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Osteoarthritis is a prevalent aging disease in the world, and in recent years it has shown a trend toward younger age, which is
becoming a major health problem in the world and seriously endangers the health of the elderly. However, the etiology and
pathogenesis of osteoarthritis are still unclear, causing great trouble for treatment. To screen out candidate biomarkers that
could be used for the identification of osteoarthritis and explore the pathogenesis of osteoarthritis, we performed an untargeted
metabolomics analysis of nine New Zealand rabbit serum samples by LC-MS/MS, including three normal serum samples
(control group) and six osteoarthritis serum samples (case group). Finally, 44 differential metabolites were identified, and the
ROC analysis results indicated that a total of 36 differential metabolites could be used as candidate biomarkers. Further
metabolic pathway enrichment analysis was performed on these differential metabolites, and we found that a total of 17
metabolic pathways were affected, which may provide directions for the study of osteoarthritis mechanisms.

1. Introduction

Osteoarthritis (OA) is a prevalent degenerative disease, and
the incidence rate increases with age. In the current research,
the specific pathogenesis of OA has not yet been investi-
gated. Patients with OA have a slow onset in the early stages,
with no significant systemic symptoms. It takes up to two
years from the onset of pain to the choice to go to the hos-
pital, and more than 90% of these patients only go to the
hospital after they develop knee pain. There are two main
types of conventional methods to examine OA. One is imag-
ing, which includes X-ray film examination, irradiation CT,
and MRI; the other is laboratory tests, including hematocrit
blood tests, thermal agglutination tests, and the examination
of the joint fluid in the joint cavity [1]. Imaging is relatively
easy, but the probability of misdiagnosis is very high and is
often confused with ankylosing spondylitis resulting in
medical misdiagnosis. Laboratory inspections are more
numerous, complex, and challenging to detect.

Considering that a large number of biological processes
are involved in arthritis, further characterization of the

disease mechanisms is needed, which can be used for earlier
diagnosis, intervention, or treatment. Peng et al. designed a
new fluorescence turn-on ADAMTS-4-D-Au probe for
detecting ADAMTS-4 activity, which could be used for the
early diagnosis of cartilage-damage diseases [2]. Leung
et al. developed a deep learning prediction model on knee
radiographs, which can accurately predict OA progression
in some patients [3]. For the diagnosis of OA, many tradi-
tional methods have many defects, and new detection
methods are rarely reported. Therefore, we focus on metabo-
lomics. Metabolomics is an emerging field that looks for
specific metabolic pathways through the study of biomarkers
to determine the causes of various diseases from the perspec-
tive of metabolite analysis, where lifestyle, diet, disease, and
genetics can affect multiple metabolite concentrations simul-
taneously [4]. Some studies in recent years have attempted
to identify biomarkers of arthritis through metabolomics
and have identified many potential targets in urine, synovial
fluid, and serum. However, specific biomarkers have not yet
been identified, so the search for biomarkers through meta-
bolomics is gradually evolving into a breakthrough direction
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[5, 6]. For example, before this study, Maerz et al. performed
a serum metabolomics analysis after anterior cruciate liga-
ment injury in rats. They conducted a preliminary study
on inflammation and immune disorders in traumatic OA
[7]. Some metabolomics analyses for OA showed that OA
affects the metabolism of amino acids [8–10]. Many bio-
markers that could be used for the early diagnosis of OA
have been reported in many studies [10–12]. These corrobo-
rate the merits of metabolomics studies for understanding
the disease mechanism of arthritis.

In recent years, the modified Hulth method and intraar-
ticular injection method are common methods to construct
OA models. In this study, New Zealand white rabbits were
used as the experimental model, three as the control group,
and six were constructed as the experimental group through
the modified Hulth method and intra-articular injection
method. The modified Hulth method is a classic OA model-
ing method, which leads to OA by destructing the bone and
joint tissue. The intraarticular injection method can degrade
chondroitin sulfate of the cartilage matrix, which increases
the amount of free water inside the cartilage and affects the
cartilage elasticity, compressive resistance, and integrity of
cartilage so that stresses in the normal range can also cause
cartilage damage, and eventually leading to the occurrence
of typical OA [13]. Therefore, we collected rabbit blood sam-
ples from the constructed OA models to prepare serum for
metabolomics analysis.

