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Abstract

Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye,
synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and
explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the
initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed
during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen
recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in
wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of
bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology,
with N$4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the
mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild
type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected
TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular
myeloperoxidase activities corroborated these results. In general, TNFa, IFNc, IL6, and KC were detected in greater
concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased
intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye,
resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal
function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus
endophthalmitis.
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Introduction

Bacillus cereus is a Gram-positive sporulating rod found

throughout the environment. B. cereus is most commonly known

as a food contaminant, causing self-limiting gastrointestinal

symptoms such as vomiting or diarrhea. However, B. cereus can

also cause severe infections, such as meningitis, food poisoning,

bacteremia, and pneumonia. As one of the most feared ocular

pathogens, B. cereus causes a uniquely rapid form of intraocular

infection (endophthalmitis) that typically results in explosive

intraocular inflammation, significant vision loss, and sometimes

loss of the eye, within hours [1]. Its involvement in endophthal-

mitis typically occurs after open globe injuries. B. cereus has been

isolated in as many as 46% of reported cases of post-traumatic

endophthalmitis [2]. Post-traumatic endophthalmitis cases caused

by B. cereus resulted in less than 30% of patients retaining useful

vision, while only 9% of infected patients retained 20/70 vision or

better. Nearly 50% of B. cereus endophthalmitis cases require

enucleation of the eye [2].

During B. cereus endophthalmitis, loss of vision or the eye

itself can occur despite proper and aggressive therapeutic

intervention that may otherwise cure infection caused by other

ocular pathogens such as Staphylococcus aureus or Streptococcus

pneumoniae [1]. B. cereus endophthalmitis typically results in

involvement of both the anterior and posterior segments,

leading to inflammation of the vitreous (vitritis), aqueous

humor, and cornea, with a hallmark corneal ring abscess.

Rapid vision loss and severe ocular pain occurs, with systemic

symptoms including fever and an elevated leukocyte count [1].

During the early stages of B. cereus endophthalmitis, the eye

mounts an aggressive inflammatory response in an effort to

eradicate intraocular organisms. Previous studies have demon-

strated that metabolically inactive B. cereus triggers the explosive

intraocular inflammatory response [3], suggesting that cell wall

components play a role in inciting inflammation. B. cereus also

synthesizes multiple toxins in the eye during infection [4],

which are likely responsible for the rapid loss of vision that is a

trademark of this disease [5–8]. The mechanisms underlying
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the inflammatory response and vision loss during B. cereus

endophthalmitis remain an open question.

Initial recognition of bacteria during the acute stage of infection

is critical in mounting an effective immune response. Bacteria are

recognized by pattern recognition receptors known as Toll-like

receptors (TLRs), which signal through the NF-kB pathway and

upregulate the synthesis of cytokines and chemokines responsible

for recruiting immune cells to the site of infection [9,10]. TLRs

have been identified in many cells throughout the eye, including

retinal pigment epithelial cells, astrocytes, corneal epithelium, iris

epithelium, and Muller cells [11,12]. Studies have demonstrated

the importance of TLR-mediated recognition of ocular pathogens

during bacterial keratitis [13–17], but analysis of the role of TLRs

in modulating posterior segment inflammation during bacterial

infection is lacking.

Bacillus possesses known ligands for recognition via TLR2 such

as peptidoglycan and lipotechoic acid. Bacillus anthracis has been

shown to stimulate signaling through TLR2 [18]. Genetically, B.

anthracis and B. cereus are close relatives and are considered

monophyletic clones [19]. With the exception of the anthrax toxin,

B. anthracis and B. cereus synthesize a similar complement of toxins

and enzymes. Therefore, the similarities of B. cereus and B. anthracis

may also extend to that of the cell wall, and their ligands may be

recognized by TLRs in a similar fashion.

Because TLRs are integral to the initial recognition of

organisms during infection, we hypothesized that the uniquely

explosive immune response observed during B. cereus endophthal-

mitis is directly influenced by TLR2. We tested this hypothesis by

comparing the pathogenesis of experimental B. cereus endophthal-

mitis in TLR2-deficient mice with that of infection in wild type

mice.

Results

TLR2 expression in the retina during B. cereus
endophthalmitis

Studies have reported increased expression of TLR2 in response

to infection [20–22] and inflammation [23–25], while others have

reported decreased or attenuated expression [26–28]. Numerous in

vitro studies document the activation of TLR2 by Gram-positive

ligands, but these models may not represent the in vivo environment

during infection. We therefore analyzed the expression of TLR2 in

retinas of wild type mice during the course of infection (Figure 1).

