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Resilience of Urban Transport 
Network-of-Networks under 
Intense Flood Hazards Exacerbated 
by Targeted Attacks
Nishant Yadav1, Samrat Chatterjee2 ✉ & Auroop R. Ganguly1 ✉

Natural hazards including floods can trigger catastrophic failures in interdependent urban transport 
network-of-networks (NoNs). Population growth has enhanced transportation demand while 
urbanization and climate change have intensified urban floods. However, despite the clear need to 
develop actionable insights for improving the resilience of critical urban lifelines, the theory and 
methods remain underdeveloped. Furthermore, as infrastructure systems become more intelligent, 
security experts point to the growing threat of targeted cyber-physical attacks during natural 
hazards. Here we develop a hypothesis-driven resilience framework for urban transport NoNs, which 
we demonstrate on the London Rail Network (LRN). We find that topological attributes designed 
for maximizing efficiency rather than robustness render the network more vulnerable to compound 
natural-targeted disruptions including cascading failures. Our results suggest that an organizing 
principle for post-disruption recovery may be developed with network science principles. Our findings 
and frameworks can generalize to urban lifelines and more generally to real-world spatial networks.

According to the World Economic Forum’s Global Risks Report 20191, extreme weather events are the global 
risks of highest concern. Heavy precipitation, along with associated flooding in urban megaregions, has been 
on the rise both in intensity and frequency under the dual forcings of climate change and rapid urbanization. 
Consequently, critical urban lifeline infrastructure systems (CULIS) across the globe are under stress, with mul-
timodal urban transport systems (MUTS) among the worst affected by urban flooding. Moreover, transportation 
networks are functionally interdependent with each other and on other infrastructure systems such as the power 
grid and communication networks. Thus, even a limited disruption in one system can spiral out of control lead-
ing to severe loss of lifeline functions. Further, as MUTS are becoming increasingly connected and autonomous, 
security experts have pointed to the growing threat of opportunistically targeted cyber-attacks designed to take 
advantage of natural hazard events2.

Numerous definitions of resilience have been proposed in the literature3, although here we adopt the most 
widely cited provided by the US National Academy of Sciences: “the ability to prepare and plan for, absorb, recover 
from and more successfully adapt to adverse events”4 . The growing threat of natural, targeted and compound 
disruptions on MUTS calls for an urgent need to analyze and build resilience at a system level. Compound dis-
ruptions here refer to disruptions which may occur simultaneously or sequentially where the network has not 
fully recovered from the initial disruption. For example, a targeted cyber-physical attack in conjunction with a 
natural hazard in order to exploit the already weakened network capacity. Furthermore, the multiscale and inter-
connected nature of MUTS, combined with the inherent unpredictability of extreme weather events, make the 
resilience task even more challenging6.

Conceptual frameworks for resilience are available in the extant literature6–7, but limited work has been done 
on modeling and quantifying MUTS resilience with the aim of generating actionable insights for stakehold-
ers. The recently demonstrated “universality” of network science-based approaches8–12 provide a natural method 
of choice for quantifying resilience of networked systems such as the MUTS. One of the most widely studied 
property in network science is the robustness of a network given the failure of a subset of its nodes. Inspired by 
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percolation theory, the giant (largest) connected component of the network is typically treated as a proxy for the 
state of functionality in the network13. This approach has helped in understanding the robustness properties of 
different network topologies and the corresponding systems they represent. Recent studies in this area range 
from robustness analysis of specific infrastructure systems such as the power grid14 and MUTS11,15, to “universal” 
theories of resilience16,17 which consider network dynamics and topology. Besides robustness, researchers have 
applied network science and engineering to find optimal attacker strategies18 as well as most effective post-failure 
recovery sequences19 in infrastructure networks.

While prior studies in transportation networks have primarily focused on single networks (and single disrup-
tions)11,20, real-world infrastructure networks rarely appear in isolation. The interconnected and interdependent 
network-of-networks (NoNs) give rise to a rich topology, which in turn exhibits behavior that may be different 
from single-layer networks. A recent study21 presented an analytical framework to study the robustness in a 
system of two interdependent networks and found that such interdependence makes them vulnerable (or, less 
robust) compared to single networks. The subsequent literature developed generalized results for ‘n’ interdepend-
ent networks22, diverse failure schemes23, as well as what has been referred to as “universal theories” for cascading 
failures in single16 and interdependent networks-of-networks17.

