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Abstract: The first organic metals were obtained based on tetrathiafulvalene. The most significant
advance in the field of organic metals was the discovery of superconductivity. The first organic super-
conductors were obtained based on tetramethyltetraselenafulvalene. These facts demonstrate great
importance of tetraselenafulvalenes and their precursors, diselenafulvenes, for materials sciences.
Derivatives of 1,4-diselenafulvene and 1,4,5,8-tetraselenafulvalene are useful building blocks for
organic synthesis and donor units for the preparation of charge-transfer complexes and radical ion
salts, the construction of organic metals, superconductors, organic Dirac materials, semiconductors,
ferromagnets, and other conductive materials. This review covers the literature on the design, syn-
thesis, and application of 1,4,5,8-tetraselenafulvalenes and 1,4-diselenafulvenes and their tellurium
analogs over the past 15–20 years. These two classes of compounds are interconnected, since the main
part of methods for the synthesis of tetraselenafulvalenes is based on the diselenafulvene derivatives
as starting compounds. Special attention is paid to the development of novel efficient synthetic
approaches to these classes of compounds. Conducting properties and distinguishing features of
materials based on tetraselenafulvalenes and their tellurium analogs as well as examples of materials
with high conductivity are discussed.

Keywords: diselenafulvenes; tetraselenafulvalenes; ditellurafulvenes; tetratellurafulvalenes; hetero-
cycles; materials sciences; superconductors

1. Introduction

Historically, the first organic metals based on 1,4,5,8-tetrathiafulvalene (TTF) were
discovered. The preparation of a conducting TTF salt was described in 1972 [1] and
the synthesis of first organic metal, a complex of TTF with tetracyanoquinodimethane
(TCNQ), was reported in 1973 [2]. The TTF-TCNQ complex behaved as a metal over a
large temperature range and had by far the largest maximum electrical conductivity of any
organic compound known at that time [2].

The discovery of organic metals gave impetus to the development of synthetic ap-
proaches to a variety of structural modifications of TTF, which have been carefully studied
in search of organic metals with high conductivity [3–5]. As the replacement of skeletal sul-
fur atoms of TTF by more polarizable selenium atoms has been generally recognized as an
effective approach to superior electron donors with enhanced intermolecular interactions,
selenium analogs of TTF, 1,4,5,8-tetraselenafulvalene (TSF), have received much attention
and have been intensively studied as electron donors for the preparation of conducting
materials [4–6].

The most significant advance in the field of organic metals has been the discovery of
their superconductivity. The first organic superconductor was synthesized by Bechgaard
et al. based on tetramethyltetraselenafulvalene (TMTSF) [6]. It was obtained in the form of
single-crystal salts with a composition of 2:1, (TMTSF)2PF6, by electrochemical oxidation of
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TMTSF in the presence of the corresponding tetraalkyl ammonium salts. Later, a number
of similar salts, which exhibit superconductivity, were synthesized based on TMTSF and
were named Bechgaard’s salts [6]. These historical facts demonstrate great importance of
TSF derivatives and their precursors, 1,4-diselenafulvene, for materials sciences.

The Bechgaard’s salts have the general formula (TMTSF)2X, where X− is a monovalent
anion. The formation of the charge transfer salts includes the transfer of one electron from
two TMTSF molecules to one X molecule.

Derivatives of 1,4-diselenafulvene and 1,4,5,8-tetraselenafulvalene are of great interest
as important heterocyclic building blocks and scaffolds for organic synthesis. These two
classes of compounds are interconnected, since the methods for the synthesis of tetraselena-
fulvalenes are considerably based on diselenafulvene derivatives. The tetraselenafulvalene
derivatives serve as donor units for the preparation of charge-transfer complexes and
radical ion salts, the construction of organic metals [7–11], semiconductors [12–14], super-
conductors [15–22], ferromagnets [23], and other conducting materials [24–32]. It should
be noted that the bis(ethylenedithio)tetraselenafulvalene (BETS) derivatives yielded more
organic metals and superconductors than other TSF derivatives [20–22]. The unsymmetrical
analog of BETS, bis(ethylendithio)dithiadiselenafulvalene (BEDT-STF), is also an important
donor. Various new molecular conductors including organic Dirac materials and magnetic
conductors have been developed based on the BETS and BEDT-STF salts [20–22,31,32].

In 2004, the journal “Chemical Reviews” published an issue devoted to the preparation
and properties of organic conductors and superconductors, as well as methods for the syn-
thesis of their molecular components, in which significant place was given to the TSF deriva-
tives [28–30]. The tellurium analogs, 1,4-ditellurafulvene and 1,4,5,8-tetratellurafulvalene
derivatives, are also of high interest, as it can be seen from a 2003 review [33], which is
devoted to the synthesis and physicochemical properties of 1,4-dichalcogenafulvenes and
1,4,5,8-tetrachalcogenafulvalenes.

However, since then and to the present, a number of novel synthetic approaches to
1,4-diselenafulvene and TSF derivatives have been developed and new data for material sci-
ences have been obtained that require processing and rationalization. This article presents a
review of the literature on 1,4-diselenafulvene and TSF derivatives, as well as on tellurium
analogs of these compounds, mainly for the last 15–20 years.

2. The 1,4-Diselenafulvene and 1,4,5,8-Tetraselenafulvalene Derivatives
2.1. Non-Condensed 1,4-Diselenafulvenes

1,4-Diselenafulvene 1 was obtained based on available and inexpensive industrial
starting reagents, selenium and acetylene, in the KOH-HMPTA-H2O system (100–140 ◦C,
10–15 atm). The proposed route for the formation of compound 1 includes the generation
of the acetylide anion from acetylene and potassium hydroxide, its insertion reaction
with selenium, followed by heterocyclization of the resulting ethyneselenolate anions
(Scheme 1) [34].
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Scheme 1. Synthesis of 1,4-diselenafulvene 1 from acetylene and selenium [34]. Scheme 1. Synthesis of 1,4-diselenafulvene 1 from acetylene and selenium [34].

Heterocycle 1 is an important intermediate in organic synthesis as well as the starting
material for preparation of 1,4,5,8-tetraselenafulvalene 2. The latter is the electron donor
for the synthesis of organic metals: charge transfer complexes and radical ion salts with
high electrical conductivity.
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(E)-2-Benzylidene-4-phenyl-1,3-diselenole 3 is a promising product, which exhibits
antioxidant, hepatoprotective, and anticonvulsant activity [35–37]. Protonation of lithium
phenylalkyneselenolate 4 leads to dimerization and the formation of 1,3-diselenole 3 in 64%
yield. Phenylacetylene was deprotonated with n-BuLi in THF solution at low temperature
(−78 ◦C) in order to obtain lithium phenylalkyneselenolate 4. This lithium derivative was
used in situ in the insertion reaction with elemental selenium producing compound 4 in
94% yield (Scheme 2) [38,39].
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Scheme 2. The preparation of (E)-2-benzylidene-4-phenyl-1,3-diselenole 3 from phenylacetylene and
selenium [38,39].

Diselenole 3 was previously obtained in 94% yield by the one-pot efficient method
based on the reaction of phenylacetylene with elemental selenium in the system KOH-
HMPA-H2O [40].

Selenoketones are promising intermediates for the synthesis of selenium-containing
heterocycles [41–43]. The reaction of selenourea with benzoylbromoacetylene in the pres-
ence of triethylamine led to the formation of 3,5-dibenzoyl-1,4-diselenafulvene (5) in 60%
yield (Scheme 3) [41].
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Scheme 3. The synthesis of 3,5-dibenzoyl-1,4-diselenafulvene (5) by the reaction of selenourea with
benzoylbromoacetylene in the presence of triethylamine [41].

Lithiation of ethyl propiolate with lithium hexamethyldisilazide in THF followed
by selenium insertion reaction gives ethyl 2-(2-ethoxy-2-oxoethylidene)-1,3-diselenole-4-
carboxylate in 75% yield as a mixture of E- and Z-isomers (6a,b) (Scheme 4) [44].
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Scheme 4. The preparation of ethyl 2-(2-ethoxy-2-oxoethylidene)-1,3-diselenole-4-carboxylate as a
mixture of E- and Z-isomers (6a,b) [44].

The recrystallization of this mixture made it possible to obtain pure Z-isomer 6b
suitable for X-ray diffraction analysis. Diselenoles 6a,b turned out to be interesting crys-
talline compounds that exhibit an unusual coordination between the oxygen atom of the
oxoethylidene group and the nearest selenium atom [44]. It is interesting to note that, under
the action of the daylight, the E-isomer 6a in solution was completely converted to the
Z-isomer 6b (Scheme 4), presumably through a photochemically induced isomerization
mechanism. This conversion did not occur in the dark [44].

The reaction of 2-methylene-1,3-dimethylimidazolidine with selenium monochloride
followed by treatment with triethylamine gave 2-(1,3-dimethylimidazolidinium) diseleno-
carboxylate (7) in 48% yield as thermo stable crystals. This compound reacted with two
equivalents of dimethyl- and diethyl acetylenedicarboxylates in dichloromethane at room
temperature to afford 1:2 adducts 8a,b in 67% and 60% yields, respectively (Scheme 5) [45].
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and selenium monochloride [45].

