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Simple Summary: In patients with prostate cancer, lymph node involvement is a risk factor of
relapse. Current guidelines recommend extended lymph node dissection to better stage the disease.
However, such a surgical procedure is associated with a higher morbidity than limited lymph node
dissection. A better selection of patients is thus essential. Radiomics features are quantitative features
automatically extracted from medical imaging. Combining clinical and radiomics features, a machine
learning-based model seemed to provide added predictive performance compared to state of the art
models regarding the risk prediction of lymph-node involvement in prostate cancer patients.

Abstract: Significant advances in lymph node involvement (LNI) risk modeling in prostate cancer
(PCa) have been achieved with the addition of visual interpretation of magnetic resonance imaging
(MRI) data, but it is likely that quantitative analysis could further improve prediction models. In
this study, we aimed to develop and internally validate a novel LNI risk prediction model based
on radiomic features extracted from preoperative multimodal MRI. All patients who underwent a
preoperative MRI and radical prostatectomy with extensive lymph node dissection were retrospec-
tively included in a single institution. Patients were randomly divided into the training (60%) and
testing (40%) sets. Radiomic features were extracted from the index tumor volumes, delineated on the
apparent diffusion coefficient corrected map and the T2 sequences. A ComBat harmonization method
was applied to account for inter-site heterogeneity. A prediction model was trained using a neural
network approach (Multilayer Perceptron Network, SPSS v24.0©) combining clinical, radiomic and
all features. It was then evaluated on the testing set and compared to the current available models
using the Receiver Operative Characteristics and the C-Index. Two hundred and eighty patients were
included, with a median age of 65.2 y (45.3–79.6), a mean PSA level of 9.5 ng/mL (1.04–63.0) and
79.6% of ISUP ≥ 2 tumors. LNI occurred in 51 patients (18.2%), with a median number of extracted
nodes of 15 (10–19). In the testing set, with their respective cutoffs applied, the Partin, Roach, Yale,
MSKCC, Briganti 2012 and 2017 models resulted in a C-Index of 0.71, 0.66, 0.55, 0.67, 0.65 and 0.73,
respectively, while our proposed combined model resulted in a C-Index of 0.89 in the testing set.
Radiomic features extracted from the preoperative MRI scans and combined with clinical features
through a neural network seem to provide added predictive performance compared to state of the
art models regarding LNI risk prediction in PCa.
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1. Introduction

With 335,230 new estimated cases/year and 69,945 estimated deaths in 2020 in Europe
alone [1], prostate cancer (PCa) is the most common cancer among men in western countries.
Lymph Node Involvement (LNI) is one of the main prognostic factors and extensive lymph
node dissection (eLND) is now the gold standard in patients with high-risk disease operated on
for patients as they are at high risk of LNI [2]. However, eLND is associated with substantial
morbidity [3–7]. The decision to perform LND in clinically LNI-free patients (cN0) is guided by
the probability of nodal metastases, with several models developed for the prediction of LNI
risk: the National Comprehensive Cancer Network (NCCN) chooses 2% as a cut-off according to
a nomogram developed by the Memorial Sloan Kettering Cancer Centre, whereas the European
Association of Urology (EAU) guidelines [8] recommends it for patients with a probability of
LNI over 5% based on 2012-Briganti nomogram. Several clinical models were presented for LNI
risk prediction [9–14]. Magnetic Resonance Imaging (MRI) and its implementation in the daily
routine considerably changed both staging and diagnostic management [15]. Lately, Gandaglia
et al. developed a new promising algorithm using qualitative data from MRIs in patients with
targeted biopsies [16]. Even if targeted combined with systematic biopsies provide a better
assessment of the Gleason score [17], software-based fusion targeted biopsies require special
logistics and a certain cost [18], which explains its under-utilization compared to cognitive fusion,
leaving place for better LNI risk assessment tools.

Such a better patients’ selection could benefit the patients undergoing surgery with a
reduction in unnecessary eLND for selected patients.

Quantitative analysis of medical images such as MRIs has shown to reflect macroscopic
tumoral heterogeneity and has been implemented in several prediction and prognostic
models, especially in PCa [19,20]. However, the added value of radiomic features on LNI
prediction has never been studied.

