, M. N. Shadlen, The neural basis of decision making. Annu. Rev. Neurosci.
30, 535–574 (2007).

68. J. D. Davidson, A. El Hady, Foraging as an evidence accumulation process. PLoS
Comput. Biol. 15, e1007060 (2019).
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