Quantitative real-time PCR of TLR2 mRNA in retinas demon-

strated no change in expression during infection.

Effect of TLR2 deficiency on intraocular growth of B.
cereus

The intraocular growth rates of B. cereus were analyzed in

infected eyes of wild type and TLR2-/- mice (Figure 2). The

growth rates of B. cereus in TLR2-/- eyes were similar to that of wild

type eyes when compared at 4, 8 and 12 h postinfection

(P$0.162). Growth rates reached 108 CFU/eye by 12 h in wild

type and TLR2-/- mice. Ramadan et al. [29] previously showed

that B. cereus grew to similar numbers in eyes of wild type mice of a

similar background. This result demonstrates that the TLR2

functional deficiency does not affect the intraocular growth rates of

B. cereus during endophthalmitis.

Effect of TLR2 deficiency on retinal function during B.
cereus endophthalmitis

Analysis of retinal function loss during infection is summarized

in Figure 3. We observed significantly slower retinal function

declines in infected TLR2-/- eyes compared to that of infected wild

type eyes. Reductions in A-wave function in TLR2-/- eyes were

significantly less than that of wild type eyes at 8 and 12 h

(P#0.004). The loss of B-wave function in infected eyes of TLR2-/-

mice was also significantly less than that of infected eyes of wild

type mice at 8 and 12 h (P#0.023). However, retinal function loss

was considerable regardless of the TLR2 background of the

Figure 1. TLR2 expression in the retina during B. cereus
endophthalmitis. C57BL/6J mouse eyes were injected with 100 CFU
B. cereus and retinas were harvested at 0, 0.5, 1, 2, 4, and 8 h
postinfection. (A) No significant change in retinal TLR2 mRNA
expression was detected during infection. Values are mean 6 SD of
N$4 retinas per time point (P#0.05, 0 h postinfection compared with
all other time points). (B) TLR2 PCR of wild type and TLR2-/- strains used
in this study. Reactions using primers for genotyping [41] or real-time
PCR (Methods) are shown.
doi:10.1371/journal.pone.0028619.g001

Figure 2. Bacterial growth during experimental B. cereus
endophthalmitis. C57BL/6J wild type and TLR2-/- mouse eyes were
injected with 100 CFU B. cereus. Eyes were harvested, homogenized,
and analyzed for bacterial growth. B. cereus grew to similar
concentrations in infected eyes of TLR2-/- mice and wild type mice
(P$0.05 at all time points). Values represent the mean6SEM of N$8
eyes per time point for at least 2 separate experiments.
doi:10.1371/journal.pone.0028619.g002

TLR2 and Bacillus Endophthalmitis
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infected eyes. These results suggest that while the TLR2 functional

deficiency altered the speed at which retinal function was lost, the

absence of a functional receptor ultimately had a minimal effect on

overall vision loss in this model.

Effect of TLR2 deficiency on intraocular inflammation
during B. cereus endophthalmitis

Figure 4 depicts a histological comparison of posterior segment

inflammation in wild type and TLR2-/- mice during B. cereus

endophthalmitis. The images are centered at the optic nerve/

retinal interface and include the vitreous. At 4 h, fibrin infiltrate

and transient PMN were seen in the vitreous of infected wild type

eyes. At the same time, the vitreous of eyes of TLR2-/- mice were

relatively clear and similar to that of mock-injected control eyes.

At 8 h, PMN were seen in close proximity to the optic nerve head

and significant fibrin infiltrate was observed throughout the

vitreous in infected wild type eyes. Comparatively, there were very

few PMN visible in the posterior segment of infected TLR2-/-

mice. At this time, significant fibrin infiltrate was observed in the

vitreous of infected TLR2-/- eyes, and retinas appeared to be

intact. At 12 h, retinas of wild type mice were significantly

disrupted and retinal layers were indistinguishable. Significant

infiltration of PMN, fibrin infiltrate, and complete loss of retinal

architecture was observed in infected wild type eyes at 12 h. At the

same time, eyes of TLR2-/- mice demonstrated minimal disruption

of retinal structure and infiltration of PMN into the vitreous from

the optic nerve, similar to that seen in wild type eyes at 8 h. These

results suggested that retinal disruption and PMN influx into the

posterior segment was delayed in eyes of TLR2-/- mice.