The new convenient approach to (Z)-2-(2-chloro-5-nitrobenzylidene)-4-(2-chloro-5-
nitrophenyl)-1,3-diselenole 10 in 78% yield was developed based on available 4-(2-chloro-5-
nitrophenyl)-1,2,3-selenadiazole 9 (Scheme 6). The nature and position of the substituents
in compound 10 make it convenient for further use as a building block for obtaining more
complex derivatives. For example, the nitro group in the aryl ring can be reduced to the
amino group, while the halogen atom can be used in various cross-coupling reactions [46].
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Scheme 6. The new convenient approach to (Z)-2-(2-chloro-5-nitrobenzylidene)-4-(2-chloro-5-
nitrophenyl)-1,3-diselenole 10 [46].

4-(2-Naphthyl)-1,2,3-selenadiazole 12 was obtained in 76% yield from 2-naphthylmethyl
ketone 11, selenium dioxide, and semicarbazide. Upon treatment with potassium tert-
butylate in anhydrous THF or potassium hydroxide in absolute dioxane, selenadiazole 12
was converted to 2-(2-naphthyl)potassium ethyneselenolate 13, which, in turn, underwent
dimerization to 4-(2-naphthyl)-2-[1-(2-naphthyl)methylidene]-1,3-diselenole 14 in 90% yield
upon protonation (Scheme 7) [47,48].
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Diselenafulvene 14 was also obtained by treating a dioxane solution of compound 12
with an ethanolic potassium hydroxide solution [47,48].
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2.2. Condensed 1,4-Diselenafulvenes and 1,4,5,8-Dithiadiselenafulvalenes

A new method for the synthesis of 4,5-alkylene-diseleno-1,3-diselenole-2-thiones 15a,b
was developed without using the highly toxic reagent carbon diselenide (CSe2). The reac-
tion of lithiated thione 16 with bis(selenocyanato)methane or 1,2-bis(selenocyanato)ethane
was carried out at low temperature in dry THF leading to products 15a,b. The latter
compounds were readily converted to the corresponding ketones 17a,b in 59% and 89%
yields, respectively, by the conventional method using Hg(OAc)2/acetic acid/chloroform
(Scheme 8) [49].
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Scheme 8. The synthesis of 1,3-diselenole-2-thiones 15a,b and methylene- and ethylenediselenole
derivatives 17a,b [49].

Methylene- and ethylenediselenole derivatives 17a,b are valuable precursors for the
preparation of a wide range of tetraselenafulvalenes.

It was found that the cross-coupling of 4,5-ethylenedioxy-1,3-dithiol- and -1,3-diseleno-
le-2-thione (18 and 19) with compound 20 in the presence of triethylphosphite in refluxing
toluene or benzene proceeded with abnormal ring opening giving 2-(thioxomethylidene)-
and 2-(selenoxomethylidene)-1,3-diselenoles (21 and 22) in 30% and 52% yields, respec-
tively (Scheme 9) [50]. In the reaction of thione 18 with ketone 20, along with compound 21,
the expected product, ethylenedioxy-1,3-diselene-1,3-dithiafulvalene (23) in 37% yield was
formed, while the reaction of thione 19 with ketone 20 proceeded without the formation of
the corresponding tetraselenafulvalene (Scheme 9). The proposed pathway for the forma-
tion of heterocycles 21 and 22 included the attack of triethylphosphite on the thiocarbonyl
group of compounds 18 and 19, which promoted the breaking of neighboring C-S and C-Se
bonds, followed by cross-coupling of the formed intermediates with ketone 20 [50].
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New functionalized diselenafulvene 27 was synthesized in 78% yield based on 1,3-
diselenole-2-selone and zinc complex of intermediate compound, cyanoethylsulfanyl-
substituted ethylenedioxytetrathiafulvalene 24, which was obtained by cross-coupling of
4,5-ethylenedioxy-1,3-dithiol-2-thione 18 with 4,5-bis(2-cyanoethylthio)-1,3-dithiol-2-one
(25) in the presence of triethylphosphite (Scheme 10) [51].
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Scheme 10. The synthesis of diselenafulvene 27, an electron donor [51].

Studies of the electrochemical properties of the compound 27 showed that it is a good
electron donor, which can be used to obtain conducting materials [51].

The synthesis of dimethyl-, bis(methylthio)-, and ethylenedithio derivatives of dithiadi-
selenafulvalene 28a–c is outlined in Scheme 11 [52]. The first of these three-step pathways
was a cross-coupling reaction between 4-methylthio-5-(2-methoxycarbonylethylthio)-1,3-
diselenole-2-selone or -1,3-diselenole-2-one 29a,b with 1,3-dithiole-2-chalcogenones 30a–c
in the presence of trimethylphosphite. Yields of cross-coupling products 31a–c were 29%,
78%, and 73%, respectively. At the second stage, compounds 31a–c were subjected to
deprotection of the 2-methoxycarbonylethylthio group with cesium hydroxide in a DMF
solution and in situ treatment with bromochloromethane to give the corresponding 2-
methylthio-3-chloromethylthio derivatives of dithiadiselenafulvalene 32a–c in 87%, 52%,
and 61% yields, respectively. The ring closing reaction via transalkylation at the sulfur
atom was initiated by treatment with sodium iodide to obtain derivatives 28a–c in 37%,
57%, and 66% yields, respectively. The resulting compounds were found to have good
electron-donating properties. A radical cation salt with AsF6

− anion, which exhibited
semiconductor properties, was obtained based on compound 28c [52].
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Scheme 11. The synthetic approach to derivatives of 2,3-cyclohexylenedithio-1,4-dithia-5,8-
diselanafulvalene [52].

One of the most important donors, unsymmetrical bis(ethylenedithio)diselenadithiaful-
valene (BEDT-STF) 33, can be obtained by the method depicted in Scheme 12 [53]. The cross-
coupling reaction of 4,5-ethylenedithio-1,3-diselenole-2-one 34 with 4,5-ethylenedithio-1,3-
dithiol-2-thione 30c proceeded in triethylphosphite at 110–120 ◦C for 30 min in a nitrogen
atmosphere affording product 33 in 46% yield. The yield of product 33 was significantly
lower (7%) in the case of using 4,5-ethylenedithio-1,3-dithiol-2-one 35 (Scheme 12) [53].
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While most organic compounds require high pressures to exhibit Dirac-cone-type
band structures, the organic charge-transfer complex (33)2I3 exhibits unique properties to
form Dirac electron states under ambient pressure [32,53–57].
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The efficient synthesis of 2,3-cyclohexylenedithio-1,4-dithia-5,8-diselanafulvalene 36
was developed based on the cross-coupling reaction of 4,5-cyclohexylenedithio-1,3-dithiole-
2-thione 37 with 1,3-diselenole-2-ketone 38 (Scheme 13) [58]. The reagents were heated
at 110 ◦C in the presence of triethylphosphite for 2 h. After cooling the mixture to room
temperature, removing the solvent, and the purification by column chromatography, the
target product 36 was obtained in 62% yield.
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The product 36 revealed donor properties and was used for the preparation of a
new maleonitrile dithiolate nickel complex, 36·Ni[S(CN)C=C(CN)S]2. It was found, how-
ever, that this complex had usual mixed donor-acceptor stacks and exhibited dielectric
properties [58].

The synthetic approach to 5-H-(1,3-diselenole-2-ylidene)-1,3-dithia-4,6-diselenapentalene
39 is shown in Scheme 14 [59]. The cross-coupling reaction of 1,3-diselenole-2-one 38 and 4,5-
bis[(2-methoxycarbonyl)ethylseleno]-1,3-dithiol-2-thione 40 gave 2,3-bis[(2-methoxycarbon-
yl)ethylseleno]diselenadithiafulvalene 41 in 68% yield. Then, deprotection of the methyl
propionate group in compound 41 with cesium hydroxide led to the formation of disele-
nadithiafulvalene diselenolate dianione 42, which was realkylated with diiodomethane
to afford the expected product, methylene diselenadithiadiselenafulvene 39 in 75% yield
(Scheme 14) [59].
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Scheme 14. The synthetic routes to 5-H-(1,3-diselenole-2-ylidene)-1,3-dithia-4,6-diselenapentalene 39
and 5-H-(1,3-dithiol-2-ylidene)-1,3,4,6-tetraselenapentalene 43 [59].

The preparation of 5-H-(1,3-dithiol-2-ylidene)-1,3,4,6-tetraselenapentalene 43 was
carried out according to a modified procedure using 4,5-bis(methoxycarbonyl)-1,3-dithiol-
2-thione 44 instead of the original 1,3-dithiol-2-thione 35 (Scheme 14) [59].

The cross-coupling of thione 44 with compound 45 gave the desired unsymmetrical
intermediate product 46 in 69% yield. The formation of the selenium-containing ring was
carried out in the same way as for the synthesis of compound 39. However, in this case, a
mixture of the reaction products, diester 47a and monoester 47b, was formed. The latter
compound was a partially deesterified product, the formation of which was probably
caused by the action of cesium iodide. Precursors 47a and 47b were converted to product
43 using standard deesterification conditions (Scheme 14) [59].