Machine learning methods, especially artificial neural networks (NN) [21], have the poten-
tial to efficiently model the synergistic interaction between variables using a flexible nonlinear
relationship.

In this report, we aimed to develop and internally validate a NN radiomic-based LNI
prediction model.

2. Materials and Methods
2.1. Population

Patients who underwent a radical prostatectomy and eLND for a PCa in a single
institution (University Hospital of Brest) between 2010 and 2018 were retrospectively
considered using the pathology database.

Radical prostatectomy and eLND were performed following international guidelines8

by a single trained surgeon (GF) [6,22], with ~35 years of experience. Patients with a delay
between the preoperative MRI and the surgery superior to 6 months or an MRI unfit for
analysis (i.e., missing sequence or slice, hip replacement) were excluded. Patients with no
index lesion according to PIRADS V2.1 [23] score after central review by a single specialized
radiologist (V.T) with ~15 years of experience.

2.2. Prostate MRI

Two different MRI scanners were used: a 3T Phillips (Philips Healthcare, Eindhoven,
The Netherlands) and a 1.5T Siemens (Siemens Healthcare, Malvern, PA, USA). Acquisition
was performed in accordance with the European Society of Urogenital Radiology (ESUR)
guidelines [23]. Full protocol was previously published and summarized in Supplemen-
tary Table S1 [19].

2.3. Clinical and Radiomics Features

Regarding clinical features, we retrospectively collected the preoperative PSA level,
the age at the time of surgery, the overall Gleason score along with the primary and
secondary biopsy Gleason grades, the number of performed and positive biopsy cores (and



Cancers 2021, 13, 5672 3 of 12

rate of positive biopsy cores), the percentage of positive biopsy cores with highest-grade
PCa, the percentage of positive biopsy cores with lower grade PCa, the clinical and MRI
tumor stages and the NCCN risk classification. When targeted biopsies were performed,
we merged the two biopsy techniques, the maximum number of positive cores being set to
two by sextant. The PIRADS V2.1 [23] and MRI tumor stage were also collected.

The index lesion was semi-automatically delineated by a single expert (V.B.) using the
Fast GrowCut tool imbedded in 3D Slicer©. Full detail regarding the extraction of radiomic
features is detailed in Supplementary Protocol 1. As a result, 8651 features (11 clinical and
120 × 4 (fixed bin value) × 9 (original + 8 wavelet filters) × 2 (MRI sequences) = 8640
radiomic features) were available for each patient.

2.4. Model Building

The model was built on the training set alone consisting of approximately 60% of the
overall cohort. It was then applied on the rest of the patients, defining the testing set (40%).
All preselected clinical and radiomic features were then considered for the New-Combined
model building, via a Neural Network approach. It was further compared to available
nomograms (Partin [9], Yale [11], Roach [10], Briganti 2012 [12], Briganti 2017 [13] and
MSKCC [14]). Evaluation of the trained model was carried out using the Area Under the
Curve (AUC) along with the C-Index, Se, Sp and Balanced Accuracy (Bacc) after setting
a threshold on the training cohort, number of false negative (FN), positive and negative
predictive values (PPV and NPV). Importance of each feature in the final model was
also reported. Decision curve analysis (DCA) was also used for inter-model comparison.
Full description of the feature set reduction workflow and of the model building is available
as Supplementary Protocol 2.

With the same methodology, and given the number of MRI scans used for the ac-
quisition of prostate MRI, an a posteriori statistical harmonization method was used. The
ComBat harmonization method [24,25] is a statistical method used to remove intersite
technical variability while preserving intra-site variability. It was performed before feature
set selection and model building creating a ComBat Combined model. For completeness, a
model based on clinical/biological features only was also developed.

As a result, three separate models were thus developed and validated: the New-
Clinical, the New Combined and the ComBat Combined models.

2.5. Inter-Reader Variability

Semi-automatic segmentation was performed by two other experts (U.S. and F.L.)
blinded to the results of the previous delineation by V.B in a randomly selected subset
(n = 18) of the testing set. Protocol regarding analysis of inter-reader variability is described
in Supplementary Protocol 3.

We autoevaluated our study based on the radiomics quality score developed by
Lambin et al. [26].

2.6. Ethics Committee

The study was approved by the hospital ethical committee (NCT04909957). All
patients were given 15 days to formulate their opposition.

