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Abstract: The varying concentrations of polycyclic aromatic hydrocarbons (PAHs) at remote islands
is an important indicator, demonstrating the contributions from different regional combustion
sources. In this study, gaseous and particulate PAHs were measured at Weizhou Island in the Gulf
of Tonkin from 15th March to 14th April, 2015. The concentrations of PAHs ranged from 116.22 to
186.74 ng/m3 and from 40.19 to 61.86 ng/m3 in gas and particulate phase, respectively, which were
much higher than those of some remote sites in Asia. Phenanthrene, fluoranthene, pyrene, and
chrysene, which were mainly found in diesel vehicle emissions, had relatively high concentrations in
both gas and particulate phases. According to the comprehensive results of back trajectory cluster
analysis and diagnostic ratios, the local vessel emission was probably the main source of PAHs,
which was much more important than the coal and biomass combustion sources from remoter
regions. The toxicities represented by

∑
PAH7, benzo(a)pyrene-equivalent carcinogenic power, and

2,3,7,8-tetrachlorodibenzo-p-dioxin-based total toxicity potency are much higher in particulate phase
than those in gas phase. However, the toxicities of gas phase should not be neglected from the point
of view of indirect-acting mutagenicities due to the high contribution of fluoranthene.

Keywords: PAHs; Gulf of Tonkin; diagnostic ratio; back trajectory analysis; toxicity risk

1. Introduction

Much attention is being paid to the presence of polycyclic aromatic hydrocarbons (PAHs), which
are carcinogenic and/or mutagenic chemicals, in the environment [1,2]. PAHs in the atmosphere mainly
originate from the incomplete combustion of fossil fuels and biomass, such as motor-vehicle emission,
heating supply, energy production and crop residue burning [3–7]. PAHs have been found in both
the particulate and gaseous phases of combustion emissions and the ambient atmosphere due to their
semi-volatile characteristics [8–10]. Gas-particle partitioning is also an important factor influencing the
fate of PAHs in the environment, such as long-range atmospheric transport, transformation between
phases, and removal from the atmosphere via wet and dry deposition [11,12].

The Gulf of Tonkin (GT) is located in the northwest of South China Sea, half-surrounded by
southern China mainland, Hainan Island, and Indochina Peninsula. The two Chinese provinces
connected to GT, Guangxi, and Guangdong, contributed around 13.07% of the total GDP in China
in 2018 [13]. Economic activity has a close connection to the emission of pollutants, and a lot of
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relative studies concerning the issue of air pollution in these two provinces have been reported [14–17].
Moreover, springtime emissions from biomass burning in the Indochina Peninsula often cause serious
air pollution and can sometimes influence the air quality in the downwind regions by long-range
transport [17–21]. Additionally, there are 5 Chinese ports (Yangpu, Haikou, Fangcheng, Beihai and
Qinzhou) as well as 1 Vietnamese port (Hai Phong) in the surrounding area of GT (Figure 1). The total
handling capacity of the aforementioned 6 ports was 407.31 million tons in 2017 [22]. The influences of
the emissions from ships and ports on the atmosphere over GT should not be neglected either. It is
of great interest to clarify the levels, contributors, and toxicity risks of PAHs in GT, and improve our
understanding of PAH pollution in a marine area surrounded by various emission sources.
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Remote islands are often treated as background sites for studies on the regional atmospheric
environment by comprehensive analysis of observation and/or simulation data [23–25]. The insular
PAHs are also well-investigated to clarify the origin of the polluted air masses by deeply analyzing
various PAH species [26,27]. A considerable amount of research has been carried out based on the
atmospheric observations of some remote islands in the Yellow Sea or the East Sea focusing on the
topic of regional air pollution in North East Asia [28–30].

In this study, gaseous and particulate PAHs were measured at Weizhou Island in GT from 15th
March to 14th April 2015. Back trajectories during the sampling period and diagnostic ratios of PAHs
were analyzed, in order to find out the contributions of different possible emission sources at this site
in spring. Finally, the toxicity risk of PAHs was also evaluated.