In this project, liquid chromatography-tandem mass
spectrometry (LC-MS/MS) was used to identify the metabo-
lites and compare the levels of metabolites between the two
groups. The differential metabolites were screened by multi-
variate statistical analysis and univariate analysis, and they
were exhibited by clustered heat map and volcano plot.
The diagnostic ability of the screened differential metabolites
was judged by ROC analysis to select candidate biomarkers
for OA. The differential metabolites were finally subjected
to pathway enrichment analysis to determine the metabolic
pathways affected by OA.

2. Materials and Methods

2.1. Sample Information. Nine New Zealand white rabbit
serum samples used for metabolomics analysis were pur-
chased from Guangzhou Huateng Biomedical Technology
Co., Ltd. The samples were divided into control group and
case group. The control group includes three rabbit serum
samples without operation named control-1, control-2, and
control-3, and the case group includes six OA rabbit serum
samples named case-1, case-2, case-3, case-4, case-5, and
case-6. All the samples were stored in a refrigerator at − 80 °C.

The model construction method could be referred to the
following article [14]. Nine male six-month-old New Zeal-
and white rabbits were used for animal experiments. All
the rabbits were raised in separate cages and were able to
eat and drink freely. The ambient temperature was main-
tained at 20 °C~25 °C, and the humidity was maintained at
40%~60%. The simulated natural light was 12 hours a day.
The animal experiment and research process followed the
3R principle and has been approved by the experimental

animal ethics committee of Guangzhou Huateng Biological
Medicine Technology Co., Ltd. (htsw201003).

The model construction methods are as follows: the
modified Hulth method and the type II collagenase
method were used to construct 3 rabbit knee OA models,
respectively. The modified Hulth method is to cut off the
medial collateral ligament and anterior cruciate ligament,
remove the medial meniscus, and construct the knee OA
model through the complete rupture of the anterior cruci-
ate ligament. The type II collagenase method is to inject
0.5ml (4mg/ml) of type II collagenase solution into the
articular cavity through the medial depression of the
patellar ligament. All operations require strict aseptic
operation environment.

One week after surgery, the animals in each group were
driven to exercise for 30 minutes every day, and the Interna-
tional OA Lequesne MG Index [15] was used as the standard
for model evaluation, which lasted for 6 weeks. The scoring
was performed twice a week, and a total score greater than or
equal to 3 was considered successful modeling. Blood was
collected from the ear margin vein 6 weeks after the opera-
tion. The blood was collected in procoagulation tubes, and
the serum was collected by centrifuging at 650 rcf for
10min after standing at 4 °C for 30min.

2.2. Extraction of Metabolites. Serum was stored in − 80 °C
refrigerator before sample preparation. 100μL samples were
extracted by directly adding 300μL of precooled methanol
and acetonitrile (2:1, v/v, Thermo Fisher Scientific, USA).
After vortexing (QL-901, Kylin-bell Lab Instruments Co.,
Ltd., China) for 1min and incubating at − 20 °C for 2 hours,
the samples were centrifuged at 14800 rcf for 10min at 4 °C,
and the supernatants were then transferred for vacuum
freeze drying (Maxi Vacbeta, GENE COMPANY). The
metabolites were resuspended in 150μL of 50% methanol
and centrifuged at 14800 rcf for 10min at 4 °C; then, the
supernatants were transferred to autosampler vials for LC-
MS analysis.

2.3. LC-MS/MS Analysis Conditions. Metabolites separation
was performed on a Waters 2D UPLC (Waters, USA) with a
Waters ACQUITY UPLC BEH C18 column (1.7μm, 2:1
mm × 100mm, Waters, USA), and the column temperature
was maintained at 45 °C. The mobile phase in positive ion
mode is as follows: 0.1% formic acid solution (50144-50ml,
DIMKA, USA) (A) to 0.1% formic acid methanol solution
(B). The mobile phase in negative ion mode is as follows:
10mM ammonium formate solution (17843-250G, Honey-
well Fluka, USA )(A) to 10mM ammonium formate in 95%
methanol (B). The gradient conditions were as follows: 0-
1min, 2% B; 1-9min, 2%-98% B; 9-12min, 98% B; 12-
12.1min, 98%B to 2%B; and 12.1-15min, 2%B. The flow rate
was set at 0.35mL/min, and the injection volume was 5μL.