The existing literature cited above has largely looked at idealized NoNs from a theoretical standpoint to char-
acterize their physical properties such as percolation threshold and phase transitions. However, theoretical frame-
works may not directly apply to real-world networks having topologies which are, often markedly, different. Thus, 
recent research in real spatial networks (e.g. MUTS)24,25, which have not received much attention in the network 
science literature, reveal that spatial constraints render them significantly more vulnerable compared to their 
non-embedded NoN counterparts. In addition, prior research has predominantly considered random, natural, 
and targeted failures individually, however as mentioned earlier, there is a growing need to study compound fail-
ure scenarios arising from natural hazards and cyber-physical attacks.

Additionally, quantifying resilience entails measuring not just the failure but also the recovery processes. 
Infrastructure recovery includes restoring network functionality through maximizing post-disruption network 
flow and/or reconstructing network connectivity while minimizing the temporal and monetary cost of resto-
ration. Current recovery methods can be broadly classified into optimization-based26,27,28 and network-science 
based methods19,29 which prioritize a recovery sequence based on pre-defined metrics such as network centrality 
measures. Although optimization techniques including mixed-integer programming and greedy algorithms have 
been used to derive efficient recovery strategies, they are computationally expensive, and may even be prohibi-
tive for large networks. For infrastructure networks such as MUTS, where real-world node importance is highly 
corelated with node centrality, centrality-based heuristic methods can provide comparable or even faster recovery 
sequences. We test this hypothesis while generating post-failure recovery sequences for LRN.

From the network-science perspective, a long-term goal may be to arrive at universal theories for resilience 
in spatial NoNs. However, given the complexity and diversity among network topologies and failure scenarios, 
as well as the size of the networks, the possibility of arriving at such universal theories may need to be examined 
through hypothesis-driven studies. Meanwhile, urgent solutions are needed for such networks; thus, in our opin-
ion a first step would be hypothesis-driven research focusing on specific aspects of the overall problem. Here we 
address three hypotheses: 1) the spatially constrained MUTS NoN topology renders it more vulnerable compared 
to other spatially non-embedded NoN topologies; 2) a limited targeted attack in conjunction with an intense nat-
ural hazard, may cause disproportionate network failure compared to single hazards. 3) Network-centrality based 
recovery comparably or even outperform optimization-based methods for MUTS.

The primary network-science contribution of this work is to present a generalized computational framework 
for a quantitative understanding of resilience, including robustness and recovery, of real-world and spatially con-
strained urban transportation NoNs. Second, we demonstrate the framework on the LRN and obtain insights that 
may generalize to other CULIS systems globally. Our analysis has been performed in two parts. First, we focus on 
understanding the inherent vulnerabilities of the network due to spatial constraints and network sparsity. Second, 
the London NoN is tested against a suite of failure scenarios – random, targeted attacks, and natural hazards – as 
well as the failures owing to compound failures. The insights derived are expected to generalize to other MUTS 
datasets while the caveats and open challenges may lead to new hypotheses which can be further tested on MUTS 
datasets globally.

Results
The robustness of the network is measured by the rate at which functionality is lost given the failure of a subset of 
its nodes. Inspired from percolation theory, the giant connected component (GCC) is treated as a proxy for the 
instantaneous functionality of the network. At each discrete time step (during failure), the size of GCC can be 
calculated from the adjacency matrix, which encodes all the information about the network, using an appropriate 
algorithm such as Kosaraju’s depth-first search algorithm30.

~ ×G n f A W n( ) ( ( )) (1)ij

where, G n( ) is the size of the giant connected component at timestep n in the failure process. Aij is the ×N N( )
adjacency matrix and W n( ) represents failure operating as a matrix transformation on the adjacency matrix, 
updating the network information at each failure step.