2. Materials and Methods

2.1. Sample Collection

Particulate- and gas-bound PAHs were collected simultaneously by a medium-volume air sampler
at a flow rate of 78 L/min from 15th March to 14th April, 2015 at Weizhou Island (21.01◦ N, 109.10◦ E),
located in GT, China (Figure 1). This small island is 40 km south to Beihai, Guangxi Province and 60
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km east to the Leizhou Peninsular, Guangdong Province. The sampler was set on the roof of a 15 m
high building. The pre-combusted (450 ◦C for 6 h) quartz fiber filters (90 mm, Munktell) were used for
the collection of particulate-bound PAHs. The gaseous PAHs were collected on XAD-4 resin packed in
a column with polyurethane foam at each end. The column was connected directly under the filter
described above. The XAD-4 resin (diameter 250–800 µm, pore size 48 Å, volume/weight ratio 0.96
cm3/g, surface area 725 m2/g) was purchased from Rohm and Haas (Philadelphia, PA, USA). Filters
and resin-packed columns were daily changed at 7 a.m., and 26 sets of samples were obtained in total.
After sampling, the filters and resin columns were both resealed and stored at –20 ◦C in darkness until
analysis. Field blank samples were taken by setting the filter and resin column to the sampler for a few
seconds without pumping.

2.2. Chemicals

The 18 PAHs listed in Table 1 were analyzed. PAH standards as well as the internal standards
pyrene (Pyr)-d10 and benzo[a]pyrene-d12 were purchased from ChemService (West Chester, PA, USA).
All chemicals used were of analytical grade.

Table 1. Investigated PAHs.

No. Compound Abbreviation Rings

1 Naphthalene NAP 2
2 Acenaphthylene ANY 3
3 Acenaphthene ANA 3
4 Fluorene FLU 3
5 Phenanthrene PHE 3
6 Anthracene ANT 3
7 Fluoranthene FLT 4
8 Pyrene PYR 4
9 Benz(a)anthracene BaA 4
10 Chrysene CHR 4
11 Benzo(b)fluoranthene BbF 5
12 Benzo(k)fluoranthene BkF 5
13 Benzo(j)fluoranthene BjF 5
14 Benzo(e)pyrene BeP 5
15 Benzo(a)pyrene BaP 5
16 Indeno(1,2,3-cd)pyrene InP 6
17 Dibenz(a,h)anthracene DBA 5
18 Benzo(g,h,i)perylene BPE 6

2.3. Chemical Analysis

With the internal standards added, filter and resin samples were extracted three times with 80 mL
of a 3:1 v/v mixture of benzene and ethanol (15 min each time) and three times with 640 mL of acetone
(30 min each time), respectively, in an ultrasonic extraction instrument. The extract was evaporated
to dryness, then part was re-dissolved in acetonitrile and PAHs in the extract were analyzed by Gas
Chromatography-Mass Spectrometer (GC-MS).

Qualitative and quantitative GC-MS analyses of PAHs were carried out with an Agilent 7890A GC
system equipped with an HP-5 column (30 m × 0.25 mm × 0.25 µm), coupled to an Agilent 5975 MS
Engine mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Chromatographic conditions
were as follows: injector temperature 50 ◦C; thermal program: 75 ◦C for 1 min, ramping 25 ◦C/min up
to 150 ◦C, 4 ◦C/min up to 235 ◦C, 3 ◦C/min up to 265 ◦C, 50 ◦C/min up to 300 ◦C for 11.94 min; carrier
gas helium, 1 mL/min, injection volume 1 µL, temperature transfer line 300 ◦C. Electronic ionization at
70 eV, scanning: full scan-mass range 98–310 m/z. The chromatogram was obtained in the total ion
mode, and the molecular ion of each PAH and internal standards were then extracted.
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The recovery for the extraction and clean up procedure was 97.3 ± 5.2% (mean and standard
deviation for all compounds). The limit of detection and limit of quantitation were estimated in pg/m3

and ranged from 0.003 to 0.054 for PAHs.

