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SUMMARY Respiratory viral pathogens like influenza and coronaviruses such as severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to
millions of deaths. Vaccinations are, to date, the best and most economical way to control
such outbreaks and have been highly successful for several pathogens. Currently used vac-
cines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk
reversion to virulence or confer inadequate immunity. The recent trend of using potent bio-
molecules like DNA, RNA, and protein antigenic components to synthesize vaccines for dis-
eases has shown promising results. Still, it remains challenging to translate due to their
high susceptibility to degradation during storage and after delivery. Advances in bioengin-
eering technology for vaccine design have made it possible to control the physicochemical
properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formu-
lations, and more robust immunogenicity. Bioengineering techniques and materials have
been used to synthesize several potent vaccines, approved or in trials, against coronavirus
disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respi-
ratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as
the use of polymeric particles, liposomes, and virus-like particles in vaccine development
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against influenza and coronaviruses and the feasibility of adopting these technologies for
clinical use.

KEYWORDS biomaterials, vaccine delivery, nanoparticles, immunization, coronavirus,
influenza, microneedles

INTRODUCTION

Currently, all over the world, around 86% of children get their required dosage of
life-saving vaccines (1). Vaccines have saved many lives and are very effective

against diseases like diphtheria, tetanus, polio, hepatitis B, measles, and rubella (2).
Today, vaccination is still the most effective and simplest approach used against acute
respiratory diseases, especially in low- and middle-income countries, the primary hot
spots for infectious diseases (3). Vaccine designs and delivery strategies should contin-
uously evolve to enhance their activity and make them effective against old and new
pathogens. Despite the high rate of success for several diseases, there is still a need for
improvement of vaccines against viral respiratory diseases due to the high rate of viral
mutation and rapid spread.

Viruses that show zoonotic adaptation and transmission, especially RNA viruses, which
include influenza (flu) and coronaviruses, have the highest pandemic potential among
emerging infectious diseases (4). As the current seasonal influenza vaccines are only 30 to
40% effective (5), there is an urgent unmet requirement for a universal influenza vaccine
that is efficacious against most, if not all, strains of influenza. Similarly, diseases caused by
human-infecting viruses belonging to the Coronaviridae family, such as severe acute respira-
tory syndrome (SARS) and Middle East respiratory syndrome (MERS), have caused epidemics
(6). The current coronavirus disease 2019 (COVID-19) pandemic has further emphasized the
necessity of developing effective vaccines with the greatest possible speed. It is difficult to
accurately estimate when and how the next pandemic will strike and how deadly and con-
tagious it will be. Currently, the R&D Blueprint list of prioritized diseases in emergency con-
texts released by the World Health Organization (WHO) includes SARS, MERS, and COVID-19
(https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-
emergency-contexts). Therefore, vaccine development for influenza and coronaviruses
must be enhanced so that there is preparedness to quickly tackle new virus variants
with minimal effect on global health.

Global Impact of Viral Respiratory Tract Diseases

Respiratory tract diseases are prevalent worldwide and are among the primary
causes of fatality, causing more than four million deaths yearly worldwide, especially in
underdeveloped and developing countries (Fig. 1) (7). Acute respiratory disease-caus-
ing viruses like flu and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
have caused pandemics leading to millions of deaths. Influenza pandemics by novel
influenza virus strains that are antigenically unique from the already circulating virus
strains have been observed every 10 to 50 years. As humans have never been exposed
to such novel strains, they spread quickly and cause severe infection.

The pandemic caused by the H1N1 virus (Spanish flu) in 1918 caused severe mortal-
ity (8). According to the Centers for Disease Control and Prevention, it is estimated that
it infected around 500 million people, with around 50 million deaths (https://www.cdc
.gov/flu/pandemic-resources/1918-pandemic-h1n1.html). Approximately 4.5 million lives were
lost during the Asian flu, Hong Kong flu, and swine flu pandemics between 1957 and 2010
(10). Since 2009, the novel influenza A virus has been circulating as a seasonal influenza virus.
There are around 3 to 5 million cases of seasonal flu reported around the world every year (11).

The basic reproduction number (R0) is a critical parameter in determining the contagious-
ness of an infectious disease (12). R0 for a contagious disease is defined as the average number
of people contracting the disease from an infected person. R0 values are above 2 for coronavi-
ruses and H1N1 1918 Spanish flu and less than that for MERS-CoV (Fig. 1) (13).

Another deadly group of viruses called coronaviruses mainly circulate among animals but
have occasionally evolved and transmitted to humans, causing mild to lethal respiratory
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infections. SARS-CoV caused an epidemic in 2003, with over 8,000 cases and 774 deaths in
26 different countries (Fig. 1) (14). The lung-infecting lethal MERS coronavirus (MERS-CoV)
has also shown repeated zoonotic transmissions since 2012 from dromedary camels to
humans after causing deadly MERS outbreaks in South Korea and Saudi Arabia in 2015
and 2018, respectively (15). By March 2021, 2,574 cases had been reported worldwide,
including 885 deaths associated with the infection, bringing the case fatality rate to 34.4%
(Fig. 1) (http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html). The most
recent and devastating coronavirus-mediated infection is the SARS-CoV-2-caused COVID-19
pandemic. By 14 July 2021, over 187 million people had been infected, and 4 million had
died of COVID-19 globally (https://covid19.who.int/). Even more concerning is that the
SARS-CoV-2 coronavirus is now known to have gathered mutations after the initial break-
out, increasing its infectivity, fatality, and resistance to neutralizing antibodies (16–19). As
influenza and coronaviruses have been detrimental with their massive global clinical and
socioeconomic impact, we have focused on bioengineered vaccine development strategies
for these viral respiratory diseases. We hope to bring forth the capability of bioengineering
to improve vaccine efficacy and provide designs that can be easily adapted to develop
vaccines against new strains.

Viral Structure and Pathology in Humans

The symptoms of flu disease in humans are of a wide range. For some, it may be
mild respiratory discomfort associated with symptoms of the upper respiratory tract
infection like fever, runny nose, throat pain, headache, cough, and muscle fatigue,
while for others, it may be severe, with lethal pneumonia caused by influenza, which
leads to multiple organ failure or secondary bacterial infections in the airway (20).
Influenza viruses are enveloped single-stranded negative-sense RNA viruses with a seg-
mented genome. Human-infecting influenza viruses have four serotypes—A, B, C, and
D. Among them, A and B have pandemic-causing potential, while C and D are mild sea-
sonal viruses. Both A and B type influenza viruses carry eight RNA segments, which
encode viral glycoprotein subunits like hemagglutinin (HA), matrix protein (M1), neur-
aminidase (NA), membrane protein (M2), nucleoprotein (Np), and nonstructural pro-
teins (Fig. 2). HA and NA are surface proteins with a globular head and a stack domain
and are the most antigenically variable portion in the virus. They are the primary tar-
gets for antibody binding by recognition of influenza virus infection and vaccines. HA

FIG 1 Statistics of viral respiratory diseases and their effect on global public health. The bubble sizes in the figure denote the R0 value for each disease.
Source: Centers for Disease Control and Prevention, WHO, and Centre for Infectious Disease Research and Policy. *, SARS-CoV-2 incidence rate until 14 July
2021.
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helps in virus entry by binding to sialic acid on the host cell surface. The primary func-
tion of NA is to release the virions from the host cell membrane (20).

Patients infected with the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2 typ-
ically show initial symptoms of fever, chills, cough, breathing difficulty, conjunctivitis,
and myalgia, which in some cases can quickly progress to acute fatal respiratory condi-
tions (21–23). The viral structure of coronaviruses consists of the following 5 compo-
nents: membrane (M), spike (S), nucleocapsid (N), envelope (E), and a single-stranded
RNA (Fig. 2) (24). The spike (S) protein expressed on the viral surface has been identi-
fied to be a component that can significantly induce the production of antigen-specific
neutralizing antibodies in the serum (24). The coronavirus uses the receptor-binding
domain (RBD) of S to attach to the host cell surface’s angiotensin-converting enzyme 2
(ACE2) (for SARS-CoV and SARS-CoV-2) or dipeptidyl peptidase 4 (for MERS-CoV) (25,
26). The S protein undergoes structural modification and cleavage to initiate host cell-
virus fusion and cytoplasmic release of the viral RNA. Due to the high immunogenicity
and conservation of the S protein and its RBD, they have been in focus for vaccine
development strategies. However, as mentioned previously, SARS-CoV-2 has been
observed to rapidly gather multiple mutations in the S protein-encoding gene and
generate new variants (17). Currently, the WHO has identified four SARS-CoV-2 var-
iants of concern (Alpha, Beta, Gamma, and Delta) (https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/). Variants of concern can create a change in the dis-
ease epidemiology, transmissibility, virulence, or clinical symptoms and might be not
be curbed by known public health measures or available vaccines and therapeutics.
The structures of influenza and coronaviruses have been reviewed in detail elsewhere
(20, 24).

FIG 2 Structure and usage of components of coronaviruses and influenza in bioengineered vaccine
development.
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Existing Vaccine Development Strategies

There are no approved vaccines against SARS-CoV or MERS-CoV, but potential can-
didates have shown promising results (27). For SARS-CoV-2, several vaccines have
been approved (Table 1), including live attenuated, inactivated, and protein antigen
vaccines. Two approved bioengineered vaccines, mRNA-1273 and BNT162, are dis-
cussed later in this review. Around 272 vaccine candidates and 332 therapeutic drugs
for COVID-19 are in development, with many being in clinical trials (https://covid
-19tracker.milkeninstitute.org/).

