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a b s t r a c t   

Periodontal tissue regeneration is the ideal tactic for treating periodontitis. Tooth regeneration is the po-
tential strategy to restore the lost teeth. With infinite self-renewal, broad differentiation potential, and less 
ethical issues than embryonic stem cells, induced pluripotent stem cells (iPSCs) are promising cell resource 
for periodontal and tooth regeneration. This review summarized the optimized technologies of generating 
iPSC lines and application of iPSC derivatives, which reduce the risk of tumorigenicity. Given that iPSCs may 
have epigenetic memory from the donor tissue and tend to differentiate into lineages along with the donor 
cells, iPSCs derived from dental tissues may benefit for personalized dental application. Neural crest cells 
(NCCs) and mesenchymal stem or stomal cells (MSCs) are lineage-specific progenitor cells derived from 
iPSCs and can differentiate into multilineage cell types. This review introduced the updated technologies of 
inducing iPSC-derived NCCs and iPSC-derived MSCs and their application in periodontal and tooth re-
generation. Given the complexity of periodontal tissues and teeth, it is crucial to elucidate the integrated 
mechanisms of all constitutive cells and the spatio-temporal interactions among them to generate struc-
tural periodontal tissues and functional teeth. Thus, more sophisticated studies in vitro and in vivo and even 
preclinical investigations need to be conducted. 
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1. The challenge of tumorigenicity in induced pluripotent stem 
cells 

Induced pluripotent stem cells (iPSCs) are derived from adult 
somatic cells by exogenously introducing different combinations of 
transcription factors, including Oct3/4, Sox2, Klf4, c-Myc, Nanog, and 
Lin28 [1–3]. Human iPSCs (hiPSCs) are capable of multilineage dif-
ferentiation and cause less ethical issues than human embryonic 
stem cells (hESCs), therefore, they are promising for the generation 
of patient- and disease-specific pluripotent stem cells to investigate 
disease mechanisms, screen drugs, and regenerate cells, tissues, and 
organs [2,4]. However, there are still many challenges to translate 
the promises into clinical application. In this current review, we 
would like to focus on the major challenge, tumorigenicity. 

Over the past years, the risk of tumorigenicity of iPSCs is a sig-
nificant concern [5,6], which mainly result from three factors in-
cluding undifferentiated and/or immature cells in the final cell 
products that differentiate from the iPSCs, tumorigenic property of 
reprogramming factors in the iPSCs, and genetic mutations of iPSCs 
during in vitro culture [7]. Even very small amount of residual iPSCs 
or lineage-specific stem cells in the transplant could result in for-
mation of teratoma or other tumors. It was shown that iPSCs do not 
contain more genomic variations than the fibroblast subclones by 
using whole exome sequencing and targeted resequencing, sug-
gesting that iPSC reprogramming itself is not mutagenic [8]. How-
ever, the fact that gene expression networks in the induction of 
pluripotency interconnected with those in oncogenesis is evidenced 
by the common features of these genes, which possess high pro-
liferation ability, self-renewal, DNA repair checkpoint disconnecting 
and capability to differentiated into varieties of tissues [6]. Thus, the 
methods to eliminate or reduce tumorigenicity may pave the way for 
clinical application. 

1.1. Purification of differentiated cells 

To reduce the risk of teratoma, transplantation of purification of 
differentiated target cells is feasible. Mandai et al. have reported 
highly efficient purification methods (specification > 95%) by 
checking pigmentation and immunostaining of retinal pigment 
epithelial markers BEST1 and PAX6, which showed negative result of 
in vivo tumorigenicity [9]. A clinical trial found that positively sorted 
hiPSCs-derived dopaminergic progenitor cells with CORIN maker 
survived and functioned as midbrain dopaminergic neurons in a 
primate model of Parkinson’s disease [10]. Besides, Brentuximab 
vedotin that is approved in treatment of CD-30 positive lymphomas 
was used to eliminate the undifferentiated iPSCs, in which the CD30 
marker is positive [11]. Both negative and positive cell sorting were 

performed to purify corneal epithelial cells by using antibodies tar-
geting CD200, ITGB4 and SSEA-4 [12,13]. 