Primary and secondary mass spectrometry data were
collected by Q Exactive (Thermo Fisher Scientific, USA).
The mass spectrometric settings for positive and negative
ionization modes were as follows: The full scan range was
70–1050m/z; spray voltages, 3.80 kV/3.20 kV; capillary
temp, 320 °C; Aux gas heater temp, 350 °C; sheath gas flow
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rate, 40 arbitrary units; Aux gas flow rate, 10 arbitrary units;
and runtime, 13min.

2.4. Data Processing. Raw data from mass spectrometry was
imported into Compound Discoverer 3.1 (Thermo Fisher
Scientific, USA) for data processing, including peak extrac-
tion, peak alignment, and metabolite identification , and
information about compound molecular weight, retention
time, peak area and identification results were exported.
Metabolites were identified by using the BGI self-built stan-
dard library database, HMDB database, KEGG database,
mzCloud database, and Chemspider database. The basis for
identification includes precursor mass tolerance <5 ppm,
fragment mass tolerance <10ppm, and RT tolerance
<0.2min. The results exported from the Compound Discov-
erer 3.1 were imported into metaX [16] for data preprocess-
ing, statistical analysis, and metabolite analysis. Data was
normalized using the probabilistic quotient normalization
method (PQN [17]) to obtain the relative peak area. Multi-
variate statistical analysis and univariate analysis were
performed on metaX [16]. The distribution and separation
trends of the two groups were observed by multivariate
statistical analysis, and then the fold change (FC) with p
value was obtained by univariate analysis.

2.5. Screening and Analysis of the Differential Metabolites.
Fold change analysis of metabolites was performed between
the two groups, and t-test was further performed to deter-

mine whether the differences in metabolites between groups
were significant. Screening for differential metabolites was
based on the results of univariate analysis, the differential
metabolite screening conditions were as follows: fold
change ≥ 1:2 or≤ 0.83 and P value < 0:05, and metabolites
meeting these conditions could be considered significantly
different. For clustering analysis of differential metabolites,
data was log 2 transformed and Z-score normalized; hierar-
chical clustering was used for clustering algorithms, and
Euclidean distance was used for distance calculation.
Through the cluster analysis, the variation trends of differen-
tial metabolites can be seen, and the metabolites with the
same variation trends can be identified. After that, the
screened metabolites were visual displayed by volcano plots.
The filtered differential metabolites were imported into data-
bases for identification, the identified differential metabolites
were subjected to ROC analysis, and the differential metab-
olites with AUC > 0:9 could be tentatively used as biomark-
ers for OA. The identified differential metabolites were
finally imported into the KEGG database for metabolic path-
way enrichment analysis.

3. Results

3.1. Serum Metabolites Analysis. Herein, we selected a
sample from each group for base peak ion chromatogram
(BPC) inspection. The BPC chart is shown in Figure 1. It
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Figure 1: Base peak ion chromatogram. (a) (ESI+) BPC-control. (b) (ESI+) BPC-case. (c) (ESI-) BPC-control. (d) (ESI-) BPC-case.
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shows that the samples have good peak shape and large
peak capacity.

We performed the multivariate statistical analysis and
univariate analysis on the processed data by metaX [16].
The PCA and PLS-DA [18, 19] score plots are shown in
Figure 2. The PCA analysis shows that the scores of the
two principal components in the positive ion mode are PC
1 = 48:48% and PC2 = 16:04% and the scores in the negative
ion mode are PC1 = 52:02% and PC2 = 15:22%. It can be
seen that there is an abnormal point in the control group
and this point comes from the sample control-1, indicating
that the sample has individual differences. Further PLS-DA
[18, 19] analysis was performed on the two groups. Through
the supervised statistical analysis, the differences between the
groups were expanded, and the differences within the groups
were reduced. From the score plots, it can be seen that the
control group is mainly distributed on the right side, while
the OA group is mainly clustered on the left. The two have
a good separation, which indicates that our data can be used
for further analysis.