Similarly, there are traditional vaccines like subunit vaccines, live attenuated vac-
cines, inactivated vaccines, and split virion vaccines (whole virus disrupted by a surfac-
tant) available for influenza (28). These vaccines are generated via egg-based inocula-
tion of the virus in chicken eggs, through animal or insect cells using cell culture
technology, or manufactured as recombinant vaccines (28). These vaccines aim to elicit
neutralizing antibodies against the HA protein, including its antigenically variable
regions, and hence require periodic updates to suit the seasonal influenza A and B vi-
rus strains in circulation (28). Vero cell technology has also been described for rapid
generation of inactivated whole-virus vaccines against emerging viral pathogens (29).

The manufacturing of vaccines for acute respiratory viral diseases is unique because
processes must be changed rapidly to update the vaccine strains following the contin-
uous evolution of the viruses (30). These process changes must occur in a compressed
time frame; for example, for influenza, the strain selection is announced twice every
year by the WHO after reviewing the surveillance data. It usually occurs in February for
the Northern Hemisphere and in September for the Southern Hemisphere, and manu-
facturers typically ship the vaccine in 6 months (31). The most popular intranasal atte-
nuated vaccine against influenza, FluMist, has been observed to have a potential risk
of reverting to a virulent state (32). Employing bioengineering techniques for vaccine
development can significantly help achieve clinical success while alleviating safety con-
cerns, such as the potential risk of reverting to a virulent form in case of live attenuated
or inactivated virus vaccines (32, 33).

TABLE 1 Approved COVID-19 vaccines, formulations, and developers

Vaccine name Vaccine formulation Developer ClinicalTrials.gov identifier
Gam-COVID-Vac/Sputnik V S-encoding gene carried by two

different recombinant
adenoviral vectors for the prime
and booster doses (rAd26 and
rAd5, respectively)

Gamaleya National Center NCT04656613

EpiVacCorona Chemically synthesized peptide
antigens

Federal Budgetary Research
Institution State Research Center
of Virology and Biotechnology

NCT04527575

COVI-VAC Live attenuated SARS-CoV-2 virus Codagenix NCT04619628
Covaxin/BBV152 Inactivated SARS-CoV-2 virus Bharat Biotech NCT04641481
ChAdOx1 nCoV-19/Covishield/
AZD1222

Simian adenovirus vector encoding
full-length S

University of Oxford NCT04400838

mRNA-1273 Lipid NP-encapsulated mRNA
encoding full-length S

Moderna NCT04470427

BNT162/Tozinameran/COMIRNATY Lipid NP-encapsulated mRNA
encoding full-length S protein

Pfizer-BioNTech NCT04713553

Ad26.COV2.S Adenoviral vector (Ad26)
containing S-encoding gene

Janssen Vaccines & Prevention NCT04505722

CoronaVac Inactivated SARS-CoV-2 virus Sinovac Life Sciences NCT04582344
BBIBP-CorV Inactivated SARS-CoV-2 virus SinoPharm NCT04795414
Ad5-nCoV Recombinant adenoviral vector

(Ad5) containing full-length S-
encoding gene

CanSino Biologics NCT04526990

ZF2001 Tandem repeat RBD dimer Anhui Zhifei Longcom
Biopharmaceutical

NCT04646590
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Need for Biomaterial-Based Vaccines

The main hurdle in designing any vaccine is to maintain a balance between its
safety and its efficacy. Generally, the most effective vaccines, like live attenuated or
inactivated whole virus vaccines, always come with the greatest safety risk. On the
other hand, safe vaccines such as subunit vaccines are often inefficient in inducing a
robust immune response in the body. Another essential component in vaccine manu-
facturing during a pandemic is the speed with which the vaccine design can be com-
pleted so that the clinical trials can commence rapidly. The modifiability of biomateri-
als provides a quick solution to obtain plug-and-play systems in which the
components can be easily switched to adjust to new antigens (34, 35).

Increased speed of vaccine design. During pandemics, the rapid development of
suitable and effective vaccines becomes critical for preventing loss of life. The lack of
such measures may lead to high death rates, as seen during many past pandemics,
such as the Spanish flu pandemic.

Since coronaviruses and influenza display high antigenic variation, vaccines devel-
oped against one type of coronavirus or influenza must be designed such that they
can be quickly modified to design vaccines against new types. Biomaterial platforms
(such as lipid nanoparticles) allow flexibility for such alterations by virtue of their highly
adaptable features, such as type of loaded drug or antigen, charge, shape, surface
coating, and other such physicochemical properties. While using the same vaccine
design strategy, this interchangeability of antigens has been used in designing vac-
cines against flu (e.g., mRNA-1440) and COVID-19 (e.g., mRNA-1273). For example,
researchers working on the mRNA-1273 vaccine for COVID-19, developed by Moderna,
completed in silico modeling and preclinical studies and started phase 1 trials just
66 days after the release of the SARS-CoV-2 viral sequence and moved to phase 2 trials
74 days later by using previously obtained data from research on SARS-CoV and MERS
(36). Such preparedness enables researchers to efficiently utilize preexisting data to
modulate and quickly produce vaccines to be moved to clinical trials without extensive
preclinical research in such emergencies where time is of the essence.

Improved delivery of antigen. Several potent but sensitive gene-based vaccines,
recombinant DNA-based vaccines, and structure-based immunogens are being devel-
oped. Such biomolecules need cold storage for stability, and even then, they tend to
degrade rapidly owing to their fragility. A protein or nucleic acid antigen can be
degraded by the proteases and nucleases present in the serum or extracellular me-
dium, reducing its overall in vivo half-life. The use of biomaterials can offer some signif-
icant benefits in vaccine development like high stability, prevention of enzymatic deg-
radation, control on release kinetics, high loading of immunogens, and targeted
delivery to immune cells (Fig. 3) (37, 38). Biomaterials can enable the synthesis of safe
vaccines that are compatible with a wide variety of biomolecules (Table 2). Controlled
release facilitates long-term exposure which results in higher vaccine efficacy and
reduced frequency of dosage. Such strategies can result in increased patient compli-
ance and lower cost (39).

Biomaterials provide unique physical and chemical properties like shape, size,
chemistry, and tunable degradation rate. Surface chemistry affects the immunogenicity
of biomaterials, thereby providing means to alter the immune response (40). The shape
of the biomaterial can change its interaction with immune cells and affect the uptake
by host cells (41). Additionally, biomaterials enable the codelivery of antigens with
adjuvants to cells in target, which helps activate innate and adaptive immune
responses, as discussed later in this review. Overall, biomaterials improve durability, im-
munogenicity, increase the stability of difficult-to-use antigens, make the delivery of
vaccines more efficient, increase shelf life, and enhance vaccine acceptance.

Enhanced immunogenicity of antigen. Other significant hurdles that protein and
nucleic acid-based vaccines face are low internalization and lack of adequate antigen
presentation (42, 43). Typically, when B cells recognize surface antigens, they differenti-
ate into plasma cells, which release antigen-specific neutralizing antibodies called
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immunoglobulins (Ig) that can attach to the virus surface and neutralize its RBDs,
thereby preventing internalization by host cells (44). Many proteins and nucleic acids
have very low recognition by the surface receptors on antigen-presenting cells (APCs)
or B cells, leading to a lack of internalization or neutralization. Nucleic acids might also
not be efficient in triggering a robust immune response by themselves, even when
used with plasmid vectors. Still, their immunogenicity can be improved using nanopar-
ticles (NPs) for delivery (45).

Proteins that are endocytosed or phagocytosed by APCs undergo endosomal proc-
essing and are typically presented to CD41 T cells with major histocompatibility com-
plex (MHC) class II molecules (46). In contrast, cytosolic proteins are presented to CD81

T cells with MHC class I molecules (Fig. 4) (46). Infected cells, including immune cells,
can present foreign proteins with MHC class I via cross-presentation (47). There are
three reasons for an antigen to undergo cross-presentation, as follows: (i) antigen
escapes from the endosomal vesicle after internalization, (ii) antigen undergoes recep-
tor-mediated endocytosis and is then loaded into recycling endosomes having MHC-I,
or (iii) antigen directly enters the cytoplasm by pinocytosis or diffusion through the
cell membrane. This cross-presentation is essential for an antigen-specific CD81 cyto-
toxic T-lymphocyte (CTL) response, a significant pathway for the generation of antiviral
immunity (47). Protein antigens delivered exogenously may not be able to perform
endosomal escape to undergo MHC-I presentation (48). Nucleic acids and proteins can
be encapsulated or coated on NPs or designed as viromimetic particles that increase
their uptake by enhancing the interaction with the host cell membrane with their opti-
mized surface chemistry and charge. They can also help in efficient intracellular deliv-
ery through pH-responsive cargo release, as described later.

The induction of a T-cell memory is essential in viral infections as some viruses
frequently mutate their surface antigens to evade antigen-specific neutralizing anti-
bodies, such as human immunodeficiency virus type 1 (HIV1) and influenza (49).
Antibodies developed against SARS-CoV and MERS have been observed to have short

FIG 3 Advantages of using biomaterials such as microneedles (a), particles (b), liposomes (c), and virus-like
particles (VLPs) (d) in vaccine development. TLR, Toll-like receptor; PAMP, pathogen-associated molecular
pattern.