Even though the undifferentiated iPSCs were thoroughly elimi-
nated, tumors may emerge from differentiated progeny cells that 
still have proliferative capacity [7]. Functional recovery was ob-
served in the animal models of spinal cord injury after transplan-
tation of the hiPSCs-derived neural progenitor cells (NPCs) [14]. 
However, the paralysis appeared again due to proliferation of nestin- 
positive NPCs when using some hiPSC lines [15]. By inhibiting notch 
signaling, which is important for self-renewal of NPCs, Okubo et al. 
succeeded to suppress tumorigenicity caused by immature 
NPCs [16]. 

1.2. Elimination of viral integration and substitution of reprogramming 
factors 

The canonical virus-based delivery system cause problems, in-
cluding gene integration with the host genome, insertional muta-
genesis, apoptosis, cell senescence, and strong immunogenicity [17]. 
To solve these problems, many groups have focused on transferring 
reprogramming factors using non-integrating vectors or approaches, 
including adenoviral vector [18], plasmid [19,20], and lentiviral 
vector that can be excised after iPSC generation [21], and direct 
delivery of reprogramming RNA [22], and protein transduction via 
soluble antibodies [23] etc. 

In addition, all the reprogramming factors inducing cell plur-
ipotency are responsible for oncogenesis, especially the oncogene c- 
Myc, which is considered as a driver mutation in many human 
malignancies. A few compounds can replace one or more Yamanaka 
factors and facilitate the reprogramming of somatic cells into iPSCs, 
including valproic acid that dramatically increases reprogramming 
efficiency by almost 50–100 fold and maintains the iPSC condition 
without the oncogene c-Myc [24], kenpaullone that functionally 
substitutes oncogene KlF4 to induce pluripotency [25], an inhibitor 
of transforming growth factor β (TGFβ) receptor I kinase (activin-like 
kinase 5, AlK5) that facilitates the efficiency of iPSC induction and 
replaces either Sox2 or c-Myc with other three remaining factors 
rather than both of them concurrently [26], and inhibitors of the Src 
family kinases that functionally induce pluripotency in the absence 
of Sox2 [27]. The methods that generate iPSCs by using only chemical 
compounds or molecules may open new avenues for the clinical 
application of iPSCs [28,29]. 

Each of these tactics has distinct reprogramming efficiency rate. 
The overviews of different iPSC reprogramming technologies are 
available [17,30,31]. In our institute, Center for iPS Cell Research and 
Application (CiRA), we routinely generate iPSCs with five-factor 
plasmids (pCE-hSK, pCE-hUL, pCE-hOCT3/4, pCE-mp53DD, and 
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pCXB-EBNA1), even for clinical use (https://www.cira-foundatio-
n.or.jp/e/project/homozygous.html). 

1.3. Application of iPSC derivatives 

It was indicated that the application of lineage-specific pro-
genitor cells derived from iPSCs restricts the tumorigenicity of iPSCs  
[32]. Neural crest cells (NCCs) and mesenchymal stem or stomal cells 
(MSCs) can differentiate into multilineage cell types. NCCs are a 
transient group of cells from the ectoderm germ layer with multi-
potency to differentiate into various cell types, including MSCs, 
smooth muscle cells, enteric neurons, melanocytes, Schwann cells, 
osteoblasts, chondrocytes, adipocytes, and myocytes (Fig. 1) [33]. 
Therefore, NCCs are considered promising for craniofacial re-
generative medicine. Induced-MSCs (iMSCs) derived from iPSCs ex-
hibited similar tumor tropism, but less capacity of tumor promotion 
compared with bone marrow MSCs (BMSCs) [34]. Additionally, NCCs 
and MSCs can be populated in a feeder-free culture system. More-
over, the low immunogenicity of iPSC-derived NCCs on both mole-
cular and functional levels indicates their promising clinical 
application [35]. 