The compounds 39 and 43 exhibited fairly good electron-donor properties among
the selenium-modified series of methylenedithio tetrathiafulvalenes. Based on these new
donors, electrocrystallization in the presence of tetrabutylammonium salts (n-Bu4NX,
X = Br, AuI2, I3) gave radical-cationic salts κ-(39)2Br, θ-(39)I1.26, (43)2(AuI2)0.44, and (43)I1.26.
All the obtained salts showed metallic properties down to a temperature of 1.5 K [59].
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The cross-coupling reaction of 4,5-trimethylene-1,3-diselenole-2-one 48 with 4,5-bis(2-
cyanoethylthio)-1,3-dithiol-2-one 25 in the presence of trimethyl phosphite at 110 ◦C gave
trimethylenediselenadithiafulvalene 49 in 12% yield. The diselenadithiafulvalene 49 was
used in the synthesis of components of single metal complexes. Further deprotection of
compound 49 and its treatment with a methanol solution of NiCl2·6H2O or HAuCl4·4H2O
in the temperature range from −78 ◦C to room temperature led to nickel-gold complex 50a
and 50b, which afforded one-component metal complexes 51a and 51b after electrocrystal-
lization (Scheme 15) [59].

Molecules 2022, 27, x FOR PEER REVIEW 8 of 34 
 

 

4,5-bis(methoxycarbonyl)-1,3-dithiol-2-thione 44 instead of the original 
1,3-dithiol-2-thione 35 (Scheme 14) [59]. 

The cross-coupling of thione 44 with compound 45 gave the desired unsymmetrical 
intermediate product 46 in 69% yield. The formation of the selenium-containing ring was 
carried out in the same way as for the synthesis of compound 39. However, in this case, a 
mixture of the reaction products, diester 47a and monoester 47b, was formed. The latter 
compound was a partially deesterified product, the formation of which was probably 
caused by the action of cesium iodide. Precursors 47a and 47b were converted to product 
43 using standard deesterification conditions (Scheme 14) [59]. 

The compounds 39 and 43 exhibited fairly good electron-donor properties among 
the selenium-modified series of methylenedithio tetrathiafulvalenes. Based on these new 
donors, electrocrystallization in the presence of tetrabutylammonium salts (n-Bu4NX, X = 
Br, AuI2, I3) gave radical-cationic salts κ-(39)2Br, θ-(39)I1.26, (43)2(AuI2)0.44, and (43)I1.26. All 
the obtained salts showed metallic properties down to a temperature of 1.5 K [59]. 

The cross-coupling reaction of 4,5-trimethylene-1,3-diselenole-2-one 48 with 
4,5-bis(2-cyanoethylthio)-1,3-dithiol-2-one 25 in the presence of trimethyl phosphite at 
110 °C gave trimethylenediselenadithiafulvalene 49 in 12% yield. The diselenadithiaful-
valene 49 was used in the synthesis of components of single metal complexes. Further 
deprotection of compound 49 and its treatment with a methanol solution of NiCl2·6H2O 
or HAuCl4·4H2O in the temperature range from ‒78 °C to room temperature led to nick-
el-gold complex 50a and 50b, which afforded one-component metal complexes 51a and 
51b after electrocrystallization (Scheme 15) [59]. 

 
Scheme 15. The synthesis of trimethylenediselenadithiafulvalene 49 and its complexes with nickel 
50a,b and gold 51a,b [59]. 

The obtained one-component molecular conductors with diselenadithiafulvalene 
skeletons 51a,b showed high three-dimensional conductivity at room temperature 
[60,61]. 

The compound dimethyldiselenadithiafulvalene 52, the analog of diselenadithia-
fulvalene 49, was obtained by a similar way outlined in Scheme 16. The resulting nickel 
unsymmetrical complex 53 exhibited a strong third-order non-linear optical response in 
the visible and near-infrared regions of the spectrum and was regarded as a possible 
photoconductor [62]. 

 
Scheme 16. The synthesis of nickel unsymmetrical complex 53 [62]. 

Bis(1,3-dithiole-2-thione-4,5-dithiolato)nickelate, Ni(dmit)2, having the complex 
53-like structure, was studied by Naito and colleagues and showed photochemical 

Scheme 15. The synthesis of trimethylenediselenadithiafulvalene 49 and its complexes with nickel
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The obtained one-component molecular conductors with diselenadithiafulvalene
skeletons 51a,b showed high three-dimensional conductivity at room temperature [60,61].

The compound dimethyldiselenadithiafulvalene 52, the analog of diselenadithiaful-
valene 49, was obtained by a similar way outlined in Scheme 16. The resulting nickel
unsymmetrical complex 53 exhibited a strong third-order non-linear optical response in
the visible and near-infrared regions of the spectrum and was regarded as a possible
photoconductor [62].
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Bis(1,3-dithiole-2-thione-4,5-dithiolato)nickelate, Ni(dmit)2, having the complex 53-
like structure, was studied by Naito and colleagues and showed photochemical proper-
ties in the composition with N,N′-ethylene-2,2′-bipyridinium [63] and methyl viologen
salts [64].

The compound 58 was obtained in 67% yield from 5,6-dibromo-4,7-diethylbenzotrisele-
nole 55 via intermediate compound, 4,5-(o-xylylenediseleno)-3,6-diethyl-1,2-dibromobenzene
(56) (Scheme 17) [65]. The latter compound, after removing the o-xylylene protecting group,
was involved in the reaction with carbonyldiimidazole. The reaction of compound 58
with 4,5-bis(butylthio)-1,3-dithiol-2-thione in triethylphosphite at 120 ◦C for 3 h led to
3,6-diethylphthalonitrile 59, containing the dithiadiselenafulvalene moiety. The dithiadis-
elenafulvalene tetramer-octamethylphthalocyanine 60 was obtained in 33% yield by the
treatment of compound 59 with lithium alkoxide at 120 ◦C. The compound 60 was involved
in the reaction with nickel acetate at 155 ◦C affording a nickel complex 61 (Scheme 17) [65].
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Compounds 60 and 61 were used for preparation of electron transfer complexes, which
showed a radical cationic character. The charge in the diselenadithiafulvalene structure can
be delocalized to the entire molecule [65].

A simple method for the synthesis of tetrathiafulvalene vinylogs, substituted diselena-
fulvenes, has been developed. Triethylphosphite was added to a solution of the aldehyde
and pyrazine-substituted 1,3-diselenole-2-thione in toluene (or benzene) and the mixture
was refluxed for 2 h. The target product 62 was isolated in 75% yield (Scheme 18) [66].
This method is applicable to the synthesis of 1,3-diselenoles containing exotic substituents
(such as the pyrazine ring), which are sensitive to some highly reactive reagents used in the
classical Wittig reaction.
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Scheme 18. The synthesis of compound 62 [66].

Diselenadithiafulvalene 63, condensed with the pyrazine cycle, was synthesized from
pyrazino-1,3-diselenole-2-one 64 and 4,5-bis(methylthio)-1,3-dithiol-2-thione 65 (Scheme 19) [67].
A mixture of compounds 64 and 65 was heated in triethylphosphite at 120 ◦C in a nitrogen
atmosphere for 2 h. The copper complexes CuCl2(63)2 and [Cu2Br2.5(63)] were obtained
by the method of vertical diffusion. The first complex exhibited the dielectric properties,
whereas the second complex showed the properties of semiconductor (Scheme 19) [67].

The synthesis of 5-(1,3-diselenole-2-ylidene)-1,3,4,6-tetrathiapentaline (66) in 28% yield
by the cross-coupling reaction between 1,3-dithiol-2-one derivative 67 condensed with
diselenadithiafulvalene and 4,5-bis(methylthio)-1,3-dithiol-2-thione (30b) was developed
by refluxing the reagents in toluene in the presence of trimethylphosphite (Scheme 20) [68].
The radical-cationic salt (66)4PF6 was studied by the voltammetric method and showed
metallic properties down to 5 K.
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The efficient synthesis of catechol-condensed dithiadiselenafulvalene derivative 68
was developed (Scheme 21) [69]. Compound 68 was a new type of molecular π-electron
donor having two phenolic hydroxyl groups, which was promising for the preparation of
charge transfer salts. Treatment of compound 69 with NaOMe and ZnCl2 followed by reac-
tion with thiocarbonyldiimidazole under acidic conditions gave 1,3-benzodithiol-2-thione
derivative 70 in 60% yield followed by removing benzyl protecting groups by treatment
with BF3·Et2O and BuSH. Subsequent re-protection with tert-butyldimethylsilyl group gave
compound 71 in 53% yield. Finally, the target compound 68 was obtained in 62% yield by
cross-coupling reaction between the product 71 and ketone 34 in triethylphosphite followed
by deprotection of the tert-butyldimethylsilyl group in compound 72 (Scheme 21) [69].
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catechol [69].

Selenium-containing tetrathiapentalene condensed compounds with the fulvalene moi-
ety 73a–f were synthesized by three successive cross-coupling reactions (Scheme 22) [70,71].
Iodine salts (73a)(I3)5/3 and (73b)(I3)5/3 showed high conductivity at room temperature [70],
whereas salts based on arsenic fluoride (73c)(AsF6)0.32 and (73f)(AsF6)0.35 exhibited semi-
conductor properties [71].