3. Results
3.1. Population

From 2010 to 2018, 552 patients underwent radical prostatectomy with eLND, among
which 280 patients were finally included with 272 excluded patients due to unavailable or
incomplete MRI (n = 266) and unanalyzable MRI (n = six). The overall population was then
randomly divided into a training cohort (n = 168) and a testing cohort (n = 112). LNI was
found in 51 patients (18.2%), equally sampled between the training set (32 patients—19.0%)
and the testing set (19 patients—17.0%). The training and testing set were globally comparable,
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except for the PIRADS classification. Main patients’ characteristics are summarized in Table 1.
A flow-chart is proposed as Supplementary Figure S1.

Table 1. Patient and tumour characteristics in the training and testing sets.

Training Set Testing Set p

n = 168 (60.0%) n = 112 (40.0%)

Age (median, range) 65.0 45.3–79.6 66.7 50.8–77.8 0.10

PSA level (median, range) 7.7 1.5–63.0 7.4 1.0–49.9 0.16

Clinical Tumour Stage (nb, %)

T1c 90 53.6 71 63.4

0.06

T2a 34 20.2 22 19.6

T2b 30 17.9 14 12.5

T2c 9 5. 3 2.7

T3a 1 0.6 1 0.9

T3b 4 2.4 1 0.9

mpMRI Tumour Stage (nb, %)

T2a 0 0.0 0 0.0

0.60

T2b 71 42.3 45 40.2

T2c 66 39.3 43 38.4

T3a 31 18.4 24 21.4

≥T3b 0 0 0 0

PIRADS (nb, %)

3 12 7.1 39 34.8

<0.00014 60 35.7 41 36.6

5 96 57.2 32 28.6

Median maximum index lesion diameter on mpMRI (mm, IQR) 13.2 9.7–16.2 13.6 11.6–15.7 0.26

Number of Lesion PIRADS ≥ 3 on
mpMRI per patient (nb, %)

1 153 91.1 100 89.3
0.62

2 15 8.9 12 10.7

Type of MRI (nb, %)
Siemens 1.5T 123 73.2 75 67.0

0.26
Philips 3T 45 26.8 37 33.0

Biopsy ISUP score (nb, %)

1 38 22.6 19 17.0

0.12

2 77 45.8 53 47.3

3 30 17.9 13 11.6

4 23 13.7 23 20.5

5 0 0.0 4 3.6

NCCN risk classification (nb, %)

Low 15 8.9 8 7.1

0.23Intermediate 114 67.9 71 63.4

High 39 23.2 33 29.5

Nb Cores (mean, range) 13.7 6–35 13.3 8–24 0.37

Nb Positive Cores (mean, range) 5.9 1–22 5.4 1–12 0.49

Ratio Positive Cores ± (mean, range) 43.5 2.9–100 41.2 5.9–100 0.57

Percentage of positive cores with highest grade (median, range) 30.0 3.2–73.9 29.5 2.6–67.3 0.68

Percentage of positive cores with lower grade (median, range) 28.0 0.5–62.7 27.1 2.2–61.8 0.42

Pathological Tumour Stage (nb, %)

T2a 3 1.8 8 7.1

0.16

T2b 3 1.8 5 4.5

T2c 67 39.9 38 33.9

T3a 59 35.1 45 40.2

T3b 34 20.2 16 14.3

T4 2 1.2 0 0

Surgical Margin (nb, %)
Positive 88 52.4 66 58.9

0.28
Negative 80 47.6 46 41.1

Pathological ISUP score (nb, %)

1 17 10.1 10 8.9

0.23

2 56 33.3 46 41.1

3 50 29.8 36 32.1

4 10 6.0 2 1.8

5 35 20.8 18 16.1

Nb Nodes removed (median IQR) 15 12–17 15 12–18 0.44

Nb Nodes positive (median, range) 1 1–2 1 1–2 0.67

Patients with LNI (nb, %) 32 19.0 19 17.0 0.66

Abbreviations: PSA: Prostate Specific Antigen, mpMRI: multiparametric Magnetic Resonance Imaging, nb: number, LNI: Lymph Node
Involvement, IQR: InterQuantile, ISUP: Internationl Society of Urological Pathology.
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3.2. Feature Set Reduction