1.3.1. Technologies to generate induced-NCCs (iNCCs) from ESCs or 
hiPSCs 

Mizuseki et al. first generated iNCCs by treating stromal cell- 
derived inducing activity (SDIA; coculture on PA6 stromal cells)- 
treated mouse and primate ESCs with BMP4 after the fourth day of 
the coculture [36]. Jiang et al. cocultured the hESCs on PA6 feeder 
layer with SDIA and induced hESCs into iNCCs within one week [37]. 
Lee et al. isolated iNCCs from the neural rosette stage of hESCs and 
induced iNCCs into peripheral neurons and Schwann cells in vitro, 
and smooth muscle, adipogenic, osteogenic and chondrogenic cells 
in vivo [38]. The neural crest markers, p75 and HNK1, were used to 
isolate and enrich iNCCs using fluorescence-activated cell sorting 
(FACS) technology [37,38]. Small molecular compounds or re-
combinant proteins were used to induce differentiation of hESCs and 
hiPSCs into iNCCs, the underlying mechanisms of which were at-
tributed to the synergistic suppression of SMAD signaling via two 
inhibitors, Noggin and SB431542 [39], or the activation of Wnt sig-
naling and inhibition of Smad pathway simultaneously [40]. Me-
nendez et al. further improved the protocol utilizing small molecular 
inhibitors of glycogen synthase kinase 3 (GSK3) and TGFβ for iNCCs 
generation and dramatically increased the enrichment efficiency to 
more than 90% without using feeder cells and a FACS sorting system  

[41]. Our group ever optimized the induction procedures of iNCCs 
derived from hiPSCs using a combination of GSK3β and TGFβ in-
hibitors [42]. Similarly, synchronous Wnt activation (via GSK3β 
suppression) and TGFβ inhibition (SB431542) induced three hiPSC 
lines into iNCCs [43]. The iNCCs stably maintained the gene ex-
pression profile as NCCs within 10 passages. James et al. robustly 
induced hESCs and hiPSCs into neural crest with a fully defined and 
xeno-free system combined with top-down inhibition of BMP4, 
which indicated that intermediate levels of BMP activity are neces-
sary for human neural crest induction in vitro [44]. However, the 
characteristics of iNCCs changed gradually from pre-migratory to 
migratory during passage [45]. 

To further promote efficiency, Leung et al. reported a fast ap-
proach that generated iNCCs through the activation of WNT/β- 
Catenin pathway within five days [46]. It was evidenced that the 
reduced 2-day-pulse WNT activation induced by GSK3 inhibition 
optimized the generation of iNCCs [47]. The technologies of deriving 
iNCCs from hESCs and iPSCs are summarized in Table 1. 

Although many groups have been trying to optimize the differ-
entiation procedures of iNCCs [48,49], there are still some unsolved 
issues: (1) the accurate characterization of iNCCs using specific 
markers to isolate an identical NCC population; (2) the precise 
control of cell fate into iNCCs and not into other cell lineages; (3) the 
multipotency or stemness maintenance after long-term passages; 
(4) methods to obtain more cell lineages that are beyond cranial 
limitation and can be derived from iNCCs, such as endocrine cells, 
mesenchymal precursor cells, cardiac cells, and sympathoadrenal 
cells [50]; (5) the comparison of the gene expression profiles of 
iNCCs generated from distinct protocols. 

1.3.2. Modulation of NCCs differentiation 
In the developing embryo, the differentiation of NCCs is regulated 

by many transcription factors and molecules [51]. Sox2, Sox5, and 
Sox10 contribute to neurogenic differentiation [51]. Sox5 and Sox9 
promote chondrogenesis, while Sox8 inhibits osteoblast differentia-
tion [51]. The local environment can facilitate NCC differentiation 
into neural lineages and mesenchymal lineages in vitro under spe-
cific conditions. The scaffold’s stiffness may partially explain NCC 
differentiation [52]. When NCCs are embedded in the nanofibrous 
vascular scaffold for rat vascular graft transplantation, smooth 
muscle cells and glial cells are induced near the outer space of the 
polymer grafts and the hydrogel, respectively. Transplanted NCCs 
could repair diabetic polyneuropathy in streptozotocin-diabetic 
mice, which indicates that paracrine actions may induce 