For NoNs (considering a two-network case), where failure also cascades from the interdependent network, the 
effective failure matrix becomes:

= ×′W n W n C( ) ( ) (2)1,2
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and,

∼ × ′G n f A W n( ) ( ( )) (3)ij

where, C1,2 is the dependency matrix capturing the node dependency between the two networks. Therefore, in 
the case of a two-layer NoN topology, the robustness of each network i can be codified as follows:

= −F n G n
G

( ) 1 ( )
(0) (4)

i
i

i

where, F n( ) is the dynamic network functionality as nodes are removed from the network. G (0)i  is the initial GCC 
size of the fully functional network.

In case of compound disruptions, when a second disruption T n( ) occurs after a fraction of nodes N N− ′ are 
removed due to the initial failure W n( ). Starting from ′N  the third term in equations6 and8 below caters to the 
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Network vulnerability.  The London Rail ‘Network-of-Networks’ (LRN) comprises of three urban rail net-
works – Underground, Overground, and the Dockland Light Rail (DLR) – interconnected via shared nodes (see 
Methods: Common Stations). Although the Underground sub-network itself comprises of 11 different lines, in 
this work all the Underground lines are considered as a single network. For details on nodes and links in each 
network, see Methods: Network Structure. Figure 1(A) shows the geocoded LRN over the map of London. Nodes 
in red indicate nodes that would be flooded by 100–1000-year floods on the river Thames (relevant details are 
discussed later).

Robustness of networks, including transportation networks, have been examined in terms of the relative size 
of the giant (largest) connected component (GCC) when a fraction of nodes is removed13,21. Figure 2 compares 
the robustness of the London Rail network (LRN) with equivalent Erdos-Renyi (Random) and Scale-Free (SF) 
network representations, subjected to random and targeted failure scenarios (see Methods: Failure Scenarios). 
Equivalence of the real (LRN) and simulated (Random and SF) networks in this context implies that the total 
number of nodes, layers and average degree are kept identical. Initially, our analysis treats the inter-network 
links in the LRN as connectivity (enabling) links. For random failure, 20 independent runs are conducted where 
nodes are removed at random and the ensemble mean for the GCC is plotted. For targeted failure, two of the most 
common centrality measures – node degree and betweenness – are considered. Similar failures are applied to the 
synthetic Erdos-Renyi (ER) and Scale-Free networks and results are shown in Fig. 2 for (A) random failure, (B) 
targeted (degree) and (C) targeted (betweenness).

When inter-network links are treated as connectivity links, the overall network effectively behaves like a 
supra-single network with distinct communities. Thus, a question from the network science perspective that may 
arise is why represent the LRN as a NoN in the first place. Our rationale for the proposed NoN representation 
is that by increasing topological granularity (i.e., dividing the NoN into interconnected networks) new insights 
can be derived which otherwise would not be possible. Thus, insights about the interdependence of the differ-
ent network layers and the ensuing cascading failure may be better developed through a NoN representation. 
Furthermore, this provides a general framework for interdependent critical infrastructure networks such as the 
power grid and communication networks. Here the LRN NoN representation allows an examination of the inter-
dependency between the three different yet coupled rail networks (Underground, Overground, DLR).

Based on the consideration above, the next part of our analysis treats the inter-network links as depend-
ency links, i.e., if a node fails in one layer, then its dependent node in the corresponding dependent layer fails 
as well. Without loss of generality, in our work, we consider the two largest layers, specifically, Underground 
and Overground Rail networks, and study the system by removing nodes only from the Underground layer. As 
Underground nodes are removed, our representation removes the dependent nodes in the Overground layer, 
which in turn provides a feedback effect on the Underground network. Thus, the feedback between the layers 
leads to a cascading failure scenario. Supplementary Fig. S7 presents a schematic diagram to illustrate this cascad-
ing failure scenario. Corresponding results for this case are shown in Fig. 2(D) for random failure, (E) targeted 
failure (based on degree) and (F) targeted (betweenness).