Two new donor molecules of the tetrathiapentalene type, compounds 74a,b, containing
two selenium atoms and six sulfur atoms in the heterocyclic skeleton, were synthesized
by the cross-coupling reaction depicted in Scheme 23 [72]. This combination of the sulfur
and selenium atoms in the heterocyclic scaffold results in a particular type of resistivity:
flat resistivity over a wide temperature range for the PF6 and AsF6 salts of 74a,b, which
showed good conductivity [72].
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New selenium-containing π-extended donors, the products 76a,b were synthesized by
the cross-coupling reaction of compound 77 with 4,5-ethylenedithio-1,3-dithiol-2-thione or
-2-one 34 (Scheme 24) [73]. The intermediate compound, tetrahydrothiophen-2-one 77, was
obtained by the cross-coupling of 4,5-ethylenedithio-1,3-diselenole-2-one 34 with succinic
thioanhydride in the presence of triethylphosphite.
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It was found that the PF6, AsF6, and SbF6 salts of the product 76b exhibited metallic
properties down to 2 K, while the PF6 and AsF6 salts of compound 76a showed semicon-
ducting behavior.

2.3. Halogenated 1,4-Diselenafulvenes and 1,4,5,8-Dithiadiselenafulvalenes

Halogenated sulfur and selenium-containing fulvalenes have attracted much attention
in respect to the unique crystal and electronic structures of their cation radical salts [74–76].
In contrast to the other halogenated fulvalenes, iodinated diselenafulvalenes have special
ability to construct an intermolecular “iodine bond” by interaction of the iodine atom with
other functional groups. The physical properties of materials such as organic conductors
depend considerably on the crystal structure properties, and introduction of an “iodine
bond” is one of the most effective methods of design and crystal engineering in organic
conductors [74–76].

A new efficient multistep method for the synthetic preparation of 1,3-diselenole-2-
thione 16 in 76% yield without the use of toxic carbon diselenide (CSe2) was developed
(Scheme 25) [74]. Dicyclopentadienyl dichlorotitanium and readily available elemental
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selenium were used as starting materials in this synthesis. The resulting diselenafulvene
16 was converted into iodo derivatives 78 and 79. In order to introduce efficiently the
iodine atoms and to obtain compounds 78 and 79 in good yields (51% and 97% yields,
respectively), a 17-fold excess of perfluorobutyl iodide (PFBI) and a 6-fold excess of lithium
diisopropylamide were used (Scheme 25) [74]. The products 78 and 79, in turn, were
regarded as valuable starting compounds for the synthesis of various tetraselenafulvalene
derivatives.
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The iodine-substituted analog of dithiadiselenafulvalene, compound 80, was syn-
thesized in 72% yield by successive iodination of the starting 1,2-dithiol-2-thione
with iodine monochloride and the cross-coupling reaction of product 81 with ke-
tone 34 (Scheme 26) [75]. The salt (80)4[Fe(CN)5NO] was prepared by electrocrys-
tallization from a solution of the corresponding donor dithiadiselenafulvalene 80 in
dichloromethane and bis(tetraphenylphosphonium)nitroprusside, (PPh4)2·[Fe(CN)5NO],
which was used as an electrolyte. It is worth noting that the salt (80)4[Fe(CN)5NO]
exhibited semiconducting properties [75].
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New halogenated diselenadithiafulvalenes 82 and 83, containing both chlorine and io-
dine atoms, were synthesized in 44% and 83% yields, respectively, by the reaction sequence
shown in Scheme 27 [76]. Intermediate compound 84 was obtained by successive lithiation
by lithium diisopropylamide, chlorination with hexachloroethane, and iodination of the
lithium derivative of 1,2-dithiol-2-thione with iodine monochloride. Compound 84 was con-
verted to ketone 85 using the Hg(OAc)2-CHCl3-AcOH system. Intermediate compounds
84 and 85 were further involved in the cross-coupling reactions with the corresponding
ketone 34 and thione 86. Studies of the properties of compounds 82 and 83 showed that
the chlorine atom mainly contributes to the electronic properties within one molecule,
and the iodine atom to intermolecular interaction through the iodine bond. Appropriate
application of the different roles of halogen atoms can be useful for the development of
new supermolecular organic conductors based on these compounds (Scheme 27) [76].
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The cross-coupling reaction of 4,5-dibromo-1,3-dithiol-2-thione 87 with 4,5-ethylenedithio-
1,3-diselenole-2-one 34 afforded 4,5-dibromo-4’,5’-ethylenedithiodiselenadithiafulvalene
88 in 80% yield (Scheme 28) [77]. Compound 88 exhibited electron-donating properties. A
charge-transfer complex of compound 88 with tetracyanoquinodimethane, (88)2[TCNQ],
was obtained by slow evaporation of dichloromethane from a solution of these com-
pounds [77].
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Scheme 28. The synthesis of compound 88 [77].

The authors noted that bromo derivatives of selenafulvalenes were more available
compounds compared to the analogous iodo derivatives. However, the bromo deriva-
tives also display donor abilities and can be used for the preparation of charge-transfer
complexes [77].

2.4. Non-Condensed 1,4,5,8-Tetraselenafulvalenes

Convenient and practical synthetic procedures for the preparation of diselenafulvene 1
and tetraselenafulvalene 2 based on selenium and sodium acetylide were developed
(Scheme 29) [78]. This approach has the advantage of using cheap, non-toxic selenium
powder as the selenium source and commercially available sodium acetylide in xylene
light mineral oil.
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The authors emphasized that only two steps were required for the synthesis of the
target compound by this method, which was suitable for laboratory-scale preparation,
about 7 g of diselenafulvene 1 and more than 2 g of fulvalene 2 can be obtained by these
two experiments under laboratory conditions [78]. The authors also noted that in combi-
nation with previously developed methods (the functionalization of tetraselenafulvalene
2 as protected thiolate or selenolate moieties followed by their deprotection/realkylation
chemistry), the present approach paved a practical way to various heterocycle-fused tetrase-
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lenafulvalene type donors, which can be used to produce superconducting radical cation
salts (Scheme 29) [78].

Electrochemical oxidation of tetraselenafulvalene 2 in the presence of potassium
nitroprusside K2[FeNO(CN)5]·2H2O and 18-crown-6 using nitrobenzene as a solvent gave
a new single-crystal radical cationic salt (2)7[FeNO(CN)5]2, which showed the properties of
a conductor at room temperature and 130 K [79].

Efficient syntheses of tetramethyltetraselenafulvalene (89) were developed in the last
century [4–6]. An interesting method for the preparation of tetramethyltetraselenafulvalene,
doubly labeled with 13C isotope at the positions 2 and 2’ (4,4’,5,5’-tetramethyl ∆2,2-bis-1,3-
diselenole 89*) was described (Scheme 30) [80]. Labeled with 13C isotope carbon diselenide
was obtained from 13C-dichloromethane at 580–600 ◦C. The 13C-carbon diselenide, after
cooling to room temperature and dissolving in pentane, was reacted with piperidine at 0
◦C leading to piperidinium 1-piperidine 13C-diselenocarbamate 90* in 33% yield.
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The reaction of compound 90* with 3-chloro-2-butanone in DMF for 1 h at room
temperature gave 1-piperidine 13C-carbodiselenoic acid, 1-methyl-2-oxopropyl ester 91*
in quantitative yield (Scheme 30) [80]. Diselenocarbamate 91* was successively treated
with concentrated H2SO4 and 60% aqueous HPF6 at 0 ◦C to form 2-(1-piperidinium)-2-
(13C)-4,5-dimethyl-1,3-diselenole hexafluorophosphate 92* in 86% yield. Labeled with
13C isotope 4,5-dimethyl-1,3-diselenole-2-selone 93* was prepared in 53% yield by the
reaction of compound 92* with hydrogen selenide in ethanol. The target product 89* in
61% yield was obtained by the classical method: the cross-coupling reaction in the presence
of triethylphosphite (Scheme 30) [80].

The single-site 13C-enriched tetramethyltetraselenafulvalene was obtained starting
from 4,5-dimethyl-1,3-diselenole-2-one [81]. Correlation between non-Fermi-liquid behav-
ior and antiferromagnetic fluctuations in superconducting (TMTSF)2PF6 salt was studied
using 13C-NMR spectroscopy [81].

A series of tetrakis(alkylthio)tetraselenafulvalene compounds 95 (n = 1–15) was syn-
thesized in up to 84% yield by a one-step reaction of dialkyl disulfides 94 with tetralithiated
tetraselenafulvalene 2 (Scheme 31) [82]. Compounds 95 were found to be weak electron-
donating molecules and to show low dark conductivity. At the same time, as the number
of methylene groups increased, the electrical conductivity increased due to the presence
of high-dimensional conduction paths. The resulting compounds were highly soluble in
organic solvents [82].
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The authors noted that the compounds 95 were good candidates for the field-effect
transistor channel based on the advantageous features: low dark conductivity, low donor
ability, on-site Coulomb repulsion energy, high-dimensional π-electron structure, and high
solubility in organic solvents [82].

The use of one equivalent of phenylselenadiazole 96 and three equivalents of selenadi-
azole 97 in the reaction of these reagents in a mixture of THF and tert-butanol at 0 ◦C in the
presence of five equivalents of sodium hydride led to diselenafulvene 98 in 46% yield. The
latter compound was successfully formylated with the formation of compounds 99 and
100 by the Vilsmeier–Haack reaction (Scheme 32) [83].
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Scheme 32. The synthesis of compounds 99–101 [83].