Regarding clinical features, out of the 11 initial features, 10 were further considered
for the model building. For the radiomic features and before statistical harmonization, the
feature set reduction allowed a preselection of only four radiomic features: at the first step,
out of the initial 8640 features, only five radiomic features with an AUC ≥ 0.70 remained
(Supplementary Table S2). They were all from the T2 sequence, four of them from wavelet-
filtered images and one shape feature. At the second step (Spearman rank correlation
coefficient), all these features showed intra-correlation levels below 0.5 (Supplementary
Table S3) except for one, making a total number of four selected radiomic features for
model building: Surface Area, Inverse Difference Normalized extracted from the Gray
Level Co-Occurrence matrix, Run Entropy extracted from the Gray Level Run Length
Matrix, and Contrast extracted from the neighbouring Grey Tone Difference Matrix. Finally,
combining all features, the model achieving the highest mean accuracy (New-Combined:
0,97) was based on six features, among which the three most important features were the
Inverse Difference Normalized, the percentage of positive biopsy cores and the percentage
of positive biopsy cores with highest-grade PCa. With a decremental approach on the
mean Bacc, the best combined (New-Combined) model was finally composed of these
six features (Supplementary Table S4). With the same methodology but after ComBat
harmonization, the ComBat-Combined model consisted in the association of seven features,
among which four were radiomic features and the most important feature remaining
the percentage of positive biopsy cores with highest-grade PCa. Apart from the Inverse
Difference Normalized extracted from the Gray Level Co-Occurence matrix, the three other
radiomic features were first order features (Kurtosis, Skewness and Mean). Finally, the
clinical model combined five features among which the percentage of positive biopsy cores
with highest-grade PCa accounted for 71.0% of the model’s prediction. Composition of
each model is available in Table 2.

Table 2. Composition of the New-Clinical, New-Combined and Combat-Combined Models.

Model Feature Importance

New-Clinical Model

PIRADS Score 3.6%

Percentage of positive biopsy cores with
lowest-grade PCa 4.2%

Clinical Tumour Stage 4.9%

Percentage of positive biopsy cores 16.3%

Percentage of positive biopsy cores with
highest-grade PCa 71.0%

New-Combined Model

PIRADS Score 3.4%

Percentage of positive biopsy cores with
lower grade Pca 4.0%

MRI Tumour Stage 4.6%

Feature 2 6.4%

Percentage of positive biopsy cores 15.2%

Percentage of positive biopsy cores with
highest-grade PCa 66.4%

Combat-Combined Model

Feature 8 4.6%

Number of positive biopsy cores 5.7%

Feature 2 7.0%

Feature 7 7.2%

Feature 6 7.7%

Percentage of positive biopsy cores 12.7%

Percentage of positive biopsy cores with
highest-grade PCa 55.2%

Abbreviations: PCa: Prostate Cancer, MRI = Magnetic Resonnance Imaging, see Supplementary Table S2 for
feature’s description.
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3.3. Training Set

In the training set (n = 168), the New-Combined model achieved a high correlation
with the risk of LNI (AUC of 1.00, p < 0.0001). With a cut-off of 7%, the New-Combined
model resulted in a C-Index of 0.98 while with 10%, the C-Index raised to 1.00 (Table
3). These cut-offs allowed almost perfect classification with only six and one patients
classified as false positives, for the 7 and 10% cut-offs, respectively (Supplementary Table
S5). The New-Clinical and ComBat-Combined models achieved similar high results on the
training cohort with an AUC of 1.00 and a balanced accuracy of 100% with their respective
thresholds.

Table 3. Results of the New-Combined model by cut-offs in the training set.

Model
Cut-Off C-Index Se Sp BAcc

Number of Patients, n (%)

Below the Cutoff (eLND not
Recommended)

Above the Cutoff (eLND
Recommended)