Under random failure, the LRN NoN is least robust compared to both ER-ER and SF-SF NoNs (Fig. 2(D)). 
Under targeted failure (Fig. 2(E,F)), the LRN NoN is significantly less robust compared to ER-ER and compa-
rable to SF-SF NoN despite not obeying the scale-free property which renders SF networks extremely fragile 
under targeted attacks31. Even when the LRN is considered as an aggregated single-network and compared with 
single ER and SF network, its robustness characteristics are same as above (Fig. 2(A), random 2(B) and (C), tar-
geted). For assortative coupling (like node dependent on like node; the case of LRN), robustness properties for 
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interdependent ER and SF networks are well established in the literature32 (Table 1). Using these as a benchmark, 
we contrast the LRN as ‘fragile-fragile’, i.e. fragile under both random and targeted failures.

The relatively high vulnerability of real-world transportation network like the LRN can be attributed to the 
sparsity of connections and a narrow degree distribution concentrated around ~2 (Supplementary Fig. S8), result-
ing in the presence of a few highly critical nodes (junction stations). Moreover, the topology can be described 
as 2D lattice-like and spatially constrained25, i.e. nodes are linked mostly to nearby nodes as dictated by efficient 
design considerations (since creating each physical link has an associated cost). Consequently, while spatial net-
works have short links, random networks do not have a characteristic link length because nodes can be spatially 
mobile, and links can be across the networks thus leading to a compact topology and higher robustness.

Furthermore, the average shortest path length – a commonly used metric in network science - is significantly 
higher in the LRN (Table 2), which signifies that a select few nodes are extremely critical through which most 
of the shortest paths pass (i.e. there is an absence of hops). These are usually the transit points in transportation 
networks, and their failure may lead to significant loss of network functionality in quick time. On the contrary, the 
LRN robustness is boosted by the fact that degree correlation between dependent nodes is one (since dependent 

Figure 1.  Flood on London Rail Network-of-Networks. Geocoded network over the map of London along with 
the 100–1000-year flood risk map (in purple) of river Thames and its tributaries. Nodes in red are the impacted 
nodes. (A) Top view - impacted nodes across all networks (total = 399, impacted = 65). (B) Multilayer view - 
impacted nodes in each network – 31 (Underground), 7 (Overground) and 27 (DLR). Nodes in orange are the 
shared (common) nodes across the three networks. [(A) Created using Mapbox -https://www.mapbox.com/].
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Figure 2.  Robustness of London Rail Network. The size of the largest (giant) connected component is plotted 
as nodes are removed from the network. Simulated Erdos-Renyi (Random) and Scale-Free networks are used 
as benchmark. In figure labels (A–C) the network is treated as aggregated (single-layer) and in (D–F) as a 
multilayer network-of-networks (NoN). Nodes are removed randomly in (A) and (D); in a targeted manner 
based on degree ((B) and (E)) and betweenness ((C) and (F)). To simulate cascade failure in the NoN case 
((D–F)), nodes are removed only from the underground network. (G,H) Impact of interdependency (coupling 
strength) and average network degree, respectively, on robustness demonstrated using two coupled Erdos-Renyi 
networks. Each plot is an ensemble mean of 20 independent runs.

Network Random Failure Targeted Attack

ER-ER Robust Robust

SF-SF Robust Fragile

Table 1.  Robustness of Interdependent ER and SF Networks under Random and Targeted Failure.

Network Type Average Shortest Path Length

London Rail Network ~13

ER ~4.8

SF ~6.1

Table 2.  Average Shortest Path Length for LRN, ER and SF Network Topologies.

https://doi.org/10.1038/s41598-020-66049-y
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nodes are identical in this case). Indeed, it has been shown that high inter-similarity in spatial NoNs makes them 
more robust33.

For a more comprehensive understanding, we studied the role of connectivity and dependency strength on 
the robustness of NoNs in general. We consider two equal sized ER random networks under random failure. 
Dependency ratio ‘p’ is defined as the fraction of nodes interdependent in each network. For different values of p, 
robustness profiles are plotted (Fig. 2(G)). We find that as dependency increases, the coupled network fails faster. 
However, below a certain dependency ratio p, the coupled network doesn’t fail completely, as can be seen in the 
plot where the final GCC size never approaches zero. For higher values of p, not only do we observe a complete 
failure, but also a transition from a second-order to first-order (abrupt) failure profile, which is in conformation 
with existing literature34. To understand the role of connectivity, keeping p = 1, the average degree < k > is varied 
in both networks (Fig. 2(H)). It is found that coupled networks with higher average degree are more robust. In 
other words, redundancy has a positive impact on network robustness.