Myeloperoxidase (MPO) activities of infiltrating PMN are

summarized in Figure 5. Significantly greater MPO activity was

detected in infected eyes of wild type mice compared to that of

infected eyes of TLR2-/- mice at 4, 8, and 12 h (P#0.0001).

Similar levels of MPO were detected in infected TLR2-/- eyes at

12 h and wild type eyes at 4 h (P = 0.0528). These data correlated

with the histology data, further demonstrating that the delay in

posterior segment inflammation resulted from the absence of

functional TLR2.

Effect of TLR2 deficiency on proinflammatory cytokines/
chemokines during B. cereus endophthalmitis

Levels of cytokines and chemokines in B. cereus-infected eyes are

summarized in Figure 6. Infected TLR2-/- eyes had significantly

less TNFa,IL6, and IFNc at 4, 8, and 12 h postinfection as

compared to infected wild type eyes (P#0.0005). KC values were

also greater in infected wild type eyes compared to that of infected

TLR2-/- eyes at 4 h only (P#0.0001). These results, together with

the histology and myeloperoxidase activity data, confirmed the

diminished intraocular inflammation in infected TLR2-/- eyes

during experimental B. cereus endophthalmitis.

Discussion

The innate immune response is the first line of defense against

an invading pathogen such as B. cereus [9,10,30]. Without that

initial line of defense, especially in an immune-privileged

environment such as the eye, pathogens would freely replicate,

produce toxic factors, and damage tissue. Retinal tissue damage is

irreversible, resulting in vision loss. This study unambiguously

demonstrated that during B. cereus endophthalmitis, TLR2 directly

influenced the severity of intraocular inflammation. The absence

of a functional TLR2, shown in several other models to be

essential for recognition of Gram-positive pathogens, altered the

expression of proinflammatory cytokines and chemokines, result-

ing in delayed recruitment of PMN into the eye. This effect

Figure 3. Retinal function analysis during B. cereus endoph-
thalmitis. C57BL/6J wild type and TLR2-/- mouse eyes were injected
with 100 CFU B. cereus. Retinal function was assessed by electroret-
inography. At 8 and 12 h postinfection, A- and B-wave amplitudes
retained were significantly lower in infected wild type eyes than in
infected TLR2-/- eyes. By 12 h, retinal function was abolished in infected
eyes of wild type mice, and significant function loss was seen in
infected eyes of TLR2-/-. Values represent the mean6SEM of N = 8 eyes
per time point for at least 2 separate experiments. *P#0.05.
doi:10.1371/journal.pone.0028619.g003

Figure 4. Retinal histology of B. cereus endophthalmitis. Wild
type and TLR2-/- mouse eyes were injected with 100 CFU B. cereus. Eyes
were harvested and processed for hematoxylin and eosin staining.
Infected TLR2-/- had significantly less inflammation than infected eyes of
wild type mice. Sections are representative of 4 eyes per group. L, lens;
V, vitreous; R, retina; C, choroid; ON, optic nerve head. Magnification,
40X.
doi:10.1371/journal.pone.0028619.g004
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significantly limited intraocular inflammation, but had only a

minimal effect on loss of retinal function during infection.

The absence of a functional TLR2 did not affect the growth of

B. cereus in the intraocular environment. We previously reported

that intraocular inflammation in TNFa-deficient mice was limited,

resulting in a larger bacterial load and faster retinal function loss

during endophthalmitis [29]. In the present study, intraocular

bacterial loads were similar regardless of the presence of a

functional TLR2, and despite the relative lack of inflammation

that would otherwise serve to limit bacterial growth. These results

suggest that the limited inflammation observed in TLR2-/- eyes

may have been sufficient enough to arrest the degree of

uninhibited growth seen in TNFa-deficient eyes. It appears that

a threshold of inflammation must be present in the eye to control

bacterial growth.

Similar bacterial growth rates in eyes of wild type and TLR2-/-

mice may also indicate that similar levels of toxins were produced

in these eyes. Throughout the course of B. cereus endophthalmitis,

several toxins are produced, including hemolysins, phospholipases,

enterotoxins and proteases [4]. Yet, there was a delay in retinal

function loss in TLR2-/- eyes and eventually, TLR2-/- eyes lost

significant function. Since intraocular bacterial growth (and

presumably toxin production) was similar regardless of TLR2

genetic background, the differences observed in function loss may

be attributed to differences in intraocular inflammation. We have

previously shown that metabolically inactive B. cereus causes an

inflammatory influx resulting in some retinal function loss [3].