Fig. 1. The multiple cell lineages differentiated from iPSCs iPSCs, induced pluripotent stem cells.  
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transplanted NCCs into mesenchymal and neural derivations con-
comitantly in vivo [53]. Moreover, the potential regulatory me-
chanism is associated with various genes and epigenetic 
modifications. The activation status of TGFβ and its concomitant 
effect on SOX10 are associated with the differentiation into me-
senchymal or neural derivatives from NCCs in vitro and in vivo [54]. 
The increased expression of miR-21 promotes hair follicle-derived 
NCCs differentiation into Schwann cells by downregulating Sox2 
expression in vivo and in vitro [55]. Noisa et al. evidenced that 
blocking Notch signaling inhibited the formation, migration, and 
differentiation of premigratory neural-crest-like cells from hESCs  
[56]. The neural differentiation from PDL-derived NCCs is associated 
with TNF signaling, VEGF signaling, and nectin adhesion pathways  
[57]. Low-intensity pulsed ultrasound promotes iNCCs to differ-
entiate into neural derivatives by modulating angiogenesis and 
nervous system-related genes [58]. 

Overall, NCCs differentiate into neural and mesenchymal lineages 
in vitro and in vivo under genomic and epigenetic modification and 
the effect of the local microenvironment. 

1.3.3. Generation and characterization of iPSC- and NCC-derived MSCs 
The minimal criteria of human MSCs formulated by the 

International Society of Cellular Therapy include plastic adherence 
under standard culture conditions; ≥ 95% of MSCs expressing CD105, 
CD73, and CD90 markers and ≤ 2% expressing CD45, CD34, CD14 or 
CD11b, CD79 or CD19, and HLA-DR; properties to differentiate into 
osteoblasts, adipocytes, and chondrocytes [59]. In our opinion, 
genome-wide expression and DNA methylation profiles were sug-
gested for analysis in animal experiments and preclinical trials [60]. 

MSCs derived from bone marrow, adipose tissue, or other con-
nective tissues have limited proliferative capability, the phenotype 
and differentiation of which may change in the long-term culture  
[61]. Moreover, the donor’s age and culture passages result in re-
plicative senescence and impair the regenerative potential of MSCs  
[61,62]. With infinite self-renewal, broad differentiation potential, 
and less ethical issues than embryonic stem cells, iPSCs are pro-
mising progenitor cells to generate iMSCs. 

The strategies of generating iMSCs mainly consist of dissociating 
iPSC colonies, the formation of embryoid bodies (EBs), and induction 
using fibrillar collagen or small molecular inhibitors [63–70]. In a 
study, iPSCs cultured on synthetic polymer-coated plates with 
human-cell-conditioned medium supplemented with fibroblast 
growth factor 2 (FGF2) were cultured in suspension to form EBs; the 
EBs were then seeded on the gelatin-coated dishes with growth 
medium to form fibroblastic cells in morphology; finally the MSC 
makers, including positive CD166, CD105, CD90, and CD73, and ne-
gative CD31, CD34, and CD45 were identified by using FACS [67]. 
Similarly, a cardiomyogenic medium with a p38-MAPK inhibitor was 
used to derive EBs from iPSCs; then the parallelly differentiated 
contracting cardiomyocytes (CMs) and MSCs were separated; CD44, 
CD105, CD90, and CD29 were used to distinguish CMs and MSCs in 
the EBs [68]. 

FGF2, platelet-derived growth factor (PDGF), and epidermal 
growth factor (EGF) have been used in research to differentiate iPSCs 
into MSCs; CD24-CD105+ and green fluorescence protein positive 
(GFP+) have served as cell sorting makers and colony screening labels  
[63,69]. MSC induction media comprising of DMEM-HG, 10% defined 
fetal bovine serum, 1% nonessential amino acids, 1% penicillin- 
streptomycin, and 5 ng/mL human recombinant FGF2 were used to 
induce MSCs differentiation from iPSCs, subsequently positive ma-
kers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-ABC) and 
negative makers (HLA-DR, CD31, and CD45) were detected as me-
senchymal phenotypes of MSCs [70]. Human ether-à-go-go 1 
(hEAG1) channel is key in regulating the proliferation rate of 
iMSCs [69]. Ta
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It was reported that hESCs and iPSCs cultured on type I collagen 
coated plates with αMEM medium supplemented with 10% FBS, 
50 µM magnesium L-ascorbic acid phosphate, 100 nM dex-
amethasone and ROCK inhibitor Y-27632 are singly dissociated, 
forming fibroblast-like cell colonies after a 10-day culture [66]. Po-
sitive CD73, CD90, CD105, CD146 and CD166 and negative CD34 and 
CD45 were used to characterize MSCs [66]. It was reported that 
cultures in MSC media have shown that hESCs and hiPSCs treated by 
a TGF-β inhibitor (SB431542) express decreased pluripotency-asso-
ciated genes of OCT4 and LEFTY1/2, and increased mesodermal re-
lated genes of MSX2, NCAM, and HOXA2, with differentiation into 
MSCs [65]. 