Bioengineering Vaccines for Respiratory Viral Diseases Clinical Microbiology Reviews

January 2022 Volume 35 Issue 1 e00123-21 cmr.asm.org 7

https://cmr.asm.org


lives of 24 and 34 months, respectively (50, 51). The persistence of SARS-CoV-2 specific
immunity has been observed for 6 months (52, 53). Besides that, reinfection has been
reported in several respiratory viruses such as influenza, SARS-CoV-2 and respiratory
syncytial virus (54, 55). To effectively develop a lasting immunity in such cases, estab-
lishing a strong effector T-cell response becomes essential so that adequate memory T
cells remain after the contraction phase of the antiviral T-cell response (56).

An ideal vaccine should generate a strong immune response that mounts rapidly
and lasts for the lifetime of the individual (57). It must enable development of powerful
and broad B and CTL responses against conserved epitopes so that there are enough
memory T cells and neutralizing antibodies to prevent reinfection from any viral var-
iants. It should have high efficacy and safety and must impart protection in all vacci-
nated individuals, including the more vulnerable population, while transferring the
protection from mother to fetus. It should require minimum doses (ideally single
administration), allow administration via least painful method, be easily manufactured
industrially, and have high stability during synthesis and storage for efficient distribu-
tion (57). Use of bioengineering can facilitate an increase in the vaccine immune
response (e.g., liposomes, electroporation), improve stability of vaccines (e.g., poly-
mers, pH-responsive particles), ease the manufacturing process (e.g., self-assembling
particles, inorganic particles), and provide painless delivery (e.g., microneedles).

BIOENGINEERING STRATEGIES USED IN DEVELOPING VACCINES AGAINST
INFLUENZA AND CORONAVIRUSES

Bioengineering-based vaccine development approaches that can be used for respi-
ratory viral diseases are classified based on the biomaterial used in the synthesis and
delivery of the vaccine (Table 3).

Polymer-Based Vaccines

Polymers are large biomolecules made from repetitive monomer or oligomer subunits
arranged in linear, branched, or dendrimer structures (58). Polymeric NPs are typically pre-
pared by solvent evaporation, spontaneous emulsification, solvent diffusion, or polymeriza-
tion (58). With the help of bioengineering techniques, one can tune the NPs to suit the
pharmacokinetics of antigens or enhance their targeted delivery (59). A wide variety of
physicochemical properties of polymers can be modified, such as charge, hydrophobicity,

TABLE 2 Application and safety of biomaterials in vaccines

Biomaterial Materials used Biomolecules compatible Safety prospects Approved vaccines
Microneedles Silicon, metals (stainless steel,

titanium, etc.), polymer
(polydimethylsiloxane,
polyvinyl alcohol,
polymethylmethacrylate,
polyglycolic acid, etc.), and
ceramic

Whole, inactivated virus,
peptides, and nucleotides

Minimally invasive delivery
systems that are safe;
minor concerns like
infection, local bleeding,
and skin irritation may
occur

MicronJet 600, MicronJet, BD
Soluvia, Fluzone
intradermal

Particles Polymers (PLGA,
polyanhydride, polylactic
acid, chitosan,
polyurethane, etc.) and
inorganic metals and
compounds (gold, silver,
copper oxide, zinc oxide,
aluminum oxide, and iron
oxide)

Live attenuated viruses,
subunit antigen,
recombinant antigen,
polysaccharides, peptides,
and nucleotides

Some of the metal
nanoparticles show organ
accumulation and toxicity;
biodegradable polymers
are relatively safe

None

Liposomes Ionizable lipidoid, PEG,
structural lipids, and
cholesterol

Peptides and nucleotides Safe with low reactogenicity,
biodegradable, and
versatile

Inflexal V, Epaxal, mRNA-
1273, Comirnaty

VLPs Viral subunits that can self-
assemble

Viral capsid proteins Possible hypersensitivity Engerix, Cervarix, Recombivax
HB, Gardasil
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size, shape, retention, solubility, and strength of the NP-antigen complex, among many
others (59). This adaptability provides a platform to increase the delivered antigen’s efficacy
in generating a robust immune response. Particles have been shown to protect the antigen
from proteolytic degradation, increase antigen delivery to APCs, prolong the antigen activ-
ity, and act as adjuvants (60, 61). Polymers can be used to encapsulate nucleic acid and
protein antigens or can be synthesized as particles that can conjugate or adsorb DNA and
protein antigens on the surface (59).

Synthetic polymers. Poly(lactic-co-glycolic acid) (PLGA) is a widely used synthetic
polymer in biomedical applications due to its controlled and sustained release of the
cargo, low cytotoxicity, biocompatibility with tissues and cells, and prolonged resi-
dence time (62). PLGA is used in several commercially available drug delivery products,
including Lupron Depot (Abbott Laboratories, USA) and Ozurdex (Allergan, Inc., USA)
(63). To induce a strong CTL response and an efficient antigen cross-presentation, bio-
degradable poly(lactic-co-glycolic acid) nanoparticle (PLGA-NP)-based vaccine delivery
systems need to be accurately designed and fabricated. This involves optimizing the
method of preparation, characterization technique, surface modification, and drug
release mechanism to increase vaccine efficacy (62). Encapsulation of antigens in
PLGA-NPs can induce cross-presentation at much lower concentrations, prolonged
antigen release and T-cell stimulation, and potent immune responses (62, 64, 65).

Dhakal et al. observed a robust T cell-based immune response in pigs vaccinated intra-
nasally with 200- to 300-nm-sized spherical PLGA-NPs encapsulating the swine influenza vi-
rus H1N2 antigenic protein KAg (PLGA-KAg) (66). In vitro PLGA-KAg treatment increased
APC maturation by 40% in monocyte-derived dendritic cells of pigs than KAg alone or
empty PLGA-NP treatment. On subsequent challenge with heterologous swine influenza
virus H1N1, PLGA-KAg vaccinated pigs were protected from clinical symptoms and lung
pathology. In contrast, the mock-vaccinated pigs had a fever for 4 days with macroscopi-
cally visible lung lesions (66). Alkie et al. generated chitosan-coated PLGA-NPs with encap-
sulated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) and inactivated

FIG 4 Processing and presentation of free and nanoparticle-associated antigen by antigen-presenting
cells (APCs).
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avian flu H4N6, where the encapsulation was performed by adding CpG ODN and H4N6
during PLGA-NP preparation (67). The outer surface of PLGA-NPs was coated with chitosan
via adsorption. As chitosan is mucoadhesive, it enhances the interaction between NPs and
mucus, which leads to an increase in the retention time of vaccines on mucosal mem-
branes. At 4 weeks after vaccination, it was observed that mucosal (ocular and nasal) vacci-
nation of chickens with the chitosan-coated PLGA-NPs induced 2-fold higher antigen-spe-
cific IgG in sera and 1.5 and 2-fold higher IgG and IgA titers, respectively, in lachrymal
secretions compared to those induced by free inactivated viral antigens. Chitosan-coated
PLGA-NPs showed the induction of similar hemagglutination inhibition titer as free inacti-
vated viral antigens (67).

Stimulator of interferon genes (STING) generates a potent antiviral innate immune
response via activation of the cytosolic DNA-induced type I interferon (IFN) by preferen-
tially promoting the generation of antigen-specific antibodies, reinforcement of CTL, and
impairing the suppressive activity of regulatory T cells (68). SARS-CoV-2 S protein adju-
vanted with modified STING has been observed to induce nearly 30-fold higher antigen-
specific IgG levels than free S protein (69). Lin et al. constructed hollow 114-nm viromi-
metic PLGA-NPs made using the water-in-oil-in-water double emulsion method, wherein
the STING agonist cyclic di-GMP was encapsulated as an adjuvant (70). 1,2-Distearoyl-
sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) was added for surface functional-
izing the outer shell. After these NPs were prepared, recombinant S-protein RBD of
MERS-CoV was conjugated to the 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly
(ethylene glycol) via thiol-maleimide linkage. The structural and functional antigenicity of
these PLGA-NPs protected the mice from the lethal infection challenge. High neutralizing
antibody titers (;150-fold compared to that of the control group injected with only STING
agonist-encapsulated PLGA-NP), no detectable infectious viral load (control having an
;2.6 log10 median tissue culture infectious dose), and 100% survival (0% survival in con-
trol) demonstrated the efficacy as well as the safety of PLGA formulations. Moreover, the
construct was stable during storage and showed sustained release of the STING agonist for
at least 100 h at 37°C during dialysis at pH 7.4. The release rate was much faster at pH 5, as
expected due to the acid-catalyzed hydrolysis of PLGA particles (70). Such systems allow
the PLGA-NPs to release the bulk of the drug once they reach the endosomal vesicle,
improving delivery and immune response efficacy (71).

One of the drawbacks of PLGA is that antigen degradation can occur during vaccine
preparation, storage, or after delivery (72). Unfolding, chemical instability, and aggregation
are all examples of protein instability that occur when encapsulated in PLGA, resulting in a
loss of antigenicity. PLGA particles may aggregate, and maintaining sterility during and af-
ter the PLGA particles are synthesized is challenging, as PLGA cannot be sterile filtered (72).
The stability of the antigen can be improved by using new techniques, such as self-healing
PLGA-NPs with an interconnected network of pores that trap the protein within the pores
using a protein-trapping agent (65). This prevents the proteins from exposure to the harsh
microenvironment and the resulting degradation (65).