Inflammation may therefore contribute to some aspect of retinal

function loss, potentially disrupting the biochemical processes

associated with the phototransduction cascade as inflammatory

cells enter the retina or as retinal or inflammatory cells synthesize

cytokines/chemokines that affect these processes. The roles of

specific B. cereus cell wall components in the explosive intraocular

response are being investigated.

The primary difference observed between endophthalmitis in

wild type versus TLR2-/- mice was the lack of significant posterior

segment inflammation. In eyes of TLR2-/- mice, proinflammatory

cytokine/chemokine synthesis was arrested, resulting in delayed

recruitment of PMN into the retina and vitreous. This limited

inflammation was similar to that observed in this infection model

in TNFa-/- mice. When subjected to similar intravitreal challenge

with B. cereus, eyes of TNFa-/- mice had significantly less MPO and

proinflammatory cytokines during the course of infection com-

pared to that of eyes of wild type mice [29]. Retinal histology also

showed preserved retinal architecture in TLR2-/- mice compared

to that of wild type mice. The lack of PMN recruitment in both

TNFa-/- and TLR2-/- mice suggest that the lack of TNFa affected

the recruitment of PMN into the eye in this model. The

Figure 5. Infiltration of PMN into mouse eyes during B. cereus
endophthalmitis. C57BL/6J wild type and TLR2-/- mouse eyes were
injected with 100 CFU B. cereus. PMN infiltration was estimated by
quantifying MPO in whole eyes by sandwich ELISA. MPO concentrations
were significantly higher in infected wild type eyes than in infected
TLR2-/- eyes (*P#0.05), suggesting greater numbers of PMN in infected
wild type eyes than in infected TLR2-/- eyes. Values represent the
mean6SEM for N$4 per group for at least 2 separate experiments.
doi:10.1371/journal.pone.0028619.g005

Figure 6. Proinflamatory cytokine and chemokine expression
during experimental B. cereus endophthalmitis. C57BL/6J wild
type and TLR2-/- mouse eyes were injected with 100 CFU B. cereus.
Ocular proinflammatory cytokines and chemokines were analyzed by
sandwich ELISA. Overall, greater levels of TNFa, KC, IL-6, and INFc were
synthesized in infected eyes of wild type mice compared with that of
infected eyes of TLR2-/- mice. Values represent the mean6SEM for N$6
per group for at least 2 separate experiments.
doi:10.1371/journal.pone.0028619.g006
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contribution of other important proinflammatory mediators to

intraocular inflammation are being investigated.

Kumar et al. analyzed the efficacy of the synthetic TLR2 ligand,

Pam3Cys, in altering the outcome of S. aureus endophthalmitis

[31]. In that study, upregulation of TLR2 by Pam3Cys prior to

infection led to reduced numbers of intraocular staphylococci and

preservation of retinal function, compared to untreated infected

control mice. Retinal TLR2 was upregulated upon intravitreal

challenge with Pam3Cys, but downregulated upon intravitreal

challenge with S. aureus. From this data, it is not clear at what time

during experimental S. aureus infection TLR2 initiated the immune

response. However, pre-infection challenge with Pam3Cys clearly

altered the TLR2 response to S. aureus intraocular challenge,

diminishing inflammation, reducing bacterial load, and preserving

retinal function in this model. In our study, absence of TLR2 led

to decreased inflammation, but no decrease in bacterial load and

significant retinal function loss. Taken together, these results

suggest that the mechanisms of the intraocular TLR2-mediated

immune response to B. cereus and S. aureus are quite different. We

[3] reported that the kinetics and degrees of intraocular

inflammation caused by B. cereus, S. aureus, and E. faecalis were

highly variable, suggesting that the intraocular immune response is

organism-dependent. This is clearly the case with relatively

avirulent organisms such as S. epidermidis, which causes infection

and inflammation in the eye only at high concentrations [32,33].

Suggested development of therapeutics that target pattern

recognition receptors must therefore not only account for

organism-dependent differences in recognition, but also realistic

timing of administration for different infection scenarios.