The products 99 and 100, bearing the aldehyde group, can serve as precursors of the
vinylogs of tetraselenafulvalene derivatives. The iodine-morpholine reagent was used to
convert fulvene 98 to diphenyltetraselenafulvalene 101 (a mixture of E- and Z-isomers) in
28% yield (Scheme 32) [83].

2.5. Condensed 1,4,5,8-Tetraselenafulvalenes

The reaction of cyclooctyne with carbon diselenide in the presence of red selenium
in boiling dichloromethane afforded cycloocteno[1,2-d]1,3-diselenole-2-selone 102 (59%
yield), which was converted into tetraselenafulvalene 103 in 94% yield by the treatment
with trimethylphosphite in boiling benzene (Scheme 33) [84]. The formation of selone 102
can be rationalized by addition of carbon diselenide to cyclooctyne to form 1,3-diselenole-2-
ylidene 104, which then reacts with elemental selenium or can capture selenium atom from
the carbon diselenide molecule yielding compound 102 (Scheme 33) [84]. This reaction
successfully competed with the carbene dimerization with the formation of tetraselena-
fulvalene 103 if the process was carried out in the absence of elemental red selenium.
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The convenient synthesis of bis(ethylenedioxy)tetraselenafulvalene 105 without the
use of toxic reagents such as carbon diselenide and hydrogen selenide was developed
(Scheme 34) [85]. The key intermediate 106 was synthesized by the reaction between
lithium selenolate 107 and N,N-dimethylselenocarbamoyl chloride 108 in THF at 0 ◦C
under argon. Both compounds 107 and 108 can be prepared based on elemental selenium
powder. Diselenocarbamate 106 was quantitatively converted to iminium salt 109, which
was used to prepare selone 110 in the NaSeH-AcOH system. The synthesis of the target
tetraselenafulvalene 105 (30% yield) was carried out by a coupling reaction under very
mild conditions in benzene using hexamethylphosphorous triamid (HMPA) at room tem-
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perature under argon (Scheme 34) [85]. The new donor compound 105 exhibited sufficient
solubility in common organic solvents and the ability to form CH . . . O hydrogen bonds.
Its electrochemical properties were found to be promising for obtaining new organic metals,
including superconductors [85].
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Scheme 34. The convenient synthetic approach to bis(ethylenedioxy)tetraselenafulvalene 105 [85].

A condensed derivative of tetraselenafulvalene, ethylenethio-1,4,5,8-tetraselenafulvalene
111, was synthesized as a new promising electron donor (Scheme 35) [86]. The key interme-
diate was the 1,3-diselenole-2-selone derivative 112, easily prepared from commercially
available tetrahydropyranyl-protected 3-butyn-1-ol. Using a conventional cross-coupling
reaction with 1,3-diselenole-2-selone, the desired product 113 was obtained in 37% yield.
Then, the tetrahydropyranyl-protecting group of compound 113 was removed by treatment
with dilute hydrochloric acid, and the resulting alcohol 114 (71% yield) was converted into
tosylate 115 in 95% yield.
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gent, 1,2-dichloro-1-methylthioethane, by treating it with butyl lithium in situ to form 

Scheme 35. The synthetic route to ethylenethio-1,4,5,8-tetraselenafulvalene 111 [86].

The formation of the dihydrothiophene ring was achieved by a transalkylation reaction
at the sulfur atom in the presence of sodium iodide in DMF, which resulted in the desired
ethylenethiotetraselenafulvalene 111 in 81% yield (Scheme 35) [86]. The use of electrocrys-
tallization method for compound 111 gave highly conductive radical cationic salts with a
number of counter anions such as I3

−, Cl−, Br−, and AuI2
− in a 2:1 donor-acceptor ratio.

In a similar manner, bis(ethylenethio)-1,4,5,8-tetraselenafulvalene 116 was prepared
(77% yield), which formed a highly conductive molecular complex with tetracyanoquin-
odimethane (TCNQ) in a 1:1 donor-acceptor ratio (Scheme 36) [87]. These materials retained
metallic properties down to 60 K.
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A three-stage synthesis of new donors, dimethyl and bis(methylthio) derivatives of methylen
edithiotetraselenafulvalene 117a,b, was developed (Scheme 37) [52]. Cross-coupling reactions
between 1,3-diselenole-2-selones 118a,b and 4-methylthio-5-(2-methoxycarbonylethylthio)-1,3-
diselenole-2-selone 29a in the presence of trimethylphosphite gave intermediate products 119a,b
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in 42% and 35% yields, respectively. Removing the protective 2-methoxycarbonylethylthio group
in compounds 119a,b with cesium hydroxide in DMF solution and in situ treatment with
bromochloromethane led to the corresponding 2-methylthio-3-chloromethylthio deriva-
tives of tetraselenafulvalene 120a,b in 85% and 57% yields, respectively. The transalkylation
at the sulfur with the ring-closure reaction were carried out by treatment with sodium
iodide to give derivatives 117a,b in 47% and 62% yields, respectively (Scheme 37) [52].
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Scheme 37. The preparation of derivatives 117a,b [52].

The obtained compounds showed good electron-donating properties. Based on com-
pound 117a, three radical cation salts were obtained. Salts with I2Br− and AsF6

− anions
exhibited semiconducting properties, while the PF6

− salt displayed metallic conductivity
down to 130 K [52].

A general synthetic approach to a series of alkylenedithio- (121a–c, 65%, 75%, and 66%
yields, respectively) and bis(alkylenedithio)tetraselenafulvalenes 122a–c (50%, 52%, and
61% yields, respectively) was developed (Scheme 38) [88]. Key intermediate compounds
123 and 124 were readily prepared by phosphite-activated reactions of 4-methylthio-5-(2-
methoxycarbonylethylthio)-1,3-selenole-2-selone 29a. The latter compound was obtained
in 88% yield from a fairly stable, readily available, and cheap reagent, 1,2-dichloro-1-
methylthioethane, by treating it with butyl lithium in situ to form lithium 2-methylthioacety-
lide, followed by the reaction of the acetylide with selenium, methyl-3-thiocyanatopropionate
and carbon diselenide (Scheme 38) [88].
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The obtained compounds were found to be excellent electron donors for the prepara-
tion of organic conductors [88].

Benzoquinone-fused ethylenedithiotetraselenafulvalene 125 was synthesized by the
reaction sequence depicted in Scheme 39 [89]. The key intermediate compound 128 was
obtained in 73% yield by a four-step synthesis from catechol: protection of two hydroxyl
groups with tert-butyldiphenylsilyl groups, diiodination, the Stille cross-coupling reaction
with Bu3SnSe(CH2)2CN followed by treatment with NaH and Bu2SnCl2. In the presence of
AlMe3, the reaction of compound 128 with methyl ester 129 obtained from ketone 34 and
subsequent deprotection of hydroxyl groups gave catechol-condensed tetraselenafulvalene
130 in 52% yield. Electrochemical oxidation of compound 130 in the presence of 2,2’-
bipyridine afforded ortho-benzoquinone-fused ethylenedithiotetraselenafulvalene 125 in
quantitative yield (Scheme 39) [89].
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Nitration of para-bromobenzaldehyde 131 with sodium nitrate in concentrated sulfuric
acid giving 4-bromo-3-nitrobenzaldehyde and reduction of the nitro group by subsequent
Sandmeyer reaction made it possible to obtain 3,4-dibromobenzaldehyde 132 in 73% yield
(Scheme 40) [90]. The aldehyde 132 was quantitatively converted to 2-(3,4-dibromophenyl)-
1,3-dioxolane 133 to protect the formyl group in further reactions. Poly(diselenide) 134 was
prepared by the reaction between dibromo compound 133 and sodium diselenide in DMF.
The reduction of polymer 134 with sodium tetrahydroborate followed by treatment with
thiophosgene made it possible to obtain the key 5-(1,3-dioxolan-2-yl)-benzo-1,3-diselenole-
2-thione 135. The cross-coupling reaction between thione 135 and 4,5-(ethylenedithio)-
1,3-diselenole-2-one 34 in triethylphosphite led to tetraselenafulvaleneacetal derivative
136, which was hydrolyzed to produce formyl derivative 137. The latter compound was
involved in the reaction with 2,3-dimethyl-2,3-bis(hydroxyamino)butane in the presence
of its sulfuric acid salt as a catalyst giving cyclic bis(hydroxylamine) 138 in 86% yield as a
radical precursor. Compound 138 was converted by oxidation with lead dioxide into a new
organic spin-polarized donor 139 in 79% yield, which exhibited ferromagnetic properties
(Scheme 40) [90].
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properties [90].

New tetraselenafulvalenes derivatives find application in the synthesis of organic
spin-polarized donors [90].

The efficient approach to new fused heterocycles, bis(propylenethio)tetraselenafulvalene
140a (60% yield) and bis(propyleneseleno)tetraselenafulvalene 140b (30% yield) based
on tetrahydropyran-protected pent-4-yn-1-ol as the starting compound is outlined in
Scheme 41 [91,92].
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Scheme 41. The efficient approach to new fused heterocycles 140a and 140b [91,92].