Established protocols have been reported for the efficient gen-
eration of MSCs from iNCCs. In studies, MSC media with or without 
supplements were used to induce MSCs from iNCCs [71,72]. 
LNGFR+THY-1+ NCLCs derived from hESC and hiPSCs had similar 
potential as MSCs to differentiate into mesenchymal lineages [73]. 
Our group succeeded in obtaining MSCs from iNCCs by culturing in 
the αMEM medium supplemented with 10% FBS and analyzing CD73, 
CD44, CD45 and CD105 as MSC markers [42]. 

2. iPSCs in dentistry 

2.1. iPSC generation from dental tissues 

The tissue surrounding teeth is called periodontal tissue and 
consists of alveolar bone, periodontal ligament (PDL), and gingiva. 
Given the convenient accessibility and acquisition, dental tissues are 
promising cell sources for iPSC generation. Until now, iPSCs have 
been successfully generated from diverse dental tissues, including 
dental pulp, oral mucosa, gingiva, and PDL [32]. We herein focus on 
the details of the reprogramming methods and the efficiency of 
generating iPSCs derived from different dental tissues (Table 2). 
Notably, the proliferative ability of donor cells is positively asso-
ciated with the reprogramming efficiency of iPSCs [74]. Although the 
cellular origin also affects the differentiation potentials of iPSCs, 
which accounts for the transient epigenetic memory of the donor 
origin in early-stage iPSCs, these marks largely disappear upon 
passaging [75]. iPSCs derived from specific dental tissues, especially 
from the patients’ own tissues, may benefit in personalized dental 
application. 

2.2. Dental applications of iPSCs 

The addition of iPSCs with a silk scaffold and enamel matrix 
derivatives (EMD) promotes alveolar bone, cementum, and PDL 
formation [76]. iPSCs with EMD or growth/differentiation factor-5 
(GDF-5) in vitro dramatically up-regulate the gene expression of 
bone, PDL, and cementum with regard to periodontal tissues [77]. 
iPSCs and bone morphogenetic protein 6 (BMP-6) promote bone and 
cementum generation, while hydrogel-encapsulated iPSCs-BMP-6 
decrease the inflammatory cytokine levels and facilitate bone and 
PDL regeneration [78]. Human gingival fibroblasts (hGFs)-derived 
iPSCs with hydrogel have increased mineralized structure generation 
and higher expression of periodontal associated markers [79]. The 
ease of accessibility, high proliferation, and differentiation capability 
of iPSCs makes them an alternative cell source for tooth regenera-
tion. Wen et al. established a tooth germ model consisting of dental 
epithelial and mesenchymal cells isolated from the surrounding 
tissues of the mandibular incisor of ED14.5 mice and MEF-derived 
iPSCs and transplanted the constructed tooth germs into subrenal 
capsules for 4 weeks. Bone-, dentin-, and pulp-like structures and 
osteopontin were detected using hematoxylin and eosin (HE) and 
immunohistochemical staining [80]. Tooth-like structures (dental 
pulp, dentin, enamel space, and enamel organ) and enamel-se-
creting ameloblasts have been established in mouse subrenal Ta
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capsules by transplanting a recombinant unit of epithelial sheets 
differentiated from human urine induced pluripotent stem cells (hU- 
iPSCs) and the dental mesenchyme of E14.5 mouse [81]. The iPSCs 
derived from dental pulp stem cells (DPSCs) with poly-L-lactic acid 
scaffolds were transplanted into immunodeficient mice, afterwards, 
a structure of tubular dentin with a pulp-like tissue was formed [82]. 