Flood failure – robustness and recovery.  Identifying flooded nodes.  The London Rail NoN is geocoded 
over the map of London using the lat-long coordinates of the stations (Fig. 1). Next, the 100–1000-year flood 
risk map on river Thames, obtained from the UK’s Environment Agency’s database35, is overlaid on this network. 
Figure 1(A) shows the impacted stations (nodes) lying in the flood risk zone - 65 stations in total are impacted.

After the flooded nodes are identified, we test the LRN against different failure scenarios – flood-induced, ran-
dom, local, targeted and compound. Their mechanism is described in the Methods section. Similar to before, we 
use the giant connected component (GCC) to quantify the robustness of the network. We find that flood induced 
failure has a distinct profile compared to both the types of random failures (Fig. 3(A)). Approximately 80% of 
the total damage happens within the first one-third node failures in the case of flooding. The kink (sharp drop in 
slope) in the flood-induced failure curve is indicative of the potential for sudden large-scale failure of the network 
as well as the existence of a critical point. The reason for sudden failure in flooding is that the average degree of the 

Figure 3.  Robustness of the London Rail network under (A) flood failure and two types of random failure 
(overall and localized). (B) compound failure where n% nodes (of total) are removed in a targeted manner after 
certain nodes have failed due to flooding. (C) compound failure with targeted attack before flooding.

https://doi.org/10.1038/s41598-020-66049-y
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flooded nodes is higher than the average degree of the overall network (Supplementary Fig. S9). In other words, 
more critical or important nodes are in the flood risk zone. For instance, in the case of the London subway, the 
busiest stations like King’s Cross and Waterloo are next to river Thames and in the riparian zone. Historically, 
cities have developed around rivers and the important stations and junctions were traditionally built close to the 
river body to provide quick transition to water transportation. However, the same design philosophy, which may 
not be as valid in modern times, leaves these transportation systems highly vulnerable to flooding.

Compound disruptions – flood and targeted attacks.  Next, we consider the potential loss of functionality due to 
a compound disruption, as exemplified by opportunistic targeted attacks in conjunction with a natural hazard. 
Specifically, two scenarios are simulated: (1) flood-failure followed by a targeted attack, and (2) a targeted attack 
preceding flood. To have a fair comparison the total number of failed nodes (flood + targeted) are kept equal to 
the case of flood-only failure. In both cases (Figure 3(B) and C, it is observed that compound disruptions cause 
network-wide failure. However, the major proportion of the perceived network-wide failure is contributed by the 
‘limited’ targeted attacks in both scenarios. E.g., for a 5% targeted attack, ~68% of the total loss of giant connected 
component (GCC) is due to post-flooding targeted attacks. While the loss is 74% when targeted attacks happen 
first. A plausible explanation for higher GCC loss when targeted attacks occur first is that on a fresh network the 
adversary gets to take out the most critical nodes first (e.g. by degree or betweenness). On the other hand, when 
flooding occurs first, such nodes with highest criticality may fail during flooding itself but not in the most ‘opti-
mized order’. Besides, a true compound failure impact is not observed – i.e. where failure from the compound dis-
ruptive event potentially equals or exceeds the aggregated failure from isolated targeted and natural disruptions. 
One caveat to this analysis is the assumption that compound failure profile can be partitioned cleanly into tar-
geted and natural phases may not be entirely realistic. However, we do observe that when targeted attacks occur 
before flooding, 6% more total loss of GCC takes place indicating that compound failure sequence does impact 
the system differently. While the present work is an early exploration of networked systems under compound 
disruptions, relaxing the binary node failure condition, allowing partial functionality and exploring ingenious 
targeted attacks (beyond what are just based on node criticalities, such as attacks which can preempt and worsen 
the impact of the subsequent disruption) can provide a more granular analysis.