Various types of highly conductive radical-cationic salts were prepared based on
tetraselenafulvalenes 140a,b. For example, the PF6, AsF6, and FeCl4 salts retained metallic
properties down to the liquid helium temperature [91,92].

Tetraselenafulvalene derivative 141 was obtained in 56% yield using tetrahydropyrany-
lprotected acetylene containing a thioethyl fragment as the starting compound by the
approach illustrated in Scheme 42 [92,93].
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Scheme 42. Synthesis of tetraselenafulvalene derivative 141 from tetrahydropyranyl-protected
acetylene [92,93].

The efficient and practical synthetic method for the preparation of condensed electron
donors of the tetraselenafulvalene type 144a,b and 145a,b in up to 94% yield was developed
by the approach depicted in Scheme 43 using tetrabutylammonium 4,5-bis(2-selenoxo-1,3-
diselenole-4,5-diselenolate)zincate 142 (82% yield) as the intermediate compound [94].
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The obtained compounds 144a,b and 145a,b served as efficient electron donors for
preparation of organic conducting materials [94].

A new very interesting donor compound, 2-(1,3-diselenole-2-ylidene)-5-(1,3-dithiol-2-
ylidene)-1,3-diselena-4,6-dithiapentalene 146, containing tetrathiafulvalene structure con-
densed with the tetraselenafulvalene scaffold, was synthesized in 49% yield (Scheme 44) [95].
The TSF derivative 147 was sequentially treated with CsOH·H2O, with ZnCl2, n-Bu4NBr,
and then with triphosgene to obtain compound 148 (40% yield). The cross-coupling reac-
tion between 148 and 4,5-bis(methoxycarbonyl)-1,3-dithiol-2-thione (149, two equivalents)
in the presence of trimethyl phosphite at reflux in toluene gave bis(methoxycarbonyl)
derivative 150a in 79% yield. The product 146 was obtained in 49% yield by demethoxycar-
bonylation of compound 150a with excess LiBr·H2O in hexamethylphosphorous triamide
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(Scheme 44) [95]. The radical cationic salt (146)ReO4 exhibited low conductivity with a
high activation energy.
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A number of derivatives of bis-condensed donors 150a–d and 151, as well as their
vinyl analogs 152a,b and 153a, were synthesized in 32–73% yields using corresponding
intermediate zincates (Scheme 45) [96].
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The donor compounds 150a, 152a, and 153a form highly conductive complexes with
tetracyanoquinodimethane (TCNQ) and salts with I3 with very low activation energies of
0.0094–0.040 eV (Scheme 45) [96].

2.6. Other 1,4-Selenafulvene and 1,4,5,8-Selenafulvalene Derivatives

The intermediate 2-(1,1-diformylmethylene)-1,3-diselenole 154 was obtained in 70%
yield from 2-methylene-1,3-diselenole 1 by the Vilsmeyer–Haack reaction (Scheme 46) [97].
The dialdehyde 154 was further condensed with dithiolium phosphonium bromides and
dithiolium phosphonates in the presence of a base. As a result, a number of polycyclic
selenium-containing tetrathiafulvalene vinylogues of the dendralene type 155a–c, 156a–
d, 157, and 158 bearing a 1,3-diselenole moiety were obtained in good yields by the
Wittig and Wittig–Horner reactions (Scheme 46) [97]. The obtained products showed
electrochemical activity.
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The selenoketenes 160 were obtained by deprotonation of aromatic diynes 159 with
n-BuLi, subsequent addition of elemental selenium at 0 ◦C, and reaction with water in the
temperature range from –55 ◦C to room temperature for 3 h (Scheme 47) [98]. The result-
ing intermediates 160 in situ were subjected to cycloaddition polymerization to produce
electron-donating π-conjugated polymers 161a–c with a 1,4-diselenafulvene moiety in 95%,
85%, and 68% yields, respectively.
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The solubility of the polymers depends on their structure. The attachment of long
alkyl chains enhances solubility in non-polar solvents. The resulting polymers exhibited
electron-donating properties, as did their soluble charge-transfer complexes with tetra-
cyanoquinodimethane [98].

Two-bridged tetraselenafulvalenophanes 163a,b were efficiently synthesized from
trimethylsilylacetylene by the synthetic approach presented in Scheme 48 [99]. Using
sequential deprotection and realkylation of the bis-thiolate tetraselenafulvalene building
block 162 (51% yield), two-bridged tetraselenafulvalenophanes 163a,b were efficiently
synthesized in 25% and 20% yields, respectively (Scheme 48) [99]. The radical cationic salt
163b with the Au(CN)2

− anion exhibited very high conductivity at room temperature.
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The synthesis of 4,5-dicarbomemethoxy-1,3-diselenole-2-thione 165 in 43% yield was
developed from the intermediate titanocene pentaselenide 164 and elemental selenium,
avoiding the use of highly toxic carbon diselenide (Scheme 49) [100].
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electron-withdrawing group in the positions 4 and 5 of the diselenole ring, a mixed thiase-
lenafulvene core was generated. Unsubstituted triselenathiafulvalene 167 was obtained in
37% yield by decarbomethoxylation of compound 166 (Scheme 49) [100].

The charge transfer complex of triselenathiafulvalene 167 with tetracyanoquinodimeth
ane showed a high degree of anisotropic conductivity in the polycrystalline sample, which
decreased with increasing temperature [100].

3. The Synthesis of 1,4-Ditellurafulvene and 1,4,5,8-Tetratellurafulvalene Derivatives

The efficient synthetic approaches to 1,4-ditellurafulvenes and 1,4,5,8-tetratellurafulval
enes are less developed than to the corresponding selenium derivatives and a number of
the obtained derivatives of these two classes of organotellurium compounds is significantly
smaller than that of known 1,4-diselenafulvenes and 1,4,5,8-tetraselenafulvalenes.

The cross-coupling reaction of 1,3-selenatellurole-2-selone 168 and trimethylsilyl
derivative of 1,3-diselenole-2-selone 169 gave triselenatellurafulvalene with trimethylsi-
lyl group 170, which was separated by gel permeation chromatography in 11% yield
(Scheme 50) [101]. The trimethylsilyl group was then easily removed by the desilylation re-
action with potassium fluoride in an aqueous THF solution giving triselenatellurafulvalene
171 in 86% yield. The complex of the product 171 with tetracyanoquinodimethane showed
high conductivity at room temperature and retained metallic properties at 85 K [101].
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Scheme 50. The convenient synthesis of triselenatellurafulvalenes 170 and 171 based on trimethylsi-
lylacetylene [101].

The thermal reaction between phenyliodoacetylene and powdered tellurium gave a
mixture of (E)-1,4-ditellurafulvene derivative 172 and its iodinated isomer (Z)-1,1-diiodo-
1,4-ditellurafulvene 173 by refluxing the reaction mixture in toluene for 6 h. After the chro-
matographic separation of these two isomers, (Z)-1,1-diiodo-1,4-ditellurafulvene 173 was
reduced by aqueous solution of sodium thiosulfate to corresponding (Z)-ditellurafulvalene
173 with the retention of stereoconfiguration (Scheme 51) [102].
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Scheme 51. The synthesis of 1,4-ditellurafulvene derivative 172, 173, and 174 from phenyliodoacety-
lene and tellurium [102].

Reduction of poly(o-phenylene ditelluride) 175 with the hydrazine hydrate/sodium
hydroxide system in DMF led to generated disodium o-benzeneditellurolate 176, which re-
acted with benzylidene chloride or dibromomethane to give 2-phenylbenzo-1,3-ditellurole
177 or benzo-1,3-ditellurole 178 in 32% and 58% yields, respectively (Scheme 52) [103].
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In contrast to benzo-1,3-dithiole and its 2-substituted derivatives, which can be lithi-
ated with butyllithium, the C-Te bond in benzo-1,3-ditellurole 178, as well as in its noncyclic
analogs, diorganyl tellurides, R2Te, is cleaved by butyllithium. As a result of the reaction
of heterocycle 178 with n-BuLi, even at low temperatures, a complex mixture of various
diorganyl tellurides is formed [103].

Although 2-lithiobenzo-1,3-ditellurole 179 was generated in rather low yield by treat-
ing a solution of heterocycle 178 with lithium dicyclohexylamide in THF, 2-methylbenzo-
1,3-ditellurole 180 was obtained in 38% yield by the reaction of 2-lithiobenzo-1,3-ditellurole
179 with methyl iodide. The carbonylation of compound 179 with carbon dioxide gave
benzo-l,3-ditellurole-2-carboxylic acid 181 in 27% yield (Scheme 52) [103].

The successful synthesis of dendralenic ditellurole-containing compounds including
dendralenes was developed based on trimethylsilylacetylene and elemental tellurium
(Scheme 53) [104]. Trimethylsilylacetylene was lithiated with butyllithium and lithium
trimethylsilylacetylide reacted with tellurium to give tellurolate, which was protonated
leading to unstable intermediate 182. Crude compound 182 was subjected to the Vilsmeier–
Haack reaction to afford stable desired dialdehyde 183. The latter compound was con-
densed with malononitrile and carbomethoxymethyl phosphorane to give products 184
and 185 in 45% and 70% yields, respectively. Dialdehyde 183 was efficiently reacted with
4,5-dicarbomethoxy-1,3-dithiole phosphorane in the presence of sodium hydride to pro-
duce dendralene 186 in 63% yield. In like fashion, phosphonates 187 and 188 afforded
dendralenes 189 and 190 in 38% and 43% yields, respectively, upon condensation with
dialdehyde 183 in the presence of a base (Scheme 53) [104].