3.2. Screening of Candidate Biomarkers. After data prepro-
cessing, 1632 and 636 features were detected in positive
and negative ion mode, respectively, and detailed informa-
tion is shown in Table S1 and Table S2. In order to screen

out differential metabolites, fold change analysis and t-test
were performed. The screening conditions of differential
metabolites were set as fold change ≥ 1:2 or≤ 0.83 and p
value < 0:05. The statistics of screening results are shown
in Table 1. The cluster heat maps (Figure 3) show that all
differential metabolites are divided into two clusters of co-
regulated metabolites. In the positive ion mode, 33
metabolites in the upper cluster are significantly
downregulated, and 72 metabolites in the lower cluster are
upregulated. In contrast, in the negative ion mode, 26
metabolites in the upper cluster are upregulated, and 8
metabolites in the lower cluster are downregulated. The
specific calculation results of cluster analysis are shown in
Table S3 and Table S4. The upregulated metabolites include
fructoselysine, otonecine, and carmustine, and the
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Figure 2: PCA and PLS-DA score plots. (a) (ESI+) PCA. (b) (ESI-) PCA. (c) (ESI+) PLS-DA. (d) (ESI-) PLS-DA. The abscissa is the first
principal component PC1, and the ordinate is the second principal component PC2. The number is the score of the principal component,
which represents the percentage of the explanation on overall variance of the specific principal component.

Table 1: Differential metabolite statistics.

Mode Group
Total number of differential

metabolites
Up Down

pos
case_
control

105 72 33

neg
case_
control

34 26 8
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downregulated metabolites include ɛ, ɛ, ɛ trimethyllysine,
tranexamic acid, and triethylamine. Draw the differential
metabolites into volcano plots (Figure 4) for visual display,
in which purple is the upregulated differential metabolite,
yellow is the downregulated differential metabolite, and cyan
is the metabolite with no obvious difference.

We further identified the screened differential metabo-
lites through the HMDB database, KEGG database, etc. A
total of 35 differential metabolites can be identified in posi-
tive ion mode, and 9 differential metabolites can be identified
in negative ion mode. ROC analysis was performed on these
44 differential metabolites to evaluate their diagnostic ability.
The metabolites with the area under the curve ðAUCÞ > 0:9
can be used as candidate biomarkers. ROC analysis results
are shown in Table 2, and data about the relative peak area
of each metabolite used for ROC analysis are shown in
Table S5. Finally, we determined 36 metabolites as candidate
biomarkers of OA. The relevant information is shown in
Table 2. These candidate biomarkers include ɛ, ɛ, ɛ
trimethyllysine, ascorbic acid, otonecine, and tranexamic
acid. All these metabolites have good diagnostic ability for OA.

3.3. Pathway Analysis of Differential Metabolites. The filtered
differential metabolites were imported into the KEGG data-
base for pathway enrichment analysis, from which we found
that 17 metabolic pathways were affected. Circadian rhythm
and vitamin B6 metabolism were detected in positive ion
mode, and the metabolic pathways seen in negative ion

mode included the HIF-1 signaling pathway, pantothenate
and CoA biosynthesis, mineral absorption, and glutathione
metabolism. The total enrichment results are displayed in
the bubble plot for metabolic pathway enrichment analysis
(Figure 5) and the metabolic pathway enrichment results’
table (Table 3), from which it can be seen that the metabolic
pathway with the most significant enrichment factor is circa-
dian rhythm. Circadian rhythm is a regular cycle established
by adapting various physiological functions to changes in the
external environment, reflecting that circadian rhythm has a
particular impact on the development of OA. Kc et al. [20]
have established circadian rhythm disordered mouse models
and found that the disorder of the biological clock system
leads to pathological changes in the knee joint, suggesting
that circadian rhythm disorder will induce OA development.
The report has also shown that the autonomous clock in
chondrocytes regulates key pathways involved in OA [21],
which can provide more new ideas for treating OA by inves-
tigating the molecular mechanisms between circadian
rhythm and OA development. At the same time, it can be
seen that the metabolism of multiple amino acids is affected,
including valine, leucine, isoleucine biosynthesis and degra-
dation, phenylalanine metabolism, and tyrosine metabolism.
Meanwhile, upregulated metabolite L-(+)-valine affects
several metabolic pathways, including valine, leucine, iso-
leucine biosynthesis, pantothenate and CoA biosynthesis,
mineral absorption, and protein digestion and absorption.
Many studies have reported the relationship between
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Figure 3: Clustering heat map. (a) (ESI+) Clustering heat map. (b) (ESI-) Clustering heat map. Each row represents a differential metabolite,
each column represents a sample, color is the amount expressed, and yellow to purple indicates the amount expressed from low to high.
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amino acid metabolism and OA [22, 23], and it can be
seen that OA has an essential impact on the metabolism
of relevant amino acids.