Polyanhydride NPs are used to deliver several vaccines as they stimulate the innate
immune response by engaging Toll-like receptors (TLRs) and activating APCs, thereby
acting as an adjuvant (73, 74). These are inert surface-eroding polymers that protect
the antigen from degradation and retain its biological and structural activity (75).
Dhakal et al. also used polyanhydride-based NPs to encapsulate swine influenza A virus
H1N2 (KAg), which presented a 6- to 8-fold reduction of nasal shedding compared to
sham control (mock or without NPs) at 4 days postchallenge in pigs (76). These NPs
were made of a copolymer containing 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and
1,6-bis(p-carboxyphenoxy)hexane monomers combined in an 80:20 ratio. There was an
increase in interferon gamma (IFN-g)-secreting T lymphocyte in the KAg-NP group
compared to levels with the antigen alone (76). Other similar studies indicate that the
polyanhydride sphere makes a good potential vaccine delivery carrier (77, 78).

Knight et al. demonstrated a polymer-based pH-responsive NP that generates anti-
gen-specific CD81 tissue-resident memory T cells in the lungs (79). The NP comprises
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of two functional blocks, a hydrophilic copolymer made up of pyridyl disulfide ethyl
methacrylate and dimethylaminoethyl methacrylate and a hydrophobic pH-responsive
block composed of propyl acrylic acid, butyl methacrylate, and dimethylaminoethyl
methacrylate. Mice immunized with an H1N1 antigen-carrying NP formulation were
given a lethal viral challenge after 30 and 60 days. The survival rate at day 60 was 83%
for CpG-adjuvanted NP group, compared to 0% for free antigen and sham groups (79).

Polyethylenimine is a cationic polymer that finds extensive use in nucleic acid deliv-
ery owing to its high transfection efficiency and buffering capacity (80). Particle-DNA
complexes are also known to induce vigorous mucosal and systemic immune
responses (81). Shim et al. demonstrated the intranasal delivery of S-encoding plasmid
DNA encapsulated in polyethylenimine NPs for immunization against SARS-CoV (82).
There were 15- and 4-fold increases in the production of S-specific IgG1 in sera and IgA
in lung mucosal wash, respectively, compared to those immunized with naked S DNA
plasmid (82). One of the main translational obstacles of polyethylenimine is the safety
issue. It is known for its high cytotoxicity, as the high positive charge on the surface of
these NPs can cause necrotic cell death and apoptosis (83). However, some modifica-
tions, such as using linear and lower-molecular-weight polyethylenimine and shielding
the surface charge, can reduce the cytotoxicity (84).

Other synthetic polymeric materials have also been explored for vaccine delivery appli-
cations like biodegradable pluronic-stabilized polypropylene sulfide as an antigen nanocar-
rier system (85). Among the synthetic polymers, only PLGA-based vaccines have been
widely studied and shown to have high safety. Several other biomaterials are still in the ini-
tial stages of research, and more evidence is therefore required to test their safety.

Natural polymers. Chitosan, a natural cationic polymer of N-acetyl-D-glucosamine and
D-glucosamine, is an ideal nucleic acid delivery vehicle (86). It is highly biocompatible, non-
toxic, and biodegradable (86). It demonstrates a strong binding affinity with nucleic acids,
cell surfaces, and mucous membranes due to the presence of several amines that impart a
positive charge on it (87, 88). Studies have shown that chitosan can function as an efficient
adjuvant by inducing a type I IFN response by activating STING (89). Chitosan particles can
be engineered to improve selectivity and protect the antigen (90). Chitosan NPs can be uti-
lized for several other delivery applications, such as for adjuvants, drugs, genes, and pro-
teins; preventing wound infections; enhancing healing; and as a skin regeneration material
in anti-aging skincare products, among numerous other uses (86, 91–93). Moreover, it is a
suitable nasal vaccine delivery system, as it enhances the antigen absorption by mucosal
lymphoid tissues and causes robust immune responses against respiratory viral diseases
(94). Raghuwanshi et al. demonstrated a plasmid DNA (pDNA) vaccine encoding SARS-CoV
N protein (pVAXN) loaded in biotinylated chitosan NPs with a surface-functionalized
bifunctional fusion protein (bfFp) for dendritic cell-targeted immunization (Fig. 5) (95). The
bfFp had a streptavidin site to bind to the NP, as well as an anti-DEC-205 antibody, which
binds specifically to the dendritic cells. At the same time, the pVAXN encapsulation was
done during chitosan NP preparation using a complex coacervation method. The addition
of the bfFp allowed these particles to perform selective targeting to dendritic cells. It hence
reduced the dosage of the antigen by approximately 500-fold compared to the nontar-
geted antigen to get a similar immune response to that previously established (96). The
mice were intranasally immunized with the NPs mixed with free anti-CD40 for dendritic
cell maturation. It was observed that this experimental group had significantly higher N
protein-specific serum IgG and mucosal IgA and IFN-g levels compared to only chitosan
NP, only pVAXN, or NP plus bfFp groups (95, 97).

Amidi et al. prepared an intranasal delivery system using the electrostatic interac-
tion between the positive surface charge on N-trimethyl chitosan NPs of 800-nm size
and the negatively charged monovalent influenza A H3N2 subunit at room tempera-
ture and pH 7.4 (98). After administering antigen-conjugated NPs, the authors
observed 10-fold higher anti-influenza antigen-specific serum IgG titers than the free
antigen (98). This vaccination technique is a potential noninvasive method of targeted
antigen delivery at low doses and can be employed for other antigens as well. Similar

Bioengineering Vaccines for Respiratory Viral Diseases Clinical Microbiology Reviews

January 2022 Volume 35 Issue 1 e00123-21 cmr.asm.org 13

https://cmr.asm.org


studies have been carried out using chitosan as the delivery vehicle carrying different
influenza proteins (HA, NA, M, and/or Np) alone or in combination (99–102).

Natural polymers, such as polysaccharides like pullulan, alginate, inulin, dextran,
and cellulose, have been used to make NP vaccines for infectious diseases (103, 104).
Researchers have been trying to use natural polymers to develop respiratory virus vac-
cines; e.g., Chen et al. investigated the coadministration of cyclic GMP–AMP and the
M2 ectodomain protein of H1N1, both encapsulated in acetalated dextran (hydroxyl
groups of dextran modified with acetal moieties) NPs, to enhance IgG antibody titer by
nearly 5-fold and mice survival rate to 80% compared to 20 to 30% survival with M2
protein alone (105). Most of these natural polymers are explored as adjuvants in vac-
cine formulation (106).

Inorganic Nanoparticles

Metal NPs, especially gold, have been used extensively in vaccine research against vari-
ous infectious diseases due to their adjuvant properties and ease of synthesis and function-
alization (107). Gold and silver NPs are known to be effective platforms for the bioconjuga-
tion of protein and nucleic acid antigens or can be used as adjuvants (107–109).

Researchers have used inorganic NPs chemically conjugated or coated with the
antigen to develop subunit flu vaccines. Inactivated H3N2 influenza A virus (IAV) adju-
vanted with silver NPs (AgNPs) have been shown to reduce viral loads by 100-fold
compared to only IAV alone (110). Pulmonary immunization with IAV and AgNPs
increased the IgA antibody titer in bronchoalveolar lavage by 75-fold compared to free
IAV. A 50-fold increase in virus-specific IgA-secreting plasma cell number compared to
IAV plus polyinosinic:poly(C) (a TLR-3 ligand) and AddaVax (an MF59-like adjuvant) was
also observed in mice (110). Jazayeri et al. demonstrated the oral delivery of a plasmid
DNA vaccine for avian influenza virus H5N1 using AgNPs in chickens (111). The AgNPs
and H5 hemagglutinin-containing plasmid (pcDNA3.1) self-assembled into nanocom-
plexes (AgNP/H5) via electrostatic interactions and enhanced the TH1-like proinflamma-
tory response in chickens. On day 7, the AgNP/H5 plasmid nanocomplexes produced
2-, 5-, 12-, and 10-fold changes in cytokine expressions for interleukin 1 beta (IL-1b),
TNFSF13B, IL-15, and IL-12b , respectively. Also, about 2- to 5-fold higher CD81 and
CD41 T-cell proliferation and 18-fold higher IL-18 levels were seen in AgNP/H5 plas-
mid-injected chickens than AgNP plus empty vector group on day 14 (111).

Although some studies have shown that the use of inorganic NPs enhances the
delivery of DNA vaccines, there are concerns that inorganic NPs accumulate in organs
such as the liver and spleen for a long time, leading to organ damage if multiple doses
of vaccines are given (112). Compared to the well-established field of degradable and
organic NPs, the clinical translation of inorganic NPs is still under debate, mainly due
to their nondegradability and lack of long-term toxicity assessment (113).

FIG 5 Design of a chitosan-based nanoparticle having encapsulated plasmid DNA (pDNA) vaccine
encoding SARS-CoV N protein (pVAXN) and surface-functionalized bifunctional fusion protein for
enhanced dendritic cell targeting.
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Liposome-Based Vaccines

Liposomes have widely been studied and used to generate vaccines (114).
Liposome-based vaccine systems are composed of micro- or nanosized vesicles made
up of nontoxic and biodegradable phospholipid bilayers. These layers usually comprise
an ionizable lipidoid, polyethylene glycol (PEG), structural lipids, and cholesterol. They
can be used to encapsulate various chemicals, such as drugs, nucleic acids, and pro-
teins (Fig. 6). Liposomes can be modified to the required size, charge, surface chemis-
try, and entrapping capacity for the antigen or adjuvant (114–116).