Recovery strategies.  To quantify the relative performance of different recovery methods, we first define a net-
work functionality metric that allows us to incorporate restoration cost and capacity addition per node. The 
weighted inverse distance has been used to measure the efficiency (or functionality) of transportation networks37. 
We modify it as follows:

∑∑Γ =
≠

⁎
w w

c d
1

i

N

j i

N
i j

i ij

where, Γ is the modified weighted inverse distance of the network, wi and wj denote the weights (or traffic flow) of 
node i and j. They denote the capacity addition during the recovery process. ci is the restoration cost for node .i  dij 
is the shortest distance between all the pair of nodes i and j restored by that point. It is infinite if nodes are not 
connected.

Network functionality is then defined as,

=
Γ
Γ

F
0

where, Γ0 denote the modified weighted inverse distance of the network before failure.
In the absence of real data on traffic flow and restoration cost per station, we make reasonable assumptions 

to perform our analysis: (1) restoration cost per node is proportional to its degree (2) betweenness values for 
each node have been used as a proxy for network flow in prior literature37 and thus, it is used to represent node 
weights (traffic flow). Figure 4 compares the recovery strategies based on different centrality measures and 
optimization-based greedy algorithm (GA) [see Methods]. Random recovery is plotted as a baseline.

We observe that network-centrality based recovery approaches perform comparably to the optimization-based 
GA approach with one scenario (recovery based on node betweenness) outperforming GA approach by ~7%. 
Greedy algorithms which make optimal decisions at each step (by maximizing functionality gain) do not guaran-
tee a global optimum as evident in this case. For example, some nodes which may not have the highest function-
ality gain have to be recovered first to achieve faster recovery in later steps.

In transportation networks where real-world node importance is highly correlated with node central-
ity, centrality-based recovery methods offer a computationally cheap and intuitive approach for efficient net-
work recovery. While a purely centrality-based recovery order is agnostic to specific restoration demands and 
goals, here we show, how problem specific constraints such as restoration cost can easily be incorporated into 
a topology-driven network functionality metric to achieve comparable performance to more rigorous network 
optimization techniques. Infrastructure owners and operators may have direct access to data about resources, 
constraints, and system vulnerabilities which could augment the methodologies proposed and demonstrated 
here. While the analysis points to an organizing principle where a quick near-optimal recovery sequence could 
be generated using centrality-based measures, there is a need to further test the hypothesis on other multimodal 
transportation NoNs.

Realistic scenario – flooding of the underground network.  Taking a cue from a real incident in 2012 
when Hurricane Sandy inundated a major section of the New York subway (e.g., see Fig. 2 in38), we model a 
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similar disruption in the LRN. Here, we remove the flooded nodes only from the Underground layer. Due to 
inter-network dependency, failure will be propagated to the other two layers.

Figure 5 shows how indirect failures caused by cascading failures can be disproportionately severe in the 
dependent networks, as exemplified here in the LRN. This is because the same lower degree nodes in one network 
can be more critical (with higher degree) in the dependent networks and cause greater disruption, an effect that 
may multiply when multiple such nodes and networks are considered. Figure 6 presents a schematic illustration 
of this process. For completeness, a compound-failure case is simulated as well (Fig. 5(B)). We observe that a 5% 
targeted attack can amplify the network damage by multiple times (over 300% in the case of LRN Underground) 
and may even cause a complete failure in a dependent network, such as the DLR in this case (Fig. 5(B)).

Figure 4.  Post-Failure Recovery. Recovery strategies for restoration of the London Rail Network. Three 
network centrality-based and one optimization-based (greedy) recovery sequences are simulated and 
compared. Random recovery is plotted as baseline. Efficiency of each approach is measured by the area between 
the curve and y-axis. Lower area equates to faster recovery. Recovery is fastest when nodes are added in order of 
their betweenness values.