4. Discussion

Osteoarthritis is a gradually progressive chronic disease. The
degenerative damage and reactive hyperplasia of articular
cartilage caused by OA are related to many factors, such as
increasing age, obesity, and strain. OA is often diagnosed
by clinical diagnosis and imaging methods, and standard
imaging methods include radiographs, magnetic resonance
imaging (MRI), ultrasound (US), and optical coherence
tomography (OCT) [24]. However, the diagnosis of OA is
often not confirmed until late in the disease, while approxi-
mately half of those identified by imaging methods do not
have associated symptoms or disability, and the clinical
relevance of some radiological features is not completely
clear [25, 26]. Biomarkers play an essential role in the diag-
nosis and stage judgment of the disease, and it is vital to study
the OA-related biomarkers in the early diagnosis of OA.
Based on this, we hope to screen out the OA-related bio-
markers and provide a basis for the early diagnosis of OA.

This project performed an untargeted metabolomics
analysis of nine New Zealand rabbit serum samples based
on LC-MS/MS to extract and compare serum metabolites
between control and OA groups. We identified 44 differential
metabolites, which were further subjected to ROC analysis. A
total of 36 differential metabolites were screened to serve as
candidate biomarkers to provide some ideas for the early
diagnosis of OA. Through the pathway enrichment analysis
of differential metabolites, we found that 17 metabolic path-
ways were affected, which were worth further study.

The association between OA and circadian rhythms
seems to be expected. In fact, several studies have shed light
on the potential relationship between rheumatoid arthritis
and circadian rhythms [27], primarily due to the body’s
hormone levels varying widely at different times of the
day. Circadian rhythms originate from the central pace-
maker in the brain’s suprachiasmatic nucleus (SCN) and
are regulated by light-sensitive retinal nerves [28]. This
rhythm plays an essential role in regulating endocrine and
immune functions. Some previous studies have shown that
melatonin secretion significantly increases in patients with
rheumatoid arthritis during the night, while endogenous
cortisol synthesis is subsequently activated to counteract
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Figure 4: Volcano plots. (a) (ESI+) Volcano plot. (b) (ESI-) Volcano plot. Horizontal axis is log2 (FC) and vertical axis is -log10 (P value).
The horizontal and vertical dashed lines were selected as the filtering conditions: P < 0:05, and log2 ðFCÞ > 1:2 or< 0.83. The differential
metabolites in the top left and the top right part were obtained after filtering, yellow representing downregulation and purple
representing upregulation.
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the cascade of symptoms [29]. This rhythmic fluctuation
may play a role in the pathophysiology of rheumatoid
arthritis. Previous studies have found that direct inhibition
of pro-inflammatory factors such as melatonin contributes
to clinical improvement in rheumatoid arthritis [30]. Some
studies revealed that RA risk increases with an unhealthy
daily routine [31, 32]. In addition, OA and rheumatoid
arthritis are chronic inflammatory diseases. The immune

system’s excessive response to OA at night uses up a lot of
energy [33, 34]. This disrupts the balance of energy expen-
diture maintained by the circadian rhythm, which can
lead to discomfort beyond the symptoms of arthritis itself
[35]. In conclusion, the relationship between chronic
inflammation and dysfunctional circadian rhythms in
rheumatoid arthritis and OA appears to be complex, with
many potential interactions.

Table 2: List of candidate biomarkers.