Researchers have also found liposomes useful for site-specific delivery by conjugat-
ing them with ligands specific for the targeted sites (117). Many liposomal vaccine for-
mulations have already been approved for clinical use, such as Infexal for influenza
and Epaxal for hepatitis A infection (118, 119). Based on the type of cargo, we have
defined them in the following categories.

Protein–liposome-based nanoparticles. Liposomes find varied use in the delivery
of peptides (116). Inflexal V is a clinically approved virosomal influenza vaccine that
Crucell Berna Biotech developed. It has HA surface molecules of H1N1, H3N2, and B/
Massachusetts/2/2012 virus, fused with a lecithin-phospholipid liposome double mem-
brane (119). The vaccine comprises 70% lecithin, 20% cephalin, and 10% viral envelope
phospholipids, which form 150-nm-diameter unilamellar spherical vesicles (119).
Conne et al. demonstrated that 68.4% of subjects injected with a single-dose intramus-
cular injection of Inflexal developed protective levels of antibody titer (anti-HA
titer $ 40), whereas only 38% of subjects injected with the subunit vaccine (Influvac)
attained protective antibody titer values (120).

In another study, Nagata et al. conjugated H3N2 influenza Np protein on the surface of
oleoyl liposomes using the cross-linking reagent disuccinimidyl suberate and adjuvanted it
with CpG ODN (121). It provided a protective response in mice and demonstrated almost
25-fold higher viral inhibition than that of saline control. The study also demonstrated that
surface-conjugated ovalbumin was 6-fold more effective in inducing CTL activity in vivo
than multilamellar liposome with encapsulated ovalbumin (121).

Joseph et al. utilized the adjuvant activity of CpG ODNs for generating vaccines with
HN (HA and NA proteins of influenza) antigens encapsulated in multilamellar negatively
charged liposome vesicles (diameter of 1.3 to 1.5 mm) (122). Liposomes were made up of
dimyristoyl-phosphatidylglycerol and dimyristoyl-phosphatidylcholine in a ratio of 1:9.
Mice coimmunized with HN1Lip(ODNs) showed 10- and 6-fold higher IgG2a levels in the
serum and the lungs of mice, respectively, compared to those in the mice coimmunized
with HN1free ODNs. The vaccine formulations containing [Lip2ODNs]1HN, Lip
[ODNs1HN], and Lip[ODNs]1Lip[HN] were around 30-fold more effective than free ODNs
or HN antigens in producing antigen-specific antibodies, IFN-g production, proliferative
response, and protection against virus challenge (122).

FIG 6 Schematic representation of lipid nanoparticle encapsulating cargo such as DNA, RNA, or
protein antigens.
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Ohno et al. also designed an oleoyl liposome vaccine with a SARS-CoV N-protein
epitope surface linked using disuccinimidyl suberate and adjuvanted with CpG ODN
(123). The virus titers in mice vaccinated with the liposomal formulation were 1,000-
fold lower than those in mice vaccinated with empty liposomes (123). In their subse-
quent study, Ohno et al. used similarly produced oleoyl liposome with surface-conju-
gated SARS-CoV nonstructural protein polyprotein 1a for vaccine production and
showed the induction of high titers of CD81 T cells, indicating an increase in cross-pre-
sentation (124). The overall strategy used is fast and effective, but it is yet to be seen
whether the results in humans are similar, as there are differences in antigen process-
ing and presentation.

mRNA–liposome-based nanoparticles. RNA-based vaccines are of two types, tradi-
tional mRNA and self-amplifying mRNA (SAM) vaccines. The basic principle behind
such vaccines is to use the host cell’s translation system for the generation of peptide
antigens and, therefore, trigger an adaptive immune response leading to the genera-
tion of antibodies and memory T cells (125). mRNA-based vaccines provide many ben-
efits, such as easy large-scale production, safety, and capacity to be presentation. [func-
tionally modified to selectively express antigenic structures, reduce immunogenicity
and increase stability (126)]. mRNA can be formulated with nanocarriers to increase
their uptake and cytoplasmic expression and protect them from premature degrada-
tion (127). Liposomal delivery of mRNA for increasing cellular uptake has been exten-
sively explored in vaccinology (128).

Freyn et al. developed a universal influenza mRNA vaccine encoding wild-type H1N1
NA and Np and shortened HA and M2, or only these individual components encapsulated
in synthetic lipid 80 nm particles using a self-assembly process in which the mRNA was
added to an acidic solution containing the cationic lipid, cholesterol, PEG, and phosphati-
dylcholine under rapid stirring (129). The encapsulated combination mRNA and NA mRNA
vaccines provided the highest neutralizing antibody titers in mice, i.e., nearly 15- and 30-
fold that provided by the approved influenza vaccine, respectively (129).

Injected viral mRNA can activate the cytoplasmic RNA sensors; hence, modified
mRNA nucleotides are used to reduce the activation of RNA-sensing TLRs and their
downstream innate immune signaling, which can hinder the translation of the anti-
gen-encoding mRNA (130). A similar study performed by Pardi et al. showed that using
1-methylpseudouridine instead of uridine to develop modified nucleoside-containing
mRNA for synthesizing H1N1 HA-encoding mRNA increased the survival rate in mice
(100% compared to 0% of the unmodified monovalent vaccine without liposomes)
and provides complete protection against H1N1 and H5N1 (131). Previous studies per-
formed by them have shown that this modification increases the expression and
decreases the immunogenicity of the mRNA even at low doses, especially when encap-
sulated with liposomes (132). Such enhancements have a high potential to add to the
efficacy of recently successful mRNA vaccines.

Keeping in mind the urgent need for a vaccine against SARS-CoV-2, the mRNA-1273
vaccine designed by Moderna consists of prefusion-stabilized SARS-CoV-2 S-protein
trimer sequence mRNA (two consecutive proline substitutions introduced at the loop
between the first heptad repeat and the central helix to maintain the stability and ho-
mogeneity of the prefusion spike morphology) encapsulated in liposomes constituted
using cholesterol, an ionizable lipid, PEG, and 1,2-distearoyl-sn-glycero-3-phosphocho-
line (36, 133, 134). It was well tolerated and induced reliable seroconversion in healthy
adults, with neutralizing antibody induction equivalent to that of convalescent patient
sera and the capacity to neutralize at least 80% of SARS-CoV-2 viruses on infection, just
15 days after the prime-boost regime of 100 mg mRNA was delivered intramuscularly
(134). Similar results were observed in the phase 1 study in older adults with efficient
induction of a TH1 response (135). mRNA-1273 showed 94.1% vaccine efficacy in phase
3 trials and is now approved for clinical administration (136).

A similar formulation previously designed by Moderna encodes HA of H10N8
(mRNA-1851) or H7N9 (mRNA-1440) encapsulated in the same liposome composition,
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which provided complete protection to mice against a viral challenge and high hemag-
glutination inhibition titers in ferrets and nonhuman primates (137). Their phase 1 trials
showed that the vaccines were well tolerated and had seroconversion rates of 87% for
100 mg H10N8 formulation and 100% for 50 mg H7N9 formulation, both delivered
intramuscularly (138).

Another vaccine approved for SARS-CoV-2, developed by Pfizer-BioNTech, is Comirnaty,
also known as BNT162b2, a liposomal NP encapsulating similarly prefusion-stabilized RBD-
encoding mRNA that showed 95% efficacy in human trials (139–142). It has been observed
to be well tolerated in human trials with S1-specific IgG, virus-neutralizing titers, and IFN-
g-secreting CD41 and CD81 titers to be about 104-, 30-, and 2,500-fold prevaccination val-
ues, respectively, at 30-mg intramuscularly delivered prime-booster doses (140). However,
Chang et al. observed that although BNT162b2 also developed a broad cross-reactivity
against mutated SARS-CoV-2 strains, the recognition potential was 2.5- to 10-fold lower for
variants compared to that for the original virus (143).

CureVac also synthesized SARS-CoV-2 S-encoding mRNA with similar stabilizing
sequence modifications entrapped in liposomes, called CVnCoV, and found that vacci-
nated hamsters had nearly 6-fold lower lung viral load compared to that of hamsters
treated with S protein plus alum (144). Their phase 1 study showed that it was safe for
human inoculation and induced strong immune responses and complete seroconver-
sion in all participants at just 12-mg prime-booster doses (145). It is interesting to note
that CVnCoV could induce a significant immune response at such low doses (compared
to 100 mg of mRNA-1273 or 2 mg of INO-4800), making it advantageous for quick
large-scale production and distribution. The study is currently in phase 2/3 clinical trials
(ClinicalTrials.gov identifiers NCT04652102 and NCT04674189). A similar vaccine was
made by Hong et al. using full-length SARS-CoV-2 S-encoding mRNA of the more infec-
tious and fatal variant D614G (146). The uniqueness of this vaccine is that it can be ly-
ophilized without loss of immunogenicity and is, therefore, highly advantageous for
storage and distribution (146).