Hertwig's epithelial root sheath (HERS) of the enamel organ is 
key in the formation of tooth roots [83]. Epithelial rests of Malassez 
(ERM) are epithelial remnants of HERS in the periodontium after 
tooth development [84]. Kim et al. immortalized epithelial-like stem 
cells derived from hiPSCs (EPI-hiPSCs) with HERS/ERM cell lines as 
feeder cells and demonstrated the amelogenic and odontogenic 
differentiation of EPI-hiPSCs by co-culturing them with hDPSCs [85]. 
Collectively, these studies suggest the promising potential of iPSCs in 
periodontal and tooth regeneration. 

2.3. Dental iPSC-derivatives 

2.3.1. Dental tissue derived iNCCs 
Dental stem cells can come from different human dental cells 

such as postnatal DPSCs, stem cells from human exfoliated decid-
uous teeth (SHED), hSCAPs, dental follicle precursor cells (DFPCs), 
periodontal ligament stem cells (PDLSCs) and the cells of oral mu-
cosa [86]. Dental tissues originate from the neural crest and can be 
used to generate neural crest like stem cells (NCLSCs) from dental 
tissue-derived iPSCs or DPSC [87–91]. Decreasing the fetal bovine 
serum concentration could increase the expression of neural crest 
markers, p75 and HNK-1, in SHED-derived dental stem cells [91]. A 
floating culture system is efficient in keeping DPSC stem properties 
and neural crest makers, nestin, CD271, and SOX-10 [90]. Ad-
ditionally, PDL-derived iPSCs exhibit higher differential capability 
and more NCC-associated phenotypes and functional hallmarks than 
non-neural crest tissue-derived iPSCs, although they are both HNK- 
1-positive, which indicates the priority of dental tissues as NCC 
sources [92]. Genome-wide microarray analysis revealed that NCC- 
derived mesenchymal progenitors shared a high degree of similarity 
to dental stem/progenitor cell populations including DPSCs, hSCAPs, 
PDLSCs, and BMSCs [43]. However, reports on the efficiency of 
generating iNCCs from dental tissue-derived iPSCs or DPSC are 
scarce. 

2.3.2. iNCCs and amelogenesis 
The ameloblasts of the enamel organ contribute to enamel forma-

tion [93]. It is well known that mesenchymal cells, derived from the 
NCC precursor, differentiate into dental papilla cells and dental follicle 
cells (DFCs), which contribute to form the dentin-pulp complex, PDL, 
and alveolar bone [94]. Recently, cell-type-specific genetic tools that 
enable labeling, monitoring, and manipulation of the organ components 
consist of a powerful approach for the study of tooth development and 
tooth regeneration. Combined with other recombinases and transcrip-
tional regulation system, the Cre driver transgenic mouse lines with Cre 
reporter lines have allowed more sophisticated control and tracing of 
specific cell population [95]. Through a Irf6 (expressed throughout the 
embryonic ectoderm) conditional knockout mouse generated via a 
Pitx2-Cre driver line, Chu et al. found that IRF6 has role in tooth number, 
crown and root morphology, and amelogenesis [96]. The Wnt1-Cre 
transgenic mice, known as an NCC-specific Cre mouse line, in combi-
nation with a Cre reporter line R26R reveals that NCCs contribute the 
formation of dentin-pulp complex rather than dental enamel in tooth 
development [97]. Although all these transgenic lines such as P3Pro-Cre  
[98] and Ht-PA-Cre [99], are reported to be NCC-specific, the expression 
patterns are different. Another NCC-specific Cre mouse line, P0-Cre, 
with R26R mice, indicate that NCCs are also responsible for the devel-
opment of the enamel organ and enamel formation [100]. Moreover, DiI 
(1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate) 

-labeled NCCs have been shown to be present in both the dental me-
senchyme and enamel organ epithelium [101]. 