Total Without
LNI With LNI Total Without

LNI With LNI

1% 0.88 100 76.5 88.3 104 (61.9) 104 (100) 0 (0) 64 (38.1) 32 (50.0) 32 (50.0)
2% 0.91 100 81.6 90.8 111 (66.1) 111 (100) 0 (0) 57 (33.9) 25 (43.9) 32 (56.1)
3% 0.93 100 86 93.0 117 (69.6) 117 (100) 0 (0) 51 (30.4) 19 (37.3) 32 (62.7)
4% 0.95 100 89.7 94.9 122 (72.6) 122 (100) 0 (0) 46 (27.4) 14 (30.4) 32 (69.6)
5% 0.96 100 91.9 96.0 125 (74.4) 125 (100) 0 (0) 43 (25.6) 11 (25.6) 32 (74.4)
6% 0.97 100 94.1 97.1 128 (76.2) 128 (100) 0 (0) 40 (23.8) 8 (20.0) 32 (80.0)
7% 0.98 100 95.6 97.8 130 (77.4) 130 (100) 0 (0) 38 (22.6) 6 (15.8) 32 (84.2)
8% 0.98 100 96.3 98.2 131 (78.0) 131 (100) 0 (0) 37 (22.0) 5 (13.5) 32 (86.5)
9% 0.99 100 97.8 98.9 133 (79.2) 133 (100) 0 (0) 35 (20.8) 3 (8.6) 32 (91.4)
10% 1.00 100 99.3 99.7 135 (80.4) 135 (100) 0 (0) 33 (19.6) 1 (3.0) 32 (97.0)
11% 1.00 100 99.3 99.7 135 (80.4) 135 (100) 0 (0) 33 (19.6) 1 (3.0) 32 (97.0)

Abbreviations: eLND: extensive lymph node dissection, LNI: lymph node involvement, Se: Sensitivity, Sp: Specificity, BAcc: Balanced Accuracy.

By comparison, the Partin, Roach, Yale, MSKCC, Briganti 2012 and 2017 models
achieved lower respective C-index values of 0.71, 0.68, 0.56, 0.62, 0.63 and 0.73 (Supplemen-
tary Table S5).

The newly developed models had a higher AUC than all other nomograms with
an increase of 0.19–0.28, the second highest AUC being achieved by the Briganti 2017
nomogram (Supplementary Table S6).

3.4. Testing Set

In the testing set (n = 112), the Combat-Combined model was ranked as the most
efficient model with a C-Index of 0.89 and a Bacc of 89.4% with the 19% threshold. The
New-Combined model achieved the second highest C-indexes: 0.87 for the 7% cut-off and
0.86 for the 10% cut-off; followed by the New-Combined model (0.82). In comparison, the
other nomograms with their cut-offs resulted in lower C-indexes of 0.70, 0.65, 0.55, 0.66,
0.64 and 0.73 for Partin’s, Roach’s, Yale’s, MSKCC’s, Briganti’s 2012 and Briganti’s 2017
(Supplementary Table S7).

The ComBat-Combined model reduced the risk of FN to 3.3% while correctly avoiding
the risk of eLND for 88 (96.6%) patients, with the 19% cut-off. Among the 21 patients
classified above the 19% cut-off, 76.2%% had a proven LNI resulting in a specificity (Sp) of
89.4%. Detailed results of each model are available in Table S7. Patients classified above the
19% cut-off using the ComBat-Combined model were 23.1 times more likely to present a
LNI, respectively (Supplementary Table S8). For comparison, the second best relative-risk
ratio, apart from the New-Clinical and New-Combined models, was 8.2 (MSKCC). Finally,
DCA revealed that the newly developed models improved LNI risk prediction when
compared to other models (Figure 1). Similarly, calibration plots showed a calibration as
satisfactory as the Briganti 2017 and the MSKCC nomograms (Supplementary Figure S2).
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Figure 1. Decision curve analysis demonstrating the net benefit associated with use of the New-Clinical, New-Combined
and ComBat-Combined Models for detection of lymph node invasion in comparison to currently available tools in the
testing set (Partin, Yale, Roach, Briganti 2012, Briganti 2017 and MSKCC). x-axis: predicted probability, y-axis: clinical net
benefit. Abbreviations: NN: Neural Network, MSKCC: Memorial Sloan Kettering Cancer Center.