Self-amplifying mRNAs (SAMs) are another type of mRNA vaccine strategy made
from engineered RNA viruses such as the Alphavirus genus (147). The structural genes
are replaced with the gene of interest (148, 149). As they still possess the genes coding
for the viral RNA replicase, when the SAM enters the cells, such as APCs, the replicon is
expressed at a higher frequency, leading to the generation of multiple copies of the
antigen protein for enhanced immune responses at doses much lower than those for
traditional mRNA (142, 150, 151). McKay et al. designed a liposome-encapsulated SAM
construct encoding the same modified SARS-CoV-2 S-encoding sequence used in
mRNA-1273 (152). It generated SARS-CoV-2 neutralizing antibody titers 100-fold higher
than those generated by convalescent patient sera and electroporated plasmid DNA,
as well as a remarkable TH1-biased cellular immune response. Here, the ionizable cati-
onic lipid dilinoleylmethyl-4-dimethylaminobutyrate electrostatically interacts with the
SAM for quick encapsulation and helps in endosomal escape after endocytosis (152).
Lunar-COV19/ARCT-021 is another lipid-encapsulated SAM vaccine encoding full-
length S mRNA of SARS-CoV-2 using the lipid-enabled and unlocked nucleic acid modi-
fied RNA (Lunar) technology (153). The liposomes include the proprietary lipid ATX
(Arcturus Therapeutics), which is pH sensitive and has ester bonds that are chemically
stable during storage but easily degraded by esterases present in tissues and intracel-
lular environment after delivery (154). In mouse studies, the vaccine was observed to
be safe, and SARS-CoV-2 neutralization titers were observed to be nearly 15- and 3-fold
higher than those for free mRNA and convalescent patient sera, respectively (153). It is
currently in phase 1/2 clinical trials (ClinicalTrials.gov identifiers NCT04668339 and
NCT04480957).

Erasmus et al. also constructed a SAM vaccine encoding the full-length S mRNA
sequence of SARS-CoV-2 encapsulated in lipid inorganic NPs, which provided reliable pro-
tection in preclinical studies in mice and nonhuman primates (155). Lipid inorganic NPs are
a nanoemulsion composed of cationic squalene emulsified with superparamagnetic iron
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oxide, and this mixture is embedded in the commonly used immunogenic cationic lipid
1,2-di-oleoyl-3-trimethylammonium propane (155). The presence of 1,2-di-oleoyl-3-trime-
thylammonium propane enables complexing with the mRNA molecules through electro-
static interactions and acts as a beneficial delivery vehicle for SAM vaccines to protect
them from premature degradation and enhance host cell uptake (156, 157). From the stud-
ies using SAM for vaccination, it is evident that its significantly higher expression level pro-
vides an advantage with heightened immunogenicity (158).

DNA–liposome-based nanoparticles. Similarly to proteins and RNA, DNA can also
be delivered through liposomes. Wang et al. demonstrated that intranasal administra-
tion of H1N1 HA-encoding plasmid DNA encapsulated in liposomes synthesized with
1,2-dioleoyl-3-dimethylammonium chloride, 1,2-dioleoyl-sn-glycero-3-phosphoentha-
nolamine, and PEG C8 enhances humoral immunity. Mice immunized with this formu-
lation showed 4- and 10-fold increases in serum IgG and IgA levels, respectively, com-
pared to those for naked DNA and saline controls on PR8 viral challenge and ensured
100% survival (compared to 0% in controls) (159). In a study by Liu et al., mice were
shown to be protected from influenza infection after administration of an oral vaccine
containing the liposome-encapsulated M1 gene of H1N1 influenza (160). The human
gastrointestinal tract has gut-associated lymphoid tissue comprising more than 300 m2

of immunosensitive mucosal surface, and hence the oral route is appealing for vaccina-
tion (161). After day 7 of liposome-DNA immunization of mice, the authors observed a
2-fold increase in IFN-g and IL-4 cytokine levels in bronchoalveolar lavage fluid and IgG
in sera compared to those with naked DNA. Also, the CTL activity induced by the lipo-
some-DNA complex was 50% higher than that induced by naked DNA (160).

Overall, liposomes have proved to be an efficient carrier for proteins and nucleic
acid vaccines. They are easy to synthesize on an industrial scale and can be adapted
for delivering many types of biomolecules or drugs and can even be modified to con-
trol the release using pH-responsive additives, as described above. Protein-liposome
complexes have shown promising in vivo results due to reduced extracellular degrada-
tion and better delivery; however, protein synthesis for large-scale immunization is
time consuming. Liposome-mRNA complexes, on the other hand, have been translat-
able and have successfully been deployed for quick human immunization during the
COVID-19 pandemic. mRNA vaccines have no requirement for integrating with host
DNA for their expression and can simply use the host translation machinery for in vivo
antigen production; hence, they do not pose the risk of causing mutations in the host
genome. The mRNA vaccines discussed above have also not reported adverse effects,
such as lung pathology in mice, and have shown efficiency at low doses. With the use
of liposomes to deliver mRNA vaccines, targeted delivery and vaccine stability have
also improved. Although DNA-liposome complexes have shown promising results and
can result in a prolonged antigen expression compared to that produced by mRNA
vaccines, they pose some potential risks, including integration with the host genome
and vertical transmission (162). Therefore, protein and mRNA liposome vaccines can be
considered to be safer than DNA-liposome complexes.

Self-Assembling Nanoparticles

Virus-like particles (VLPs) are viral subunits that can self-assemble to form 20- to
200-nm NPs that bud from the infected host cell (163). They have a 3-dimensional con-
formation similar in structure to that of the virus of origin but are deficient in nuclear
material, hence removing the hazard of reverting to a virulent state while preserving
the structural antigenicity of the virus (164). Several VLP-based influenza vaccine for-
mulations have been tested on mouse and ferret models (165). These VLPs generally
contain the HA and NA components in the membrane (166). MERS-CoV, SARS-CoV, and
SARS-CoV-2 VLPs are typically created by expressing the native or modified S, E, and M
proteins (167, 168). Other modifications that augment VLPs are the addition of N pro-
tein to enhance packing, encapsulating adjuvants for enhanced immune response, or
inserting the structural genes of interest into viruses infecting other species, such as ca-
nine parvovirus or mouse hepatitis virus to generate chimeric VLPs (169). While VLP
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vaccines impart an increased neutralizing antibody titer and systemic response, they
have been observed to cause lung pathology in mice on viral challenge due to their
high immunogenicity, with substantial eosinophil infiltration suggestive of TH2 hyper-
sensitivity, despite having no viral load (169, 170). This could lead to safety concerns
regarding VLP vaccines and needs further testing.

Outer membrane vesicles (OMVs) are spherical membrane-bound vesicles naturally
generated by Gram-negative bacteria via budding and play a crucial part in bacterium-
host interactions like delivering pathogenic cargo and altering the host immune
response (171). Their ease of production, modifiability, and self-adjuvant properties
make them an excellent choice for vaccine manufacture (172). One OMV vaccine
against meningitis has been approved (4CMenB/Bexsero) (173), and several are in clini-
cal trials (174–178). Shehata et al. engineered a dual OMV vaccine containing recombi-
nant HA from influenza A H1N1 and RBD from MERS-CoV S by transforming Escherichia
coli to secrete OMVs containing the additional protein subunits together (179). After
prime-boost vaccination, mice showed hemagglutinin inhibition antibody titers
against H1N1 and neutralizing antibody titers against MERS-CoV to be almost 2- and
3.5-fold higher, respectively, than those for the control groups (empty OMV or phos-
phate-buffered saline [PBS]), hence showing its effectiveness in eliciting specific
immune responses against both pathogens, while demonstrating complete protection
on H1N1 challenge in mice (179).

In another study, Bae et al. demonstrated that administering an attenuated bacterial
OMV with modified lipopolysaccharides at lipid A moiety provides better protection against
diverse influenza A viruses (H1N1, PR8, H5N2, and H5N1) compared to that provided by
other TLR ligands (180). The modified OMV-injected mice showed an ;80 to 100% survival
rate when challenged with PR8, H5N2, and H5N1 viruses at lethal doses, which was signifi-
cantly higher than that with TLR ligands (180). However, OMV vaccines are highly immuno-
genic due to lipopolysaccharides and other bacterial pathogen-associated molecular patterns
(PAMPs) on their surface (181). They might need modification of their lipopolysaccharide
composition to make them safe for human use. The stability of the formulation needs to be
evaluated along with the assessment of its effects in higher animal models.

Another example of a self-assembled protein NP is ferritin, an iron storage protein
consisting of 24 subunits (mass, 450 to 500 kDa), naturally forming hollow spheres of
12-nm outer diameter (182). Ferritin has been reported widely for its application in bio-
medical engineering because of its unique features, such as the formation of monodis-
perse particles due to natural polymerization, genetically modifiable surface groups
that allow the insertion of antigens for displaying on its cage-like surface, and the
potential to encapsulate drugs, vaccines, or adjuvants in its hollow core (183).
Kanekiyo et al. found that ferritin NPs that displayed H1N1 HA protein could elicit 10-
fold higher HA inhibition titers in mice than the licensed trivalent inactivated vaccine
(2006–2007 and 2011–2012 Fluzone from Sanofi Pasteur containing HA from H1N1,
H3N2, and influenza B viruses) (184). Yao et al. designed complexes made from human
L-ferritin conjugated with SARS-CoV-2 S RBD that self-assembled to form 15-nm par-
ticles and showed a 1.5-fold higher affinity of binding to the angiotensin-converting
enzyme 2 receptor than the native RBD (185). Another study incorporating full-length
S-protein trimer in ferritin NPs showed that it is safe and immunogenic to induce S-
specific neutralizing antibodies 1,000-fold higher than free RBD in a single dose in
mice (186).