2.3.3. iNCCs and odontogenesis 
Mouse iPSC-derived neural crest-like cells (iNCLCs) had a gene 

expression pattern associated with odontogenic mesenchymal cells; 
and the iNCLCs exhibited potential to differentiate into odontoblasts 
and dental pulp cells when cultured in conditioned medium of 
mouse dental epithelium cultures [102]. Seki et al. differentiated 
iPSC cell-derived neural crest-like cells (iNCLCs) into odontoblast- 
like cells by exogenously expressing Pax9 and Bmp4, the interaction 
of which regulated the extracellular matrix proteins, dentin matrix 
protein 1 (Dmp1), and dentin sialophos-phoprotein (Dspp), thereby 
regulating the mineralization function of odontoblast-like cells  
[103]. Notably, teratoma formation was not observed when iNCLCs 
and Pax9- and Bmp4-overexpressing iNCLCs were transplanted into 
mice, which indicated the safety without tumorigenicity of iNCLCs 
for tooth regeneration [103]. Mouse cranial neural crest cell line 
O9–1 and iNCLCs respectively differentiate into DMP-1+ odonto-
blasts in a developing tooth germ in vitro and form structural 
vascularized dentin-pulp complex with tooth scaffold in vivo [88]. 

2.3.4. iNCCs and cementogenesis 
Cranial neural crest-derived cells (CNCCs) differentiated into 

cementoblast-like cells when incubated with a DFC-conditioned 
medium supplemented with dentin non-collagenous proteins [104]. 
These cementoblast-like cells are associated with high ALP activity 
and enhanced calcified nodule formation. 

2.3.5. iNCCs and periodontal tissues and bone 
iPSCs-derived NCLCs cultured on an extracellular matrix (ECM) 

were indicative of decreased ESC and NCC markers, but increased 
MSC and PDL-related markers, which suggests the potential appli-
cation of iNCCs for PDL regeneration [105]. Neural crest stem-like 
cells derived from human gingiva-derived mesenchymal stem cells 
can differentiate into neuronal and Schwann-like cells and exhibit 
regenerative function in facial nerve defects in a rat model [106]. 
NCC-derived chondrocytes (NCC-Chs) and mesodermal cell-derived 
chondrocytes (MC-Chs) can form hyaline cartilage, with the former 
being more similar with native articular chondrocytes in terms of 
morphology and transcription than the latter [107]. 

Overall, iNCCs with dental epithelial cells are ideal cell resources 
for tooth regeneration. Given the structural complexity of the entire 
tooth, it is crucial to elucidate the mechanisms of iNCCs differ-
entiation into different odontogenic cells spatially and tempo-
rally (Fig. 2). 

2.3.6. Application of iMSCs 
Dental tissue engineering relies on signaling molecules, cells, 

blood supply, and scaffolds [108]. iMSCs cultured on biofunctional 
calcium phosphate cement (CPC) have increased proliferation, actin 
fiber expression, and osteogenic differentiation and mineralization, 
which indicate that iPSC-MSC-CPC have potential for bone re-
generation [109]. hiPSC-MSC like cells (hiMSCs) derived from gingiva 
and PDL can differentiate into osteoblasts, adipocytes, and chon-
drocytes in vitro; however, mineralized structures analogous to 
mature bone were only observed in PDL-derived hiMSCs when im-
planted into NOD/SCID mice in vivo [110]. In the first application of 
periodontal tissue regeneration using hiMSCs, which were im-
planted to the surgically modified alveolar bone defect on rats, the 
regeneration of fibrous tissue, mineralized tissue, and newly formed 
PDL-like tissue were promoted significantly [111]. The exogenous 
expression of TSG-6 in rat iMSCs dramatically attenuates the in-
flammatory reaction of experimental periodontitis and suppresses 
the osteoclast-associated alveolar bone resorption [112]. 
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The iNCCs-derived MSC-like cells (iNCMSCs) that our group gen-
erated exhibited homogenous character and osteochondral differ-
entiation in vitro, although they did not restore the osteochondral 
defects in rats [71]. However, in another study, thyroid cartilage was 
generated by transplanting clumps consisting of iMSCs via iNCCs in-
termediates and extracellular matrix complex into immunodeficient 
rats [72]. iMSCs may be promising cell sources for bone and cartilage 
regeneration with optimized induction conditions. 