2.4. Back Trajectory Cluster Analysis

Back trajectory analysis was used to provide information on air mass origins over the sampling
period and investigate the sources of PAHs at Weizhou Island. Back trajectories were calculated
using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model developed by the
National Oceanic and Atmospheric Administration (NOAA). The monthly Global Data Assimilation
System (GDAS, global, 2006-present) dataset was obtained from the National Centers for Environmental
Prediction (NCEP) for the model calculation. In this study, 3-day backward air trajectories were
generated at 3 h intervals from 15th March to 14th April arriving at the height of 500 m above the
ground level at Weizhou Island.

In order to distinguish different source regions, cluster analysis of back trajectories was used to
group similar air mass origins together. By grouping similar trajectories, the information on pollutant
with similar chemical histories can be obtained from the post-processed data. The key issue in cluster
analysis is how to describe the similarity of different clusters, which is usually indicated by distance
matrix. In the HYSPLIT model, there are two kinds of distance measurements, namely Euclidean
distance, and angle-based distance.

In this study, the angle-based distance matrix, which is a measure of the angle from the starting
location of the back trajectories (i.e., Weizhou Island in this study), was used to determine the similarity
of different trajectories. The cluster analysis was conducted with the openair R package (version
2.7-1) [31].

The angle-based distance between two trajectories is defined as:

d1,2 =
1
n

n∑
i=1

cos−1
(
0.5

Ai + Bi + Ci
√

AiBi

)
where

Ai = (X1(i) −X0)
2 + (Y1(i) −Y0)

2

Bi = (X2(i) −X0)
2 + (Y2(i) −Y0)

2

Ci = (X2(i) −X1(i))
2 + (Y2(i) −Y1(i))

2

where X1, Y1 and X2, Y2 are the latitude and longitude coordinates of back trajectories 1 and 2,
respectively. n is the number of trajectory points. X0 and Y0 are the coordinates of the starting location
of the back trajectories (i.e., Weizhou Island in this study).

2.5. Toxicity Risk Assessment

The toxicity factors and equations used for the data calculation are presented in detail as follows:
The BaP-equivalent carcinogenic power (BaPE) for the total PAHs [32]:

BaPE = BaA × 0.06 + BbF × 0.07 + BkF × 0.07 + BaP × 1.00 + DBA × 0.60 + BPE × 0.08

The total toxicity potency for PAHs relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
induction in vitro assays (TEQ) [33]:

TEQ =
n∑

i=1

Conci × IConci
(
ng/m3

)
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where the average TCDD-IEFs (induction equivalency factors) for the different components studied
are listed in Table 2.

Table 2. The average 2,3,7,8-tetrachlorodibenzo-p-dioxin-induction equivalency factors (TCDD-IEFs)
and indirect-acting mutagenicities (IDMs) in S. typhimurium TA100 strain with S9 mix (rev./ng) for
each PAH.

PAH TCDD-IEFs IDMs PAH TCDD-IEFs IDMs

NAP - - CHR 0.0001 -
ANY - - BbF - 7.8
ANA - - BkF - 3.8
FLU - - BjF - -
PHE - - BeP - -
ANT - - BaP 0.0001 16.1
FLT 0.00000001 1.8 InP - 0.8
PYR - - DBA 0.0001 5.0
BaA 0.00001 2.0 BPE 0.00000001 0.3

The indirect-acting mutagenicities (IDMs) of PAH components, relative to in vitro assays (S.
typhimurium TA100 strain with S9 mix) [34], is calculated by:

Indirect− acting mutagenicities =
n∑

i=1

Conci × IDMi
(
revertant/m3

)
where IDMs for the different components studied are listed in Table 2.

3. Results and Discussion

3.1. Concentrations of PAHs

The temporal variations in the concentrations of PAHs with different number of rings during the
sampling period are presented in Figure 2. Samples were not collected on several days (2nd, 3rd, 4th,
9th, and 10th April) due to the intermittent power supply on the island. The total PAHs concentrations
tended to increase from 16th March until a periodic high value (226.44 ng/m3) was shown on 26th
March, followed by a gradual decrease. The highest value of total PAHs concentration (240.71 ng/m3)
was found on 6th April. The concentration of total 18 PAHs at Weizhou Island ranged from 157.70 to
240.71 ng/m3, with a mean of 200.39 ng/m3. PAHs with 2 to 4 rings and molecular weights ranging
from 128 to 252 contributed dominantly to the total PAHs in each day during the sampling period.
The percentages of these PAHs (with 2 to 4 rings) in the total PAHs were from 94.83% to 97.98% in
this study.