Self-assembling particles can also be designed using synthetic proteins; one such
example is the self-assembling icosahedral I53_dn5 protein NP (187). The I53_dn5 par-
ticle is a two-component system made up of a 12-pentameric protein, I53_dnA, and a
20-trimeric protein, I53_dnB (187). The authors used this platform to develop a univer-
sal influenza vaccine in which the N terminus of trimeric component of the protein
(I53_dnB) is genetically fused to the influenza hemagglutinin ectodomain (H1N1,
H3N2, and two B lineage influenza virus) of four viruses circulating during the 2017 to
2018 seasonal flu (188). This construct was tested for the immune response elicited by
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both the mosaic (HA proteins of all four viruses on a single particle) and the cocktail
NP vaccine (carrying each of the four HA proteins on separate particles). The authors
observed similar or higher antibody responses, HA inhibition titers, and microneutrali-
zation titers for both mosaic and cocktail NPs against vaccine-matched and mis-
matched strains of influenza compared with the approved quadrivalent vaccine in
mice, ferret, and macaques. Heterosubtypic virus challenge (challenge with influenza A
virus of subtypes other than those included in vaccine) showed .95% survival (until
day 14) in mice vaccinated with both mosaic and cocktail particles along with AddaVax
adjuvant, while the quadrivalent vaccine showed ,25% survival of mice. The geomet-
ric assembly of the conserved ectodomain of influenza on the I53_dn particle enhances
the interaction of stem region-directed antibodies. Hence, the immune response given
by the I53_dn5 particle is cross-reactive to different types of influenza A viruses (188).
The cytotoxic effect of I53_dn particle alone has not been studied yet and more
research is required to understand the safety of this self-assembling protein strategy.

Another example of a self-assembling particle is Novavax’s NVX-CoV2373, which was
synthesized using full-length stabilized SARS-CoV-2 S proteins self-assembled on polysor-
bate-20 micelles. It forms 27.2-nm NPs and is adjuvanted with Matrix-M, a plant saponin-
based immune-stimulating complex (189, 190). It was designed based on mouse studies
using SARS-CoV and MERS-CoV S-protein micellular NPs, which demonstrated neutralizing
antibody generation 36- to 39-fold higher in SARS-CoV S NP plus Matrix M and 27- to 68-
fold higher in MERS-CoV S NP plus Matrix-M than their respective S-NPs only (191). Studies
on nonhuman primates showed postvaccination neutralizing antibody titers about 300%
higher than those of the placebo group and 37% higher than those for convalescent
patient sera, anti-S IgG nearly 37% higher than that for convalescent-phase sera, and com-
plete protection on infection (189, 192). Clinical trials showed that NVX-CoV2373 was safe
and highly immunogenic in all populations, including older adults, and generated neutral-
izing antibodies 4- to 6-fold higher than those generated by convalescent patient sera
(193–195). It showed an efficacy of 89.7% against the original SARS-CoV-2 virus, 86.3%
against the Alpha variant, and 60.1% against the Beta variant (194, 196). It was also found
that coadministering NVX-CoV2373 with seasonal influenza vaccines did not affect its effi-
cacy or safety (197). Coadministration of multiple vaccines with no effect on the efficacy of
any and no additional safety risks can be a valuable asset for efficient and faster global
immunization.

One significant benefit of using NPs that can self-assemble is that the antigens dis-
played by these NPs can be designed to retain their native configuration, mimicking
their presence on viral membranes, hence providing the benefit of structural antigenic-
ity. Besides, unlike the synthetic particles described in the last section, antigen presen-
tation with self-assembling polymers such as ferritin is uniform across the particle, and
there is no need to perform separate chemical reactions to add the antigen to the par-
ticles. Self-assembling NPs can encapsulate nucleic acid and protein antigens and can
also be complexed with proteins for surface display.

Microneedle Arrays for Vaccine Delivery

Microneedles array patches are an array of micron-scale needles that can efficiently
pierce the skin’s stratum corneum without affecting underlying pain receptors for painless
delivery of the drug or vaccine. The drug can either be coated over the solid metallic sur-
face or encapsulated inside the hollow needle matrix (198, 199). These vaccines can have a
long shelf life (.1 year) at room temperature and can be self-administered, making them
suitable for mass production and distribution (200–202). Microneedles can deliver vaccines
consisting of inactivated viruses, proteins, virus particles, and nucleic acids (198).

A high-density microarray patch developed by Vaxxas and coated with a split inacti-
vated influenza vaccine against H1N1 has been shown to be safe and resulted in an
enhanced immune response (203, 204). The researchers stored vaccine-coated micro-
needles at 40°C for 12 months and observed that the vaccine was antigenically stable.
This approach could be cost effective, as it reduces the complication of continuous re-
frigeration. The Vaxxas patch showed similar immune responses at one-sixth of a dose
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(dose sparing) compared to those induced by intramuscular injections of the same
antigen formulation in humans (203, 204). A dissolvable microarray patch-based vac-
cine was created by Kim et al. for COVID-19 (205). In their study, the S-protein trimer of
SARS-CoV-2 or S-protein subunits of MERS-CoV was loaded into polydimethylsiloxane
molds, followed by overlaying of carboxymethyl cellulose to create hydrogel micronee-
dles. Use of microneedle arrays to deliver S proteins of MERS and SARS-CoV-2 in mice
showed approximately 1.5- and 16-fold higher IgG and virus-neutralizing titer levels,
respectively, than intramuscular delivery of the same antigenic formulation, in several
different formulations. Mice immunized with microarray patch vaccines had 15- to 30-
fold higher S-specific IgG in sera. It was shown to induce nearly 10-fold higher neutral-
izing antibody titers than those induced by intravenous vaccine delivery. The IgG titers
were sustained through 55 weeks after single-dose vaccination and increased by about
2.5-fold after the booster dose (205).

The use of microneedles has some advantages over other forms of delivery techni-
ques. It delivers the antigen across the skin’s stratum corneum, which has a high quan-
tity of antigen-presenting cells and other mediators of the innate immune response,
improving the immunogenicity and pharmacokinetics of the vaccines (206). There are
many ways by which transdermal delivery can benefit vaccination. Besides being pain-
less and increasing patient compliance, microneedles can improve the vaccine’s ther-
mostability, be self-administered, reduce medical waste (in the case of dissolvable
patches), do not require reconstitution, and provide ease of storage (206). Transdermal
patches can be designed to release a vaccine or therapeutic drug for a longer duration
through sustained release (207).

Electroporation for Vaccine Delivery

Another technique to enhance uptake of the delivered vaccine is electroporation at
the site of injection. Inovio Pharmaceutical’s Cellectra 2000 is a delivery device that has
a needle for intramuscular or intradermal injection and 2 to 4 needles around the injec-
tion needle to precisely deliver electric pulses for constant-current electroporation
(208). The electroporation temporarily destabilizes cell membranes of the local cells
and allows the vaccine components to directly enter cells without the need for phago-
cytosis or any other mode of internalization. Hence, it increases the cellular uptake of
the delivered vaccine up to 1,000-fold more than that without electroporation, espe-
cially in the epidermis and muscle cells, promoting immune cell infiltration and estab-
lishing a proinflammatory response (208, 209). The increased uptake allows more effec-
tive antigen presentation through MHC class I and II pathways and can generate both
T-cell responses and strong B cell-mediated antibody generation. It is safe, well toler-
ated, and does not cause any adverse effects by itself (210, 211). Electroporation can
be used to deliver protein and nucleic acid vaccines (198).

Amante et al. used Cellectra to deliver H1N1 HA synthetic mRNA (208). Their nonhuman
primate study of the vaccine suggested that intramuscular and intradermal electroporation
vaccine delivery produced hemagglutination inhibition titers of 1:190 and 1:280, respec-
tively, far above what is generally required for protection (1:40) (208). Cellectra was also
used to deliver a spike sequence synthetic DNA vaccine for MERS-CoV (GLS-5300/INO-4700),
which completed phase 1 trials but did not proceed further (ClinicalTrials.gov identifier
NCT02670187) (212). It is noteworthy that GLS-5300 induced the generation of neutralizing
antibodies and cellular and humoral responses in only 50%, 64%, and 77% of the study pop-
ulation, respectively. Eighty-five percent of participants had an immune response at 1 year
of follow-up after two doses of vaccine (212). Currently, it is in trials to deliver a SARS-CoV-2
synthetic DNA vaccine encoding the S (INO-4800). INO-4800 testing in guinea pigs showed
effective neutralizing antibodies against SARS-CoV-2 with an ND50 titer (serum dilution
required for neutralization of 50% live virus) of .320, while the ND50 titer was ,25 without
electroporation (213). It has been observed to be well tolerated, safe, and immunogenic,
with complete seroconversion in phase 1 trials, and it is currently in phase 2/3 trials
(ClinicalTrials.gov identifiers NCT04447781, NCT04642638, and NCT04336410) (214). The tol-
erability and efficacy of INO-4800 seem to make it a good candidate for a pandemic
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vaccination. INO-4800 provides adequate protection against most other variants as well, as
seen from serum immune responses of phase 1 trial candidates and studies on ferrets (215,
216).

The use of electroporation for vaccination comes with the risk of disturbing the
host DNA due to the electrical voltage imparted (217). Its distribution also remains lim-
ited to the site of injection. However, uptake by muscle cells can be enhanced by
increasing their permeability by pretreatment with hyaluronidase before electropora-
tion. Muscle tissue necrosis and skin edema at the injection site are also risk factors
associated with this technique (217). Therefore, although electroporation seems to be
successful in preclinical trials, its possible local adverse effects might keep it a long way
from moving to widespread clinical use.