Figure 5.  Indirect Flood Failures due to Interdependency. Flood failure is restricted to the underground 
network and indirect failure in the other two networks is analyzed. (A) Flood-only failure (B) Compound 
failure – same as before. As observed, indirect failure can be disproportionate due to different criticality of the 
same node across networks.

https://doi.org/10.1038/s41598-020-66049-y
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Discussion
As urbanization and climate change intensifies, understanding and improving the resilience of urban lifeline 
infrastructure is critical. Here we have presented an end-to-end assessment framework to quantify the resilience 
of multimodal urban transport systems (MUTS) modeled as network-of-networks (NoNs). We address three 
hypotheses focusing on the (1) spatial constraints of real-world infrastructure networks, (2) the growing threat 
of compound disruptions and (3) network-science based post-disruption recovery principles. The corresponding 
insights are summarized in Table 3.

Based on our findings here and insights in the literature39,40, we suggest that urban transportation systems, 
being a type of spatially embedded networks, have intrinsic topological vulnerabilities that are considerably dif-
ferent from their non-spatial counterparts. We need to understand how these spatial constraints, such as a short 
characteristic link length, affects the robustness properties of these systems. Thus, theoretical frameworks (such 
as17,21–23) in the extant network science literature which may have been developed for non-spatial networks, may 
not directly translate to the real-world without incorporating the spatial nature of these infrastructure networks. 
This finding points to the need for broadening network science studies in the context of real-world infrastructure 
resilience by developing theoretical and empirical studies, as well as methods and tools, that are geared toward 
spatially embedded networks.

A second advancement vis-à-vis11,20 is that we consider the emerging threat of compound disruptions, espe-
cially targeted attacks in conjunction with natural hazards. We examined whether compound failures can poten-
tially cause disproportionate damages when network capacity is already weakened. We find that compound 
disruptions indeed cause network-wide failures; however, a major proportion of the loss of functionality is still 
contributed by targeted attacks, even in the limiting case of 5% targeted attack. Under the assumptions consid-
ered, a disproportionate compound failure impact is not observed, irrespective of whether targeted attacks occur 
before or after the natural hazard. While the result may seem intuitive, an interesting hypothesis to pursue would 
be if the adversary can design ingenious targeted attacks (not just based on node centralities) in a manner so as 
to exacerbate the impact of impending natural disaster, for e.g. removing specific nodes which may proliferate 
flooding across the network. In such a scenario, a truly compound failure may be observed. Our work is an early 
exploration of networked systems under compound attacks and a hypothesis-driven study which explores this 
topic in more depth both from the perspective of network science theory and engineering practice appears to be 
a clear and present need.

Figure 6.  Node Criticality and Severity of Indirect Failure. Schematic figure to demonstrate extent of indirect 
failure given failed node with different criticality (e.g. betweenness) across interdependent network. Node in 
orange is the failing node and GCC is size of the giant (largest) connected component. A higher node criticality 
translates to greater loss of network functionality (lower size of final GCC).

Insights Summary:

London Rail NoN is more vulnerable compared to its spatially non-
embedded but topologically equivalent NoNs.

Compound disruptions cause network-wide failure but it is not 
disproportionate.

Centrality-based methods outperforms optimization-based greedy 
algorithm for post-disruption optimal recovery in LRN

Table 3.  Resilience Framework for London Rail Network-of-Network.
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Furthermore, we examine the viability of network centrality-based recovery methods vis-à-vis 
optimization-based methods and find the former to outperform for MUTS such as the LRN. While generali-
zation would require testing on varied datasets, the results point to an exciting direction where centrality-based 
heuristic recovery can offer viable alternatives to network optimization methods, especially when system related 
granular information for developing accurate objective functions is hard to come by. In addition to that, with a 
novel network functionality metric, we showcase how problem specific constraints can be baked into it to derive 
recovery sequences which are more than just topology driven.

Urban rail systems in long-established megacities (especially in the developed nations) such as London or 
New York are more than a century old when the idea of system-level resilience may not have been the highest 
priority. Our results here show how design decisions which maximized efficiency and relatively obsolete consid-
erations (e.g., the need for major stations to be near water bodies) from pre-modern times rendered the London 
Rail Network highly vulnerable to flood-induced failure. Thus, there is a need for designers of new urban lifeline 
infrastructure networks (including transportation), as well as for owners and operators of existing urban lifeline 
systems, to embed resilience considerations and move beyond traditional design practices which focus only on 
maximizing efficiency and structural longevity. This is especially true under growing threats of urban floods and 
other natural hazards, as well as compound disruptions such as opportunistic cyber or cyber-physical attacks. 
Future research needs to strengthen these insights by considering multiple urban systems across geographies and 
lifeline sectors.