3.5. Inter-Reader Variability

The three independent segmentations achieved a mean Dice overlap coefficient of
0.81 and a mean Hausdorff distance of 0.67 mm (Supplementary Table S9). The ICC
between each feature’s value (feature one -> six, respectively) corresponding to the different
delineations ranged from 0.85 to 0.98 and from 0.94 to 0.99 for the average measures
(Supplementary Table S10). In this subset of patients, three patients had LNI (16.7%). No
change in LNI prediction occurred with the changes in radiomic features’ values across
the experts’ delineation and whatever the chosen cut-off (Supplementary Table S11). An
example of the variations of the delineations for two patients is available as Figure 2.
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Figure 2. Example of variations of delineations for two patients: (a): 56.2 yo, cT2a, PSA 7.7 ng/mL, Gleason 3 + 4 (ISUP
2), respective DICE overlap coefficients with V.B (reference): 0.85 (F.L) and 0.83 (U.S); (b): 67.4 yo, cT1c, PSA 1.8 ng/mL,
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Pathology. Red: delineation #1 (V.B), cyan: delineation #2 (F.L), yellow: delineation #3 (U.S).
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3.6. NCCN Risk Classification

The ComBat-Combined model performed robustly in the intermediate and high-risk
patients according to NCCN risk classification with BAccs in the testing set of 86.7 and
94.8%, respectively (Supplementary Table S12).

3.7. Subgroup with Targeted Biopsies

Targeted biopsies were performed in a subset of 98 patients (35.0%), with n = 62 pa-
tients (63.3%) and n = 36 patients (36.7%) in the training and testing cohorts, respectively.
The Briganti 2018 resulted in AUCs of 0.73 and 0.74 compared to 1.00 and 0.96 for the
ComBat-Combined model, in the training and testing cohorts, respectively. When applying
the 7% prespecified cut-off, the Briganti 2018 achieved a C-index of 0.68 (Se 75.0%, Sp
60.0%) in the training cohort and a C-index of 0.58 (Se 37.5%, Sp 78.6%) in the testing
cohort. The ComBat-Combined model with the 19% cut-off achieved C-Indexes of 1.00 and
0.86 in the training and testing cohorts, respectively. Comparison between the Briganti
2018 and each newly developed model is presented as ROC curves: Supplementary Figure
S3a for the training cohort and Supplementary Figure S3b for the testing cohort. The
respective DCA and calibration plots for the Briganti 2018, the New-Combined and the
ComBat-Combined models are shown as Supplementary Figures S4a–d (training cohort)
and S5a–d (testing cohort).

3.8. Radiomics Quality Score

Our study scores moderately on the radiomics quality score [26] with 17 points (out of
36, Supplementary Table S13).

4. Discussion

According to EAU guidelines [8], eLND completion should be based on the use
of predictive tools using disease and patients’ characteristics, such as the models we
tested (Briganti 2012 [12], Briganti 2017 [13] and MSKCC [14] nomograms). While these
models have shown satisfying results, confirmed with external validation, calibration
remained perfectible, especially in intermediate-risk patients. Indeed, in a population of
175 patients with intermediate PCa, the Briganti 2017 nomogram achieved a low AUC
of 0.53 [27]. The Briganti 2018, while further enhancing the prediction quality, focuses
specifically on patients with software-based fusion targeted biopsies [16]. However, despite
being more precise, software-based fusion remains scarce due to logistics consideration,
limiting the Briganti’s nomogram’s generalizability, most centers still using cognitive
fusion biopsies [28]. Therefore, LNI risk prediction tools and their generalizability need to
be improved.

Our Combat-combined model achieved a higher performance when compared to the
available models and a higher net benefit according to DCA, even in the testing set. For
predicted probabilities ~85–95%, the newly developed models had negative net benefit
reflecting the few false negatives that would still be operated on with eLND despite not
showing LNI. Application of the ComBat harmonization method enhanced the model’s
performance with the Combat-model reaching an Bacc of 89.4% in the testing set, with
a threshold set to 19%. We also thoroughly assessed the robustness of our model to
delineation’s variations. The LNI risk prediction was not modified by switching the
experts’ delineations, despite the slight changes between each segmentation in a subset of
18 randomly selected patients.

Recent models were systematically enhanced by the addition of MRI data but none
incorporated radiomics analysis. Radiomic analysis in the PCa setting has been previously
studied for both diagnosis and treatment outcome prediction [19,20,29]. LNI risk is known
to be correlated to the Gleason score, PSA level and T stage [2]. The better assessment of
tumor heterogeneity via radiomic analysis could explain the superiority of such features
over simple and independent clinical, biological or radiological data. Among the seven
features in the Combat-Combined model, four were radiomics features, accounting for
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26.5% of the overall model’s prediction. For instance, the Inverse Difference Normalized
(Idn) accounted for 4.6% of the prediction. Idn is a measure of the local homogeneity of an
image and normalizes the difference between the neighboring intensity values by dividing
over the total number of discrete intensity values: by definition, the higher the value is, the
more uniform the volume is and vice versa [30].