Name Fold-change P value Direction AUC

ESI+

ɛ, ɛ, ɛ trimethyllysine 0.3427 0.0002 Down 1

Otonecine 2.2536 0.0188 Up 0.944

Tranexamic acid 0.0472 0.0431 Down 1

Triethylamine 0.668 0.0219 Down 1

Carmustine 2.8701 0.0022 Up 1

Epiguanine 0.5722 0.003 Down 0.944

Bayer e 39 soluble 6.8063 0.0173 Up 1

Etilevodopa 9.1913 0.023 Up 1

Leu-val 0.6167 0.0006 Down 1

Melatonin 7.3363 0.016 Up 0.944

1,4-naphthoquinone 2.597 0.0428 Up 0.944

Arg-asp 3.3794 0.0177 Up 0.944

Istamycin a1 1.4538 0.0165 Up 1

Deferoxamine 2.3565 0.0185 Up 0.944

Codonocarpine 1.5971 0.0196 Up 0.944

Sophoranone 2.3365 0.0478 Up 1

Anecortave 3.1962 0.0036 Up 1

Compactin 2.1724 0.0118 Up 0.944

Quinoline 0.4259 0.0316 Down 1

12‑deoxyphorbol 20-acetate 13-(2-methylbutanoate) 2.8926 0.0189 Up 1

Khellin 0.6024 0.0093 Down 0.944

Epelsiban 3.0074 0.0036 Up 1

Nevirapine 0.1551 0.047 Down 0.944

(1r,5r)-3,3,5-trimethylcyclohexyl 5-oxo-l-prolinate 6.7929 0.0362 Up 0.944

Theaspirane 0.3567 0.0397 Down 0.944

2475675 0.1698 0.0309 Down 1

Drostanolone propionate 0.1679 0.0303 Down 1

ESI-

Ascorbic acid 2.2196 0.0004 Up 1

L-(+)-valine 2.2286 0.0345 Up 1

2‑hydroxy-1,2-diphenylethyl hydrogen sulfate 1.3409 0.038 Up 1

4-carboxy-2-(tyrosylamino)butanoate 7.7855 0.0339 Up 0.944

Gentisic acid 0.3758 0.0009 Down 1

Benzoic acid 1.9018 0.038 Up 0.944

N-(5-amino-2-[(2,6-diamino-2,6-dideoxyhexopyranosyl)oxy]
-3-{[3-o-(2,6-diamino-2,6-dideoxyhexopyranosyl)-beta-d-
ribofuranosyl]oxy}-4-hydroxycyclohexyl)acetamide

1.7462 0.0136 Up 1

D-tryptophyl-d-alanyl-d-allothreonylglycyl-d-histidyl-
l-phenylalanyl-d-methioninamide

2.6554 0.0467 Up 0.944

Probucol 2.3401 0.0132 Up 1
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Figure 5: Bubble plots for metabolic pathway enrichment analysis. Horizontal axis is the enrichment factor and vertical axis is the pathway
name. Dot size represents the number of differential metabolites annotated to that pathway.

Table 3: Affected metabolic pathways in rabbit serum.