Our findings and frameworks lead to potentially new hypotheses and research directions, especially for 
real-world interdependent spatial networks, some of which have been described earlier in this section. As a next 
step, there is a need to incorporate system dynamics and flow to simulate more realistic operational conditions, 
such as the case partially functional nodes. In addition, the giant component size (GCC) as a robustness measure 
may be more suited for non-spatial networks, thus there is a need to explore alternative metrics which consider 
network dynamics. Finally, considering multiple failure schemes (including but not limited to cascading failure 
schemes considered here) and contingency analysis of networked systems (including unknown or potentially 
unknowable threats) may yield insights of value to both researchers and practitioners.

Methods
Dataset availability.  The 2013 London metro dataset used in the paper has been made available by De 
Domenico et al.41. The dataset has been cited with permission from Transport for London (https://tfl.gov.uk/). 
The flood risk map is obtained from the UK’s Environment Agency database35. Python codes corresponding to 
this paper are freely available online on Github: https://github.com/nisyad/LRN_NoN_Resilience

Network structure. 

Common stations.  There are 24 stations common between the Underground and Overground networks, 5 
stations common between the Underground and DLR, and 1 station is common between the Overground and 
DLR.

Failure scenarios.  Flood failure.  The flooded nodes are divided into three categories based on their prox-
imity to river Thames. Considering the outward spread of the flood, the first category of nodes closest to the river 
fail first and so on. To account for uncertainty, nodes within each category may fail randomly. 20 independent 
runs are considered to model flood failure.

Random failure.  Nodes are removed randomly from the overall network.

Random-local failure.  Using the lat-lon values of station locations, a distance matrix is generated for the entire 
network where each entry (i, j) is the distance between station i and j. 100 local clusters of geographically closest 
65 nodes (same number as flooded nodes) are generated across the network to model a localized failure. Within 
each cluster, nodes fail at random. 20 independent runs considered.

Targeted failure.  A predetermined order of nodes based on some metric of importance is considered and 
nodes are removed in the decreasing order of importance. Here the importance metric used are node degree and 
betweenness centrality.

Compound failure.  After a certain level of flood failure has occurred, a targeted attack is introduced by removing 
n% of nodes based on degree centrality. The overall number of failed nodes are kept equal to the number of total 
flooded nodes.

Network Layer Nodes (Stations) Links

Underground 271 312

Overground 83 83

DLR 45 46

https://doi.org/10.1038/s41598-020-66049-y
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Recovery methods.  Centrality-based Recovery.  Nodes are added back to the network in decreasing order 
of the chosen node centrality metric, for e.g., betweenness. In other words, nodes with high betweenness are 
added first.

Greedy algorithm.  The recovery sequence is identified by making locally optimal choices. The objective function 
describing the network functionality is maximized and at each recovery step, the nodes which restores maximum 
capacity is added back to the network.

Centrality measures.  Complex network structures are very heterogenous and some nodes are expected to 
be more important than other nodes which can be quantified by node centrality measures.

Degree centrality.  Number of nodes linked to a particular node.

Betweenness centrality.  For every pair of nodes, there exists a shortest path. The betweenness centrality of a node 
is number of such of shortest paths passing through it.

∑
σ

σ
=

≠ ≠
g v v( ) ( )

s v t

st

st

σst is the total number of shortest paths from node s to t and σ v( )st  is the total number of shortest paths passing 
through node v.

Eigenvector centrality.  A node can be considered important if it is connected to other important nodes. This 
importance of node i can be quantified by a vector xi:

∑λ
=

=
x A x1

i
k

N

k i k
1

,

where, λ is a non-zero constant. In the matrix form:

λ =x Ax

The importance of node i is defined by the left-hand eigenvector of the adjacency matrix A associated with 
eigenvalue λ. The entries of x are called eigenvector centrality.
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