In this study, retinal TLR2 mRNA expression did not increase

during infection. Downregulation of TLR2 in response to infection

has been reported during experimental S. aureus endophthalmitis

[31]. Hyporesponsiveness to lipoteichoic acid has been suggested

as a potential mechanism of limiting inflammation-induced

damage [34–37]. Although TLR2 appears to be essential for

initial bacterial recognition and rapid inflammation during B. cereus

endophthalmitis, upregulation of TLR2 may not be necessary

once the organisms are recognized and the inflammatory cascade

has begun. Early mediation of the TLR2 pathway activated at the

time of infection may potentially limit TLR2 signaling, unneces-

sary inflammation, and further damage. The fact that intraocular

inflammation, although delayed, occurs at all in the absence of

TLR2 suggests that pathogen recognition and the resulting

response occurs by a redundant mechanism. As indicated earlier,

other TLRs have been detected in cells throughout the eye [11,12]

and have been shown to be important in ocular infection [13–17].

We also found diminished inflammation in B. cereus-infected eyes

of TLR4-/- mice, results similar to that observed in infected

TLR2-/- eyes (Novosad and Callegan, unpublished work). B. cereus

does not possess the classic TLR4 ligand, LPS. B. cereus does,

however, secrete cereolysin O, a cholesterol-dependent cytolysin

(CDC) similar in sequence and structure to that of other CDCs

demonstrated to interact with TLR4 [38–40]. If both TLR2 and

TLR4 respond similarly in the eye to infection with B. cereus, this

may account for the unusually robust inflammation observed

during this disease. Current studies are analyzing TLR4-B. cereus

interactions in the eye and the triggers involved in these

interactions.

The present results unequivocally demonstrated that a lack of

functional TLR2 significantly altered the intraocular inflammatory

response to B. cereus endophthalmitis. Because B. cereus is a rapidly

blinding infection, therapeutics designed to delay its pathogenicity

could prove to be an invaluable tool. Further understanding of the

mechanisms by which TLR2 and other components of innate

immunity respond to B. cereus and other organisms in the eye could

facilitate the development of new therapeutic regimens to hamper

inflammation and prevent vision loss during this blinding

infection.

Materials and Methods

Experimental Bacillus cereus Endophthalmitis
Animals were used following institutional guidelines and the

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research. Wild type C57BL/6J mice (male 6–8 weeks of

age; Jackson Laboratories, Bar Harbor, ME) and homozygous

TLR 2-/- mice [41] were used for infection studies. These mice

were backcrossed onto a C57BL/6J background for 5–8

generations. Genotypes were verified using primer sets and PCR

conditions developed for these knockouts [41]. Each mouse was

anesthetized with a combination of ketamine (85 mg/kg body

weight; Bionichepharma, LLC., St. Lake Forrest, IL) and xylazine

(14 mg/kg body weight; Rompun; Bayer Corp., Shawnee Mission,

KS). Each eye was topically anesthetized prior to intravitreal

injections and analysis of retinal function by electroretinography

(0.5% proparacaine HCl; Ophthetic; Allergan, Hormigueros,

Puerto Rico). Experimental endophthalmitis was induced in mice

as previously described with B. cereus strain ATCC 14579

(American Type Culture Collection [ATCC], Manassas, VA)

[7,8,29]. Briefly, 0.5 mL of brain heart infusion media containing

approximately 100 colony forming units (CFU) of B. cereus were

injected into the midvitreous. The contralateral eye was not

injected (absolute control).

Electroretinography (ERG)
Electroretinography (ERG) is used to analyze retinal function

and physiology. The retinal response is stimulated by a transient

flash of light and results from a chain of electrical responses in the

form of graded potentials evoked in each layer of the retina. The

response consists of an A-wave measured in a negative amplitude

below zero, followed by a B-wave measured from the trough of the

A-wave to the highest positive value above zero. The leading edge

of the A-wave provides a direct measure of photoreceptor activity,

while the B-wave represents the action of Muller cells, bipolar

cells, and second order neurons (amacrine and ganglion cells).

Scotopic A- and B-wave amplitudes were recorded for each

experimental (infected) eye compared with its fellow control

(uninfected) eye (UTAS3000; LKC Technologies, Inc., Gaithers-

burg, MD). The percentage of retinal function retained was

calculated as follows 100 – {[1 – (experimental A-wave amplitude/

control A-wave amplitude)] x 100} or 100 – {[1 – (experimental B-

wave amplitude/control B-wave amplitude)] x100} [7,8,29].

Scotopic ERGs were performed at 8 and 12 h postinfection

(N = 8 eyes per group per time point, mean6standard error of the

mean [SEM]). Scotopic ERGs were not performed earlier than

8 h because of the extended dark adaptation time needed for the

mouse retina.