In Table 3, PAHs concentrations at Weizhou Island were compared with the results from other
remote or urban sites in Asia. The PAH levels observed in this study are similar to those at a site in
Tibetan Plateau [35], but they are much higher than those of the other listed Asian remote sites in the
table, indicating the serious pollution situation in GT. On the other hand, PAH levels at Weizhou Island
are still lower than those of some Asian urban sites, such as Beijing, Guangzhou, and Shenyang [6,36,37].



Int. J. Environ. Res. Public Health 2020, 17, 1338 6 of 13
Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 13 

 

 
Figure 2. Temporal variations in the concentrations of polycyclic aromatic hydrocarbons (PAHs) with 
different number of rings during the sampling period. 

In Table 3, PAHs concentrations at Weizhou Island were compared with the results from other 
remote or urban sites in Asia. The PAH levels observed in this study are similar to those at a site in 
Tibetan Plateau [35], but they are much higher than those of the other listed Asian remote sites in the 
table, indicating the serious pollution situation in GT. On the other hand, PAH levels at Weizhou 
Island are still lower than those of some Asian urban sites, such as Beijing, Guangzhou, and Shenyang 
[6,36,37]. 

Table 3. Comparison of the total PAHs (ng/m3) at Weizhou Island with some other sites in Asia. 

Type Site 
Particulate 

Phase Gas Phase 
∑PAH 

Concentrations 
Congener 

No. References 

Remote 

Weizhou Island 40.19–61.86 116.22–186.74 157.70–240.71 18 This study 
Tibetan Plateau 4.4–60 79–350 87–360 15 [35] 

Tuoji Island 4.24–40.62 - - 15 [38] 
Hengchun 
Peninsula 

0.01–1.36 0.39–2.31 0.42–2.79 16 [39] 

Amami Sea and 
Japan Sea 0.03–2.11 - - 12 [29] 

Jeju Island 0.404–2.93 - - 21 [27] 
Gosan 2.9 1.4 - 14 [40] 

Urban 

Donghe 12.9–348.8 - 303.9–1616.5 16 [36] 
Beijing 3.2–222.7 - 131.0–979.3 16 [36] 

Guangzhou 2.2–90.5 25.7–239.5 27.9–329.4 16 [41] 

Shenyang - - 92.6–316 
(cold season) 

9 [37] 

The average individual PAHs concentrations in the gas and particulate phases during the 
sampling period are shown in Figure 3. 2-ring PAHs which have low molecular weight were found 
almost only in the gas phase, whereas the high molecular weight PAHs (5- and 6-ring) were primarily 
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Table 3. Comparison of the total PAHs (ng/m3) at Weizhou Island with some other sites in Asia.

Type Site Particulate
Phase Gas Phase

∑
PAH

Concentrations
Congener

No. References

Remote

Weizhou Island 40.19–61.86 116.22–186.74 157.70–240.71 18 This study
Tibetan Plateau 4.4–60 79–350 87–360 15 [35]

Tuoji Island 4.24–40.62 - - 15
Hengchun Peninsula 0.01–1.36 0.39–2.31 0.42–2.79 16 [38]

Amami Sea and Japan Sea 0.03–2.11 - - 12 [29]
Jeju Island 0.404–2.93 - - 21 [27]

Gosan 2.9 1.4 - 14 [39]

Urban

Donghe 12.9–348.8 - 303.9–1616.5 16 [36]
Beijing 3.2–222.7 - 131.0–979.3 16 [36]

Guangzhou 2.2–90.5 25.7–239.5 27.9–329.4 16 [40]

Shenyang - - 92.6–316(cold
season) 9 [37]