The radiomics approach applied to routinely acquired images for diagnosis has the
great advantage of being cost-effective and noninvasive. Genomic tests, such as the
Decipher Prostate Cancer test®, have been used to stratify PCa patients on metastasis-free
survival and cancer-specific mortality [31]. Even if costs have been reduced, such genomic
tests have never been evaluated for LNI risk stratification.

Our workflow aimed to reduce common statistical biases through a conservative
feature set reduction procedure and by relying on separate training and testing sets. How-
ever, some limitations persist. First, the use of training and testing sets does not replace
a full external validation (which would also enhance the overall radiomics quality score
of the study). Previous models were first internally developed using a logistic regression
approach and secondly externally validated. To overcome the lack of external validation
in our study, we tested our models in an internal set, well separated from the training
set. This method showed a high stability of the model between the training and testing
sets. We partly addressed that limitation by analyzing a subset of 18 patients with three
different experts’ delineations, with no resulting LNI classification changes. The ComBat
harmonization method was performed in order to account for the MRI scans’ heterogeneity.
It resulted in a higher performing model, the Combat-Combined model. Neural networks
are often criticized as being “black boxes” [32]. Our approach offers classification by
normalized importance of the features, thus partly addressing this issue and providing
models with partial clinical interpretability for the users. Finally, comparison with the latest
Briganti 2018 nomogram was only offered in a subset of patients because of the targeted
biopsies being nonmandatory in our study. Software-based fusion biopsies are considered
the standard of care since 2018 [17] but our set predated the recommendation. However,
the benefit of the latest Briganti 2018 over Briganti 2017 and Briganti 2012 appears to be
small [33,34].

In patients treated with radiotherapy, pelvic irradiation remains controversial. While
some studies suggest a possible benefit for low [35], and high-risk PCa patients [36,37],
guidelines for pelvic lymph node irradiation remain weak because of the lack of level
1 data. The lack of consensus underpins the need of better biomarkers.

5. Conclusions

Radiomic features extracted from the preoperative MRI seem to provide added predic-
tive value to usual models regarding LNI risk prediction in PCa, in an external testing set.
Adoption of this model could avoid up to 80% of eLND with a risk of missing only 1.1%
patients with LNI. External and prospective validations are currently under investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225672/s1: Protocol S1: Radiomics features extraction; Protocol S2: Features set
reduction and model building; Protocol S3: Inter-reader variability; Figure S1: Flowchart of the
patients’ selection; Figure S2: Calibration plots for each available model, the New-Combined model
and the Combat-Combined model, in the testing set; Figure S3: Comparison between the Briganti
2018 and the New-Clinical, the New-Combined and the Combat-Combined models ROC (Receiver
Operative Characteristics) curves in the training set (3A) and in the testing set (3B); Figure S4:
Decision curve analysis (A) and calibration plots for the Briganti 2018 (B), the New-Combined model
(C) and the Combat-Combined models (D) in the training set; Figure S5: Decision curve analysis
(A) and calibration plots for the Briganti 2018 (B), the New-Combined model (C) and the Combat-
Combined models (D) in the testing set; Table S1: Summary of MRI scan acquisition parameters;
Table S2: Selected radiomic features after feature selection; Table S3: Spearman’s correlation coefficient
(training set); Table S4: Analysis of each built model and respective mean accuracy based on the
Boostrap analysis (n = 1000 replications) in the training set; Table S5: Analysis of each model’s
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discrimination between patients with or without LNI in the training set; Table S6: Comparison
of ROC curves in the training set; Table S7: Analysis of each model’s discrimination between
patients with or without LNI (testing set); Table S8: Relative Risk derived from each model (testing
set); Table S9: Inter-reader variability assessment—segmentation; Table S10: Intra-class correlation
for each radiomic feature in the New-Combined model, depending on the delineation variation;
Table S11: Inter-reader variability assessment—LNI risk prediction; Table S12: Model performance
according to the NCCN risk classification; Table S13: Radiomics Quality Score.
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