Histology
Whole eyes were harvested at 0, 4, 8, or 12 h postinfection and

incubated in an 85/15 paraformaldehyde/alcohol fixative for 24 h

at room temperature. Whole eyes were then exchanged into 70%

ethanol for 24 h and then embedded in paraffin. Sections were

deparaffinized and stained in Harris hematoxylin solution for

8 min, counterstained in eosin-phloxine B solution for 30 sec,

dehydrated through two changes of 95% alcohol and cleared in

two changes of xylene. Images are representative of 4 eyes per

group at each time point.

TLR2 and Bacillus Endophthalmitis
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Bacterial Quantitation
Bacteria were quantified in whole eyes as previously described

[7,8,29]. Briefly, whole eyes were homogenized with 1-mm sterile

glass beads (BioSpec Products, Inc., Bartlesville, OK) in 400 mL

PBS and then 10-fold track diluted onto BHI agar. Values

represent the mean6SEM for N$8 eyes per time point.

Myeloperoxidase (MPO)
Polymorphonuclear leukocytes (PMN) contain myeloperoxi-

dase, a peroxidase enzyme stored in azurophilic granules. Previous

studies have shown that PMN are the primary cell type entering

the eye during the first 12 h of B. cereus endophthalmitis [8].

Estimating PMN influx into the eye was achieved by quantifying

myeloperoxidase in whole eyes by sandwich ELISA (Mouse MPO

ELISA Test Kit; Cell Sciences, Canton, MA), as previously

described [29]. Negative controls included noninfected eyes. Eyes

were analyzed for MPO activity at 4, 8, or 12 h postinfection.

Results are reported as MPO ng/eye6SEM for N$4 eyes per

group per time point.

Quantitation of TLR2 in Retinas
Eyes were collected and retinas dissected from each eye cup for

quantitation of TLR2 by real-time PCR and Western blot. One

retina was used for each real-time PCR reaction, with N$4 retinas

analyzed per group in duplicate. Primer efficiencies were verified

by performing real time RT-PCR on a standard curve created

with cDNA produced from qPCR total reference RNA (BioRad,

Hercules CA). All primers were designed using Ensembl and

Primer 3. Primers used for TLR2 were forward 5’-ATG-

CTTCGTTGTTCCCTGTGTTGC-3’ and reverse 5’-AACA-

AAGTGGTTGTCGCCTGCTTC-3’. The 22DDCT standard

curve method was used to evaluate the relative expression level

of TLR2 in infected eyes of wild type mice. Quantitative real-time

PCR was performed (iCycler iQ, BioRad) according to the

manufacturer’s instructions. Briefly, the thermal cycling conditions

were 40 cycles of 55uC for 30 sec and 95uC for 1 min. The cycle

threshold (CT) was set for the target gene, where all amplicons

were in the exponential phase of amplification. Data were

analyzed using the relative standard curve method. All target CT

values reported by the iCycler software were normalized to the

endogenous control, b-actin (target mean input – endogenous

control mean input = target N). The resulting CT value was then

normalized to the untreated wild type control (target N/ control

N = relative fold difference in target expression). A greater than 2-

fold change in mRNA expression was considered significant.

Quantitation of Cytokines and Chemokines
Ocular proinflammatory cytokines and chemokines were

quantified as previously described [7,8,30]. Harvested eyes were

mixed with a protease inhibitor cocktail (Triton X-100, 0.5 M

EDTA, 10 mM sodium orthovanadate [Sigma] and Protease

Inhibitor [Calbiochem, La Jolla, CA] in PBS, pH 7.4) and

homogenized with glass beads. Commercial ELISA kits (Quanti-

kine; R&D Systems, Minneapolis, MN) were used to analyze the

levels of KC (IL-8), TNFa, IL-6, and IFNc in accordance with the

manufacturer’s instructions. Eyes were analyzed at 4, 8, or 12 h

postinfection. Cytokine and chemokine concentrations were

interpolated from standard curves. The lower limits of detection

for each assay are as follows: KC, 2 pg/ml; TNFa, 5 pg/ml; IL6,

2 pg/ml; IFNc, 2 pg/ml. Values are expressed as mean6SEM for

N$6 eyes per time point.

Statistics
If not stated otherwise, results were the arithmetic mean-

s6standard errors of the mean (SEM) of all of the samples in the

same experimental group. A two-tailed Student t test was used to

determine the statistical significance of the data. Wilcoxon’s rank

sum test was used for statistical comparison between groups.

Statistical significance was determined at P , 0.05.
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