Pathway RichFacor KEGG.Name KEGG.ID P value Direction

ESI-

HIF-1 signaling pathway 1/15 Ascorbic acid C00072 0.0049 Up

Valine, leucine, and isoleucine biosynthesis 1/23 L-(+)-valine C00183 0.0074 Up

Pantothenate and CoA biosynthesis 1/28 L-(+)-valine C00183 0.0091 Up

Mineral absorption 1/29 L-(+)-valine C00183 0.0094 Up

Glutathione metabolism 1/38 Ascorbic acid C00072 0.0123 Up

Vitamin digestion and absorption 1/39 Ascorbic acid C00072 0.0126 Up

Valine, leucine, and isoleucine degradation 1/42 L-(+)-valine C00183 0.0136 Up

Protein digestion and absorption 1/47 L-(+)-valine C00183 0.0152 Up

Ascorbate and aldarate metabolism 1/49 Ascorbic acid C00072 0.0158 Up

Aminoacyl-tRNA biosynthesis 1/52 L-(+)-valine C00183 0.0168 Up

Phenylalanine metabolism 1/60 Benzoic acid C00180 0.0193 Up

Tyrosine metabolism 1/78 Gentisic acid C00628 0.0251 Down

ABC transporters 1/124 L-(+)-valine C00183 0.0396 Up

Biosynthesis of amino acids 1/128 L-(+)-valine C00183 0.0408 Up

2-Oxocarboxylic acid metabolism 1/134 L-(+)-valine C00183 0.0427 Up

ESI+

Circadian entrainment 1/9 Melatonin C01598 0.0111 Up

Vitamin B6 metabolism 1/28 4-pyridoxate C00847 0.0343 Down
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Compared with other studies, we also identified that
OA upregulated HIF-1 signaling pathway [36, 37].
Hypoxia-inducible factor 1 (HIF-1) can detect environmen-
tal oxygen content and adapt to hypoxic environment by
activating genes related to oxygen homeostasis [38]. Hyp-
oxia has been proved to be one of the main factors induc-
ing OA, and HIF-1 α subunit has good stability under
hypoxic conditions and can protect chondrocytes [36, 39].
Hu et al. found that HIF-1α can alleviate chondrocyte apo-
ptosis and senescence through mitophagy under hypoxic
conditions to improve the symptoms of OA [37]. In addi-
tion, HIF-1α can promote the formation of chondrocytes,
maintain chondrocyte viability, and support chondrocytes
to adapt to hypoxic environment by mediating a series of
reactions to protect articular cartilage [40]. In short, HIF-
1 is closely related to OA.

The metabolism of ascorbic acid was also affected. The
senescence of chondrocytes is an important factor in the
production of OA, and the oxygen free radicals can
degrade collagen and proteoglycans, which are considered
to be the main inducers of chondrocyte senescence [41,
42]. Ascorbic acid has strong reducibility, so the increase
of ascorbic acid in the serum of the case group is likely
to be a self-protection mechanism. Studies have also shown
that ascorbic acid plays an important role in collagen
synthesis and can stimulate the expression of collagen
and aggrecan in articular cartilage [43, 44]. Liao et al.
found that it could effectively delay cartilage degeneration
by injecting ascorbic acid-ferric chloride mixture into the
articular cavity of OA rats [45]. These all show the close
link between ascorbic acid and OA and provide ideas for
the treatment of OA.

Our results showed that OA significantly impacts amino
acid metabolism, especially on branched-chain amino acid
(BCAA) metabolism, which has been confirmed by previous
reports [8, 10]. BCAA, including valine, leucine, and isoleu-
cine, play an important role in promoting muscle growth
and releasing hormones. Zhai et al. first studied the serum-
based metabolomics of human OA and found that the ratio
of BCAA to histidine has potential clinical use as a bio-
marker of OA [8]. Although our study did not show changes
in histidine content, these studies can reflect the close rela-
tionship between BCAA and OA. BCAA is related to the
increasing number of major pro-inflammatory cytokines
involved in the pathophysiology of OA, which can lead to
the degradation of the articular cartilage matrix [46]. It has
also been reported that BCAA reflects the relationship
between obesity and OA and obesity is an essential factor
in the occurrence of OA [47]. In addition, this project
showed that valine could be used as a potential biomarker
for OA, which had also been reported in a previous study
[48]. This project also reported some new biomarkers, which
have a specific significance for the development of new diag-
nostic methods for OA. In conclusion, the relationship
between amino acid metabolism and OA has always been a
hot topic.

There are some limitations to this study. OA is easily
confused with other types of arthritis, such as rheumatoid
arthritis. We did not investigate the potential relationship

between OA and other arthritic diseases; further validation
of whether the screened biomarkers are also able to identify
other types of arthritis is needed. Second, the sample size in
this study is small, so we could not make a further interpreta-
tion of the screened biomarkers. Meanwhile, we obtained the
differential metabolites by database matching, and no further
validation was done by comparing with standards, which
needs to be done in the future. This study used New Zealand
rabbits as the research object, and the genetic information of
this species is different from that of humans. Future research
needs to be closer to the clinical aspect.

5. Conclusion

In summary, untargeted metabolomics analysis was per-
formed on nine serum samples by LC-MS/MS. This study
finally identified 44 differential metabolites, and 36 of the
44 metabolites were served as candidate biomarkers for
OA by ROC analysis. A total of 17 metabolic pathways were
affected due to OA, including circadian rhythm, amino acid
metabolism, and HIF-1 signaling pathway. These reveal the
potential mechanism of OA and provide new research direc-
tions for future therapeutics and development of new drugs
in the field of OA.
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