Macroporous CPC scaffolds support the adhesion and viability of 
iPSC-derived human mesenchymal progenitors and affect the ex-
pression of bone-related genes, thereby having potential in dentistry 
and orthopedics [113]. Metformin treatment for iMSCs cultured on 
CPC scaffolds dramatically enhances alkaline phosphatase activity, 
mineralizes nodule generation, and upregulates the expression of 
osteogenic markers, RUNX2 and osterix, which indicates that met-
formin has potential application in bone and periodontal regenera-
tion in diabetic patients [114]. Anti-BMP2 antibody/BMP2 immune 
complex induces iMSCs to acquire osteogenic phenotype and mi-
neralization, which suggests that antibody-induced osteogenic dif-
ferentiation could be an alternative technology for iPSC-based tissue 
regeneration [115]. Kikuchi et al. recently differentiated iNCCs into 
iMSCs, which were differentiated into osteoblasts, adipocytes, and 
chondrocytes in vitro, and had capability to regenerate craniofacial 
bone in vivo without tumor formation [116]. 

3. Cell banking of iPSCs to improve efficiency 

It is quite time-consuming to obtain personalized patient-de-
rived iPSCs and amplify them to a large enough scale for clinical 
application. Considering the foreign human leucocyte antigens 
(HLA), the approach of genetic modification to generate a ‘universal 
donor’ or a cell bank consisting of HLA-typed iPSCs could reduce the 
immune rejection and also the dosage of immunosuppressive agents 
[117]. The HLA-typed iPSCs from healthy donors or the patients will 
benefit both allogeneic and autologous therapies. The process of 
banking iPSC cell lines that have homozygous HLA haplotypes is 
indicated as iPSC haplobanking [117]. The center for iPS Cell Research 
and Application, Kyoto University, is engaged in developing clinical 
grade iPSCs from HLA-homozygous donors [118]. Besides HLA- 
homozygous iPSCs, HLA-matched or histocompatible cell sources 
supply another strategy to construct iPSC stock. iPSCs have been 
generated successfully from dental pulp cells obtained from ex-
tracted third molars; three homozygous HLA loci (HLA-A, B, and DR) 
from 2 out of 107 donors were found, estimated to cover probably 
20% of the Japanese population for best loci matches [119,120]. Fifty 
iPSC cell lines containing the same 3-HLA-loci could cover 90% of the 
Japanese population with perfect matches for these loci [121,122]. Xu 

et al. generated HLA-C-retained but HLA-A&B-disrupted im-
munocompatible iPSCs, 12 lines of which along with HLA-class Ⅱ 
knockout were suggested to cover >  90% of the global population in 
terms of immunological compatibility [123]. The Korea National 
Stem Cell Bank has preserved 22 Good Manufacturing Practice- 
compliant homozygous HLA-type iPSC lines that cover HLA haplo-
type compatibility for 51% of the Korean population [124]. Eighteen 
kinds of quality tests including identity, sterility, consistency, sta-
bility, and safety had been performed to ensure the quality of the 
stocking cell lines. The European Bank for induced Pluripotent Stem 
Cells has deposited more than 900 iPSC lines [125]. There is still a 
long way to realize iPSC-based regenerative medicine products, thus 
it is indispensable to build a global network with comprehensive 
collaboration on tissue acquirement, iPSC reprogramming, in vitro 
passaging, quality control, data management, and ethical and legal 
framework. 

4. Concluding remarks 

The development of reprogramming technologies will facilitate 
iPSC generation without tumorigenicity and genetic instability. 
Additionally, the application of lineage-specific progenitor cells de-
rived from iPSCs (e.g., iNCCs and iMSCs), cannot only restrict iPSC 
tumorigenicity, but also simplify procedures via feeder-free culture 
systems. Although iPSCs, iNCCs, and iMSCs have potential applica-
tions in periodontal and tooth regeneration, more comparative stu-
dies in vitro and in vivo and clinical trials need to be conducted. 
Given the structural complexity of teeth, it is crucial to elucidate the 
integrated mechanisms of all constitutive cells and the spatio-tem-
poral interactions among them to generate functional teeth. 
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