A systematic study of the synthesis of the π-donor tetratellurafulvalene 191 made it
possible to increase the yield of the purified fulvalene product from about 12% to quite
reproducible values reaching 26% (if tetrabromoethene is used at the final stage of cycliza-
tion). The optimized procedure for the synthesis of tetratellurafulvalene 191 is as follows
(Scheme 54) [105]. A solution of n-BuLi in hexane was added to a suspension of distannan
192, tellurium, and LiCl in THF cooled to −78 ◦C over 30 min in an argon atmosphere.
After additional stirring for 45 min, tetrabromoethene in THF was added to this suspension
containing ditellurolate 193 over 1 h followed by stirring at −78 ◦C for 2 h. The crude
product, after isolation from the reaction mixture, was purified by column chromatography
on silica gel under argon giving tetratellurafulvalene 191 in 26% yield (Scheme 54) [105].
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This method of synthesis makes it possible to reliably obtain useful amounts of com-
pound 191 and allowed to contribute to the development of studying the radical cation
complexes and charge-transfer salts based on tetratellurafulvalene and to investigate its
potential as a building block for the preparation of functionalized electron donor com-
pounds [105].

4. Application of 1,4,5,8-Tetraselenafulvalene Derivatives and Their Tellurium
Analogs for Materials Sciences

As shown by the literature data, 1,4-diselenafulvene derivatives serve as main building
blocks for construction of 1,4,5,8-tetraselenafulvalenes, which find augmenting application
in the preparation of materials with varying degrees of conductivity and various properties.

The well-known and frequently used tetraselenafulvalene π-donors molecules are
bis(ethylenedithio)diselenadithiafulvalene 33, tetramethyltetraselenafulvalene 89, bis(ethyl
enedithio)tetraselenafulvalene 122b, and dimethyl(ethylenedioxy)tetraselenafulvalene 194
(Scheme 55).

Molecules 2022, 27, x FOR PEER REVIEW 25 of 34 
 

 

 
Scheme 54. The convenient method for the preparation of tetratellurafulvalene 191 [105]. 

This method of synthesis makes it possible to reliably obtain useful amounts of 
compound 191 and allowed to contribute to the development of studying the radical 
cation complexes and charge-transfer salts based on tetratellurafulvalene and to investi-
gate its potential as a building block for the preparation of functionalized electron donor 
compounds [105]. 

4. Application of 1,4,5,8-Tetraselenafulvalene Derivatives and Their Tellurium Ana-
logs for Materials Sciences 

As shown by the literature data, 1,4-diselenafulvene derivatives serve as main 
building blocks for construction of 1,4,5,8-tetraselenafulvalenes, which find augmenting 
application in the preparation of materials with varying degrees of conductivity and 
various properties. 

The well-known and frequently used tetraselenafulvalene π-donors molecules are 
bis(ethylenedithio)diselenadithiafulvalene 33, tetramethyltetraselenafulvalene 89, 
bis(ethylenedithio)tetraselenafulvalene 122b, and dime-
thyl(ethylenedioxy)tetraselenafulvalene 194 (Scheme 55). 

 
Scheme 55. Well-known tetraselenafulvalenes and diselenadithiafulvalene derivatives, which are 
effective as electron-donor compounds and commonly used for the preparation of conductive 
materials. 

Compound 33 (BEDT-STF) is a very important unsymmetrical donor that was used 
to obtain the organic charge-transfer complex (33)2I3 exhibiting unique properties to form 
Dirac electron states under ambient pressure [20–22,31,32,53–57]. 

Recently, much attention has been paid to Dirac electronic systems. However, most 
of these studies are theoretical (e.g., quantum chemical calculations by DFT methods) 
due to the limited availability of the relevant materials. The Dirac electron systems (DES) 
are characterized by massless electrons with relativistic behavior and high speed 
(1/100–1/1000th of the velocity of light). Previously, similar relativistic behavior of elec-
trons was observed in graphene. In fact, DES were initially found in graphene and some 
inorganic compounds [22,55]. It should be noted that organic DES exhibit important ad-
vantages over their inorganic counterparts. For example, in contrast to inorganic DES, 
most organic DES are characterized by a clearly defined crystal structure and chemical 
stoichiometry. However, the majority of organic DES shows the properties of Dirac elec-
tron states only under high pressure. In contrast to this observation, the organic 
charge-transfer complex (33)2I3 exhibits unique properties to form Dirac electron states 
under ambient pressure [32,53–57]. Based on studies of the electrical, magnetic, optical, 
and structural properties of (33)2I3 under ambient pressure, it was established that this 
salt possesses a band structure characterized with Dirac cones, which was in good 
agreement with the quantum chemical calculations [20–22,31,32,53–57]. In fact, this salt is 
a unique object for research, which can provide an important insight into the properties 

Scheme 55. Well-known tetraselenafulvalenes and diselenadithiafulvalene derivatives, which are
effective as electron-donor compounds and commonly used for the preparation of conductive materials.

Compound 33 (BEDT-STF) is a very important unsymmetrical donor that was used
to obtain the organic charge-transfer complex (33)2I3 exhibiting unique properties to form
Dirac electron states under ambient pressure [20–22,31,32,53–57].
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Recently, much attention has been paid to Dirac electronic systems. However, most
of these studies are theoretical (e.g., quantum chemical calculations by DFT methods)
due to the limited availability of the relevant materials. The Dirac electron systems (DES)
are characterized by massless electrons with relativistic behavior and high speed (1/100–
1/1000th of the velocity of light). Previously, similar relativistic behavior of electrons was
observed in graphene. In fact, DES were initially found in graphene and some inorganic
compounds [22,55]. It should be noted that organic DES exhibit important advantages
over their inorganic counterparts. For example, in contrast to inorganic DES, most organic
DES are characterized by a clearly defined crystal structure and chemical stoichiometry.
However, the majority of organic DES shows the properties of Dirac electron states only
under high pressure. In contrast to this observation, the organic charge-transfer complex
(33)2I3 exhibits unique properties to form Dirac electron states under ambient pressure [32,
53–57]. Based on studies of the electrical, magnetic, optical, and structural properties of
(33)2I3 under ambient pressure, it was established that this salt possesses a band structure
characterized with Dirac cones, which was in good agreement with the quantum chemical
calculations [20–22,31,32,53–57]. In fact, this salt is a unique object for research, which can
provide an important insight into the properties of the Dirac electrons by measurements of
various physical properties under ambient pressure.

New conductors (89)2[3,3’-Co(1,2-C2B9H11)2] and (89)2[3,3’-Fe(1,2-C2B9H11)2] were
synthesized based on tetramethyltetraselenafulvalene 89 by anodic oxidation under gal-
vanic conditions in the presence of Na[3,3’-Co(1,2-C2B9H11)2] and (Me3NH)[3,3’-Fe(1,2-
C2B9H11)2] [106,107].

Semiconductors (89)3[Re2Cl8]2CH3CN and (89)5[Re2Cl8]2·6CH2Cl2 were obtained by
electrochemical oxidation at room temperature in the presence of (n-Bu4N)2[Re2Cl8] in
acetonitrile or dichloromethane [108], also known are superconductors such as (89)2PF6
and (89)2CIO4 [109–111] and the organic charge-transfer complex (89)TCNQ, which is an
intrinsic semiconductor [112,113].

The compound 89 and trifluoromethyltetracyanoquinodimethane (CF3TCNQ) form
two types of charge transfer complexes, (89)2(CF3TCNQ) and (89)(CF3TCNQ)(PhCl)1/2
(from chlorobenzene solution). The first one is semiconductor and the second is a strong
donor, i.e., it exhibited metallic properties [114].

Tetramethyltetraselenafulvalene 89 forms radical cationic salts with weakly coordinat-
ing anions such as tetrakis(3,5-trifluoromethylphenyl)borate (BArF), dodecamethylcarbo-
rane (Me12CAR), and hexabromocarborane (Br6CAR, which showed a high tendency to
π-dimerization. The radical cationic salt (89)(Me12CAR) was obtained by mixing a solution of
dodecamethylcarborane in pentane and a solution of selenafulvalene 89 in dichloromethane
in a 1:1 molar ratio. Radical-cationic salts (89)(BArF), (89)(BArF)(CH2Cl2)1/2 and (89)(Br6CAR)
were obtained by mixing a solution of selenafulvalene 89 in dichloromethane with tris(p-
bromophenyl)aminium cation-radical of tetrakis(3,5-trifluoromethylphenyl)borate or hexab
romocarborane taken as salts. The obtained radical-cationic salts are promising for the use
in molecular rotors and switches, in which molecular motion is associated with π-bonding
between opposite parts and depends on the strength of such interactions [115].