The average individual PAHs concentrations in the gas and particulate phases during the sampling
period are shown in Figure 3. 2-ring PAHs which have low molecular weight were found almost only
in the gas phase, whereas the high molecular weight PAHs (5- and 6-ring) were primarily found in the
particulate phase. Most of the middle molecular weight PAHs (3- and 4-ring) were distributed in both
the gas and particulate phases. Total average concentration of gaseous PAHs, 150.14 ng/m3, was 3
times higher than that of particulate PAHs. The above distributions were due to the various subcooled
liquid vapor pressures with different molecular weights, and similar distributions were also reported
previously [41–44]. PHE, FLT, and PYR, mainly found in diesel vehicle emissions [45], showed a
relatively high concentrations in both the gas and particulate phases in this study. Additionally, the
concentration of CHR was also extraordinarily high, especially in the particulate phase. CHR was
reported to exhibit high emission factors from both gasoline and diesel vehicles [46–48].
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3.2. Diagnostic Sources of PAHs

It could be illustrated from Figure 4 that the trajectories were relatively concentrated for each
day during the sampling period, and generally originated from a couple of source regions. As shown
in Figure 5, three different source regions were identified during this period according to the back
trajectories from HYSPLIT model: (1) cluster C1 with southeast orientation, which the air mass may
have originated from the Philippines, the South China Sea and the Indo-China Peninsula; (2) cluster C2
with east orientation, which the air mass originated from the remote Yangtze River Delta area, and the
trajectories nearly just followed the southeast coastline of China mainland; (3) cluster C3 with northeast
orientation, which the air mass originated from China mainland. The proportions of the three clusters
were 45.7%, 18.8%, and 35.6%, respectively. The source regions of these three clusters were supposed
to have different influences on the concentrations of PAHs at Weizhou Island due to their different
emission characteristics. The air mass with trajectories from southeast (cluster C1), east (cluster C2)
and northeast (cluster C3) might be affected by spring biomass burning in the northern Southeast
Asia, vessel emission from maritime transport, and industrial coal combustion, respectively [49–52].
For the 26 sampling days, back trajectories were divided into the above three types. The number of
sampling days for each type were cluster C1 (southeast, 12 days), cluster C2 (east, 5 days) and cluster
C3 (northeast, 9 days).Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 8 of 13 
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to 14th April.

As the emission profiles of PAHs congeners strongly depend on their formation mechanisms
during the production process of different PAHs such as diesel and gasoline combustion, crude oil
processing and coal combustion, diagnostic ratios are frequently used to distinguish different emission
sources of PAHs [52]. In this study, the ratios of ANT/(ANT+PHE), BaA/(BaA+CHR), BaP/BeP, BbF/BkF,
FLT/(FLT+PYR) and InP/(InP+BPE) were chosen and calculated to diagnose the possible source of
PAHs at Weizhou Island, as shown in Figure 6. The ANT/(ANT+PHE) ratio < 0.1 is usually taken
as an indicator of petroleum source while a ratio >0.1 indicates a pyrogenic source [52,53]. In this
study, the ANT/(ANT+PHE) ratio ranged from 0.05 to 0.11, which implied that the PAHs at the
sampling site mainly came from petroleum combustion. The BaA/(BaA+CHR) ratio <0.2 implies
the petroleum source, from 0.2 to 0.5 indicates either petroleum or combustion, and a ratio >0.35
implies combustion [54]. The BaA/(BaA+CHR) ratio in this study ranged from 0.08 to 0.25, and
the mean value was 0.16, suggesting that the PAHs mainly came from petroleum or combustion.
The BbF/BkF ratios of all the samples in this study were higher than 0.5, suggesting an important
diesel emission [55]. The FLT/(FLT+PYR) ratio in this study ranged from 0.39 to 0.51, and the mean
value was 0.45. The literature suggests that the ratios between 0.4 and 0.5 demonstrate liquid fossil
fuel (vehicle and crude oil) combustion whereas ratios >0.50 are characteristic of grass, wood or coal
combustion [53]. The ratios of InP/(InP+BPE) for all the samples ranged between 0.16 and 0.5, which
indicated that petroleum combustion was an important source of PAHs.
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Overall, the above diagnostic ratio results indicate that petroleum combustion is the principal
source of PAHs at Weizhou Island. Moreover, it could be found that there was no significant difference
in the diagnostic ratios of the different cluster of trajectories, which might be partly explained by the
BaP/BeP ratio. BaP is photodegraded more rapidly than its isomer BeP, and the ratio BaP/BeP can be
used as a marker of ageing and photodegradation of PAHs. In this study, the mean ratio of BaP/BeP
was 2.23, meaning that the PAHs at Weizhou Island were quite fresh and principally influenced
by local emissions. As shown in Figure 1, Weizhou Island is in the middle of Gulf of Tonkin and
surrounded by several big commercial ports as introduced in Section 1. The possible emission caused
by coal and biomass burning from relatively remote source regions might be covered up by local high
vessel emissions.