POTENTIAL TECHNIQUES FOR VACCINE DEVELOPMENT AND FUTURE
PERSPECTIVES

As bioengineered products and techniques are being explored in almost every
branch of biomedical sciences, several lessons can be taken from fields such as cancer
therapy or drug delivery to develop better technologies in vaccine manufacture for re-
spiratory diseases (38). For example, Cheng et al. demonstrated that altering the per-
centage of cationic lipid in the NP formulation results in selective targeting of various
organs in a mouse model after intravenous delivery (218). This allowed selective target-
ing to the lung, spleen, and liver (218). Such targeted organ delivery of RNA using lipid
NPs can selectively target the lungs and respiratory mucosa to develop robust mucosal
immunity against respiratory viral diseases (219). The commonly used intramuscular
delivery mode often elicits weak mucosal immunity, targeting only systemic immunity.
On the other hand, direct mucosal delivery of vaccines ensures strong mucosal and
systemic immune responses, which can be achieved using NPs (220).

It was shown that injectable mesoporous silica rods that are capable of self-assem-
bly in vivo via nonspecific particle assembly could be used to create macroporous 3-
dimensional structures that resulted in sustained release of ovalbumin for at least 10
days, leading to efficient recruitment of dendritic cells and their sequential infiltration
into the lymph nodes and hence serving as an effective antigen to provoke host adapt-
ive immunity and modulate immune cell functioning (221). These silica rods accumu-
late at the injection site and undergo sustained antigen release for at least 2 weeks
(221). This prolonged release period increases the duration of immune response
mounted against the vaccine antigen and can subsequently boost the repertoire of
memory cells for potent protection. Such sustained release strategies can be very effec-
tive for large-scale vaccination during a pandemic, as they have the potential of being
designed as a prime-only vaccine and may not need booster doses.

One challenge with particle-based vaccines is the premature release of antigens and
adjuvants in serum, leading to their degradation by serum proteases and DNAses. A strat-
egy to overcome this challenge is to use pH-responsive materials such as poly(N-vinylfor-
mamide). Such nanogels have minimal release in serum but dissolve faster or even burst-
release at lower pH, thus protecting their cargo until it reaches an acidic environment such
as the endosomal vesicle, ensuring better loading on MHC molecules (222, 223). A pH-re-
sponsive polymer micelle particle has been shown to increase cytosolic delivery and
reduced exocytosis, which causes enhanced CD81 T-cell response in mice (224). The mice
show a 30-fold increase in antigen uptake by dendritic cells relative to free protein 24 h
postvaccination with the ovalbumin polymer conjugate (224). Hence, the use of pH-re-
sponsive biomaterials can be used to significantly enhance CD81 responses and has the
potential to amplify antiviral immunity for better protection.

Microneedles can be coated with a polyelectrolyte multilayer assembly of the pH-
responsive copolymer oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino ure-
thane), and heparin (225). This copolymer has a charge reversal property, i.e., it exhibits
a positive charge at pH below 4.03, allowing easy electrostatic assembly. At a physio-
logical pH of 7.4, it takes up a negative charge, leading to disassembly of the multilayer
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and rapid release of DNA vaccines due to repulsion with the heparin layer. This meth-
odology can effectively deliver DNA vaccines to the interior layers of the skin, such as
the dermis and the epidermis, for an effective immune response (225).

Hajj et al. have shown potent delivery of luciferase mRNA in liver cells (mRNA taken
up by .80% of three major types of liver cells after delivery in mice) by using 306Oi10

lipid NPs (branched tail, ionizable lipid) (226). 306Oi10 belongs to a class of lipid-like
materials called lipidoids with 10 carbon tails and a single carbon branch at the end
(227). Systemic injection of 0.5 mg mRNA/kg encapsulated in 306Oi10 NPs in mice
model showed 3-fold and 20-fold higher protein expression in liver cells compared to
that shown with two approved gold-standard lipids, Dlin-MC3-DMA and C12-200,
respectively (226, 227). This high delivery rate of mRNA by 306Oi10 NPs is primarily due
to its potential to be strongly ionized and attain a positive charge in the acidic environ-
ment of late endosomes, which facilitates endosomal escape and allows mRNA to be
translated in the cytoplasm (226). Further research on developing such ionizable and
pH-sensitive nanoliposomes to deliver nucleic acid vaccines can boost delivery and
increase immunostimulation for better protection.

Moon et al. synthesized stable interbilayer cross-linked multilamellar vesicles carry-
ing ovalbumin, which, when mixed with immunostimulatory molecules, elicited anti-
body titers nearly 1,000-fold that of free ovalbumin and ovalbumin encapsulated in a
monolayered liposomal formulation (228). It also provided additional advantages such
as antigen loading nearly 2-fold higher than that with monolayered liposomes and
increased stability by adding short covalent cross-links (sustained release for up to
30 days in serum while rapidly degrading on exposure to endolysosomal phospholi-
pase A) (228). These particles provide multiple advantageous features, like biodegrad-
ability for easy metabolism of products, high encapsulation efficiency of both hydro-
philic and hydrophobic cargos, sustained release, and potent T- and B-cell responses,
thereby making them suitable to adopt for viral vaccine formulations.

We would like to highlight the main areas where further research might support
vaccine development against viral respiratory diseases. First, it is vital to obtain a better
understanding of engineered vaccines, such as trafficking, toxicity, and the generation
and persistence of immunoprotection. There should be more detailed preclinical ani-
mal research to confirm the designed vaccine’s translatability. The lack of such studies
on large animals, such as for MERS vaccines, might be detrimental to adopting them
for similar viral respiratory diseases in the future.

Second, observing the high rate of antigenic shifts and drifts in respiratory viruses
and the ever-increasing population of humans to be vaccinated, it is an unmet clinical
need to develop a single-dose, broad-spectrum vaccine against different strains of re-
spiratory viruses to develop immunity swiftly at an affordable cost. Vaccines developed
using bioengineering strategies can contribute to achieving this goal. Bioengineered
particles such as VLPs and hollow polymeric microspheres and nanospheres allow
insertion of multiple and diverse antigens in the same particle, encapsulated or surface
displayed, hence enabling the development of a broader immunity. Antigens from dif-
ferent viruses can also be used, such as in Inflexal and the dual vaccine against MERS
and influenza mentioned previously (119, 179). Many engineered products also allow
encapsulation of adjuvants, sustained antigen release, or higher antigen encapsulation
capability, all of which are highly advantageous for developing single-dose vaccines.
The demonstrable potency of bioengineered NP vaccines, along with their high bio-
compatibility, provides the opportunity to tackle persistent viral respiratory infections,
and such provisions must be used to the greatest advantage.

Third, among the essential factors to be considered for vaccine development against
respiratory viruses are reproducibility of synthesis, rapid scale-up potential, and vaccine
sterilization. Major changes in the manufacturing process, including new equipment, facili-
ties, and regulatory requirements, are required to accommodate new techniques and
products (229). When new processes are introduced, the cost of manufacturing also
increases, such as personnel training costs and costs on raw materials and licensing (229).
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While initially setting up facilities for biomaterial-based vaccines would be costly, in the
long run, this cost can be vastly reduced because of their adaptability to new antigens
without needing extensive changes in the synthesis process. Vaccines based on VLPs and
OMVs can show batch-to-batch variation because of the high dependability on the host
cell behavior and lack of absolute control over the yield. Self-assembling, inorganic, and
polymeric particles, on the other hand, do not have this problem because of their highly
controlled production process. The last roadblock is the sterility of the vaccine formulation.
There are several methods for sterilizing NPs, depending on their formulation, including
sterile filtration, autoclaving, and radiation (230). However, it is challenging to identify suit-
able sterilization processes when new materials are used for research. For example, radia-
tion-based sterilization can alter the quality of the polymeric particles (231). More research
is required to optimize the industrial sterilization of bioengineered vaccines.

CONCLUSION

Vaccines are the most effective way of controlling an outbreak, given that correct and
timely strategies are employed for their development. Despite their success for many dis-
eases, vaccines for respiratory viral infections such as flu and SARS are still suboptimal and
do not offer broad-spectrum protection. Bioengineered vaccine formulations have shown
their potential as efficient antigen and adjuvant delivery vehicles. They can enhance anti-
gen stability and provide controlled release, site-specific targeted delivery, and increased
immunogenicity. So far, self-assembling proteins (e.g., Bexsero for meningococcal group
B), liposomes (e.g., Comirnaty for SARS-CoV-2), and VLPs (e.g., Gardasil for human papillo-
mavirus, Engerix for hepatitis B virus, Recombivax HB for hepatitis B virus, and Cervarix for
human papillomavirus) have been the only components of bioengineering to enter the
vaccine market. Several of these platforms, such as liposomes, polymeric particles, and
self-assembling particles, have shown promise in clinics. More research is required into
understanding the interactions of such bioengineered materials with the antigens so that
the vaccine development timeline is shortened and the vaccines produced are better and
safer. In the future, we hope to see interdisciplinary study between immunologists, mate-
rial scientists, computational biologists, and clinicians aimed toward the designing of effec-
tive vaccines against respiratory diseases. The rapidity of designing and industrial synthesis
is an advantage that biomaterials can provide to deliver potent DNA, RNA, and recombi-
nant protein vaccines, especially for curbing respiratory viral pandemics.
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