The compound 89 is also used in multisensor matrices for the detection of analytes
in the gas or liquid phase, which includes, along with tetraselenafulvalene 89, tetrahalo-
genated tetraselenafulvalene and other tetrachalcogenafulvalene derivatives that can indi-
vidually change their physicochemical properties when exposed to analytes or to mixtures
of analytes, and these changes can be detected by a sensor or by a set of sensors [116].

Based on bis(ethylenedithio)tetraselenafulvalene 122b and (AsPh4)2(Cu2Cl6), the κ-
(122b)8(Cu2Cl6)(CuCl4) and θ-(122b)2(CuCl2) salts were obtained by diffusion electrocrys-
tallization of solutions in a mixture of chlorobenzene-ethanol solvents. The obtained salts
κ-(122b)8(Cu2Cl6)(CuCl4) and θ-(122b)2(CuCl2) exhibited metal-like behavior down to 40
K and 4 K, respectively, and the salt (122b)2(CuCl4) salt showed dielectric properties [117].

The (122b)3[Cu2(C2O4)3](CH3OH)2 salt, which was obtained by electrochemical
oxidation of neutral bis(ethylenedithio)tetraselenafulvalene 122b in the presence of
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[(C2H5)3NH]Cu2(C2O4)2 in a solution of a mixture of solvents chlorobenzene-methanol,
demonstrated antiferromagnetic properties [118].

The lead-containing salts, (122b)PbBr3 and (122b)2Pb2Br5, exhibited metallic resistivity
at low temperature [119]. These salts were prepared by electrochemical galvanostatic
oxidation of bis(ethylenedithio)tetraselenafulvalene 122b in the presence of Bu4NPbBr3 or
[Bu4NPbBr3 + Bu4NBr].

Electrocrystallization of compound 122b gave θ-(122b)4[Fe(CN)5NO], (122b)2[RuBr5NO]
and (122b)2[RuCl5NO] salts using the nitroprusside anion or its corresponding ruthe-
nium halides ([Fe(CN)5NO]2− or [RuX5NO]2−, where X = Cl or Br) and auxiliary elec-
trolytes as a mixture of solvents (1,1,2-trichlorethylene/ethanol (10 vol%), nitrobenzene/1,2-
dichloroethylene (40 vol%)/ethanol (10 vol%) and benzonitrile/ethanol (10%), respec-
tively). The θ-(122b)4[Fe(CN)5NO] salt exhibited metallic properties down to 40 K, the
(122b)2[RuBr5NO] salt behaved like a semiconductor, and the (122b)2[RuCl5NO] salt was
an insulator [120].

Based on the Keggin polyoxometalate ([SMo12O40]n−) and compound 122b, the semi-
conductor (122b)8[SMo12O40]3·10H2O, was obtained, which shows increased conductivity at
elevated pressure [121]. The bimetallic oxolate complex (122b)3[MnCr(C2O4)3]·(CH2Cl2) ex-
hibited the hybrid properties of a ferromagnet at temperatures below 5.3 K and metal-like con-
ductivity at ambient temperature [122]. Obtained by electrocrystallization, two-dimensional
organic metals (122b)4MBr4(PhBr) (M = Cd, Hg) with differently oriented conducting lay-
ers in the plane of the conducting layer demonstrated metallic properties, and across the
layers-semiconductor behavior, which depends on temperature [123]. Also known are su-
perconductors such as κ-(122b)2TlCl4 [124], κ-(122b)4Hg2.84Br8 [125], λ-(122b)2FexGa1-xCl4
(x = 0.45) [126], and λ-(122b)2FeCl4-xBrx (x = 0.4, 0,5 and 0.7) [127] and organic metals such as
κ-(122b)4Hg3Cl8) [125], θ-(122b)4Ni(CN)4 [128], and κ-(122b)2Mn[N(CN)2]3 [129].

Dimethyl(ethylenedioxy)tetraselenafulvalene 194 was synthesized by the cross-coupling
of 4,5-dimethyl-1,3-diselenole-2-selone and 4,5-ethylenedioxy-1,3-diselenole-2-selone [130].
The superconductors κ-(194)2[Au(CN)4](solv.) (solv. = 1,3-dioxolane, 2,5-dihydrofuran,
tetrahydropyran, 1,3-dioxane, 3,4-dihydro-2H-pyran or 1,4-dioxane) [130,131] and radical
cationic salts of the general formula (194)2X (X = PF6, AsF6, SbF6) with metallic proper-
ties [132] were obtained based on compound 194.

The well-known tellurium-containing fulvalenes effective as π-donors are tetratellura-
fulvalene 191, hexamethylenetetratellurafulvalene 195, and tetrachlorotetratellurafulvalene
196 (Scheme 56).
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Tetratellurafulvalene 191 in the form of a charge transfer complex with tetracyanoquin-
odimethane is used in the production of modified electrically conductive thin graphene
films [133].

Tetratellurafulvalene 191 and hexamethylenetetratellurafulvalene 195 are used in
photoelectric conversion functional devices as substrates in the form of charge transfer
complexes that exhibit near-IR absorption [134]. In addition, fulvalenes 191, 195, and
tetramethylthiotetratellurafulvalene are used in electroluminescent devices as electron
carriers and electron donors. Such organic electroluminescent devices show low operating
voltage and high luminescence intensity due to the low resistance of the organic layer [135].

Based on hexamethylenetetratellurafulvalene 195, single-crystal complexes with 2,5-
diethyltetracyanoquinodimethane (Et2TCNQ) and bis-1,2,5-thiadiazolotetracyanoquinodim
ethane (BTDA-TCNQ), which have a packing structure with alternately stacked donor-
acceptor molecules, were prepared. These two complexes showed high conductivity despite
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their disadvantageous packing method, which usually leads to materials with dielectric
properties [136].

The complex of fulvalene 195 with 2,5-diethyltetracyanoquinodimethane,
(195)(Et2TCNQ)(THF)x (x = 0.5–1), is metallic at temperatures above 200 K [137],
while its complex with trifluoromethyltetracyanoquinodimethane (195)4(CF3TCNQ)3 is a
semiconductor [114].

Tetrachlorotetratellurafulvalene 196 is used in multisensor matrices for the detection
of analytes in the gas or liquid phase [116].

5. Conclusions

The derivatives of 1,4-diselenafulvene and 1,4,5,8-tetraselenafulvalene and their
tellurium analogs are important scaffolds and valuable heterocyclic building blocks
for organic synthesis and donor units for the preparation of charge-transfer com-
plexes and radical ion salts. The 1,4,5,8-tetraselenafulvalene derivatives and its tel-
lurium analogs have shown themselves to be useful electron donors for the prepara-
tion of various conducting materials including Dirac electronic systems [31,32,53–57],
superconductors [4–6,8–11,15–22,24,47,75,78,85,106,107,109–111,124–127], semicondu
ctors [52,67,71,73,75,108,112–114,120,121,123] and compounds with ferromagnetic prop-
erties [7,15,23,48,76,114,118,122]. Well-known tetraselena- and tetratellurafulvalenes,
which are effective as electron-donor compounds and most commonly used for the
preparation of conductive materials, are outlined in Schemes 55 and 56.

Regarding the synthesis of 1,4,5,8-tetraselenafulvalene and its derivatives, the efficient
approaches based on cross-coupling reactions of 1,3-selenole-2-one, 1,3-selenole-2-thione
and 1,3-selenole-2-selone, which usually proceed in the presence of triethylphosphite, have
frequently been used. These methods have been successfully developed and improved.

However, some efficient methods deserve to be mentioned. The method for prepa-
ration of diselenafulvene 1 and tetraselenafulvalene 2 based on selenium and sodium
acetylide is a convenient and practical synthetic approach (Scheme 29) [78]. This approach,
as well as the method depicted in Scheme 1 [34], have the advantages of using cheap,
non-toxic selenium powder as the selenium source and commercially available acetylene
or sodium acetylide.

Very important is a general synthetic approach to a series of alkylenedithio- 121a–c
and bis(alkylenedithio)tetraselenafulvalenes 122a–c (Scheme 38) [88]. Tetraselenafulvalenes
122a–c (especially compound 122b, Scheme 55) have frequently been used for preparation
of various conducting materials including organic metals and superconductors [117–129].

The efficient approach to a number of polycyclic selenium-containing tetrathiaful-
valene vinylogues of the dendralene type 155a–c, 156a–d, 157, and 158 bearing a 1,3-
diselenole moiety using Vilsmeyer–Haack and Wittig–Horner reactions is worth mentioning
(Scheme 46) [97].

A valuable synthesis of tetratellurafulvalene 191 in 26% yield by the optimized proce-
dure with the use of tetrabromoethene at the final stage of cyclization is also very important
(Scheme 54) [105]. This approach makes it possible to reliably obtain sufficient amounts of
compound 191, which can be used for investigation of its potential as a building block for
the preparation of functionalized electron donor compounds and the preparation of novel
radical cation complexes and charge-transfer salts based on tetratellurafulvalene [105].

Obviously, the possibilities of 1,4-diselenafulvenes, 1,4,5,8-tetraselenafulvalenes, and
their tellurium analogs for use in organic synthesis and in the preparation of conductive
materials are far from being exhausted. Further research will lead to the synthesis of
previously unknown complex compounds and preparation of novel conductive materials
with new useful combinations of physicochemical properties.
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