3.3. Assessment of Toxicity Risks

The toxicity risks caused by PAHs in the ambient air at Weizhou Island were assessed in Table 4.
The sum of 7 carcinogenic PAHs (

∑
PAH7 = BaA + CHR + BbF + BkF + BaP + InP + DBA), BaPE and

TEQ are usually used to assess the toxicity risks caused by PAHs [32,33,56–59]. It has been found
that PAHs in ambient airborne particulate matter are the main causes of IDM [34]. Therefore, IDMs
determined in one of our previous studies are used [6] to assess the toxicity risks caused by PAHs.

Table 4. Potential toxicity risk of PAHs.

Gas Phase Particulate Phase Total PAHs∑
PAH7 4.65 23.95 28.60

BaPE 0.46 3.35 3.81
TEQ 0.00033 0.00172 0.00206
IDMs 44.71 77.37 122.08

As a result, the toxicities represented by
∑

PAH7, BaPE and TEQ in particulate phase are
significantly higher than those in gas phase (5.2 to 7 times). It is because the toxicities of PAH usually
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rises with the increasing ring numbers, and high ring PAHs are mainly distributed in particulate
phase [33,58]. However, the IDM is only 1.7 times higher in particulate phase than in gas phase, as
FLT accounted for 36.6% of the total IDMs, 34.81 and 9.9 rev./m3 in gas phase and particulate phase,
respectively. Therefore, the toxicities of gas phase should not be neglected from the point of view of
IDMs due to the high contribution of FLT at Weizhou Island.

4. Conclusions

In this study, PAHs in both the gas and particulate phases were sampled and measured at Weizhou
Island in GT from 15th March to 14th April, 2015 for the purpose of exploring the environmental level
and possible emission sources of PAHs at a remote island in China. Back trajectory cluster analysis was
carried out to distinguish the main source regions, and diagnostic ratios, such as the ANT/(ANT+PHE),
BaA/(BaA+CHR), BaP/BeP, BbF/BkF, FLT/(FLT+PYR) and InP/(InP+BPE) ratios, were calculated to
diagnose the possible source of PAHs. The toxicity risk of PAHs was also analyzed using the indexes
of

∑
PAH7, BaPE, TEQ and IDMs.
From the results, it could be concluded that:
(1) The PAH levels at Weizhou Island were much higher than those of some other remote sites

in Asia, implying more serious pollution of PAHs in GT. PHE, FLT, PYR and CHR, which mainly
came from diesel vehicle emission, showed a relatively high concentrations in both the gas and
particulate phases.

(2) The comprehensive results of back trajectories and diagnostic ratios analysis demonstrated
that the main source of PAHs was probably the local vessel emission, which could even outweigh the
influence of biomass burning in the northern Southeast Asia and coal combustion from the mainland.

(3) The toxicities represented by
∑

PAH7, BaPE and TEQ are much higher in particulate phase
than in gas phase, however, the toxicities of gas phase should not be neglected from the point of view
of IDMs due to the high contribution of FLT.

Thus, the importance of reducing the emission of PAHs from maritime transportation in GT
should be highlighted to control the PAHs pollution in that region. Further basic research should be
conducted on the emission inventory, characteristics and toxicity risk of PAHs from marine transport,
to provide more scientific suggestion on the human health risk management in